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Abstract— An estimation-based iterative learning control
(ILC) algorithm is applied to a realistic industrial manipulator
model. By measuring the acceleration of the end-effector, the
arm angular position accuracy is improved when the measure-
ments are fused with motor angle observations. The estimation
problem is formulated in a Bayesian estimation framework
where three solutions are proposed: one using the extended
Kalman filter (EKF), one using the unscented Kalman filter (UKF),
and one using the particle filter (PF). The estimates are used in
an ILC method to improve the accuracy for following a given
reference trajectory. Since the ILC algorithm is repetitive no
computational restrictions on the methods apply explicitly. In
an extensive Monte Carlo simulation study it is shown that the
PF method outperforms the other methods and that the ILC
control law is substantially improved using the PF estimate.

I. INTRODUCTION

A typical control configuration in modern industrial robots
is to use measurements only from the motor angles of the
manipulator in the controller. As a result of the development
of cost efficient manipulators the mechanical structure has
become less rigid. One component that contribute signifi-
cantly to the flexibility of the manipulator is the gearbox,
were the joint position deviates from the actuator position,
hence the controller using only actuator positions is insuffi-
cient. To achieve better performance, the joint positions or
tool position have to be measured directly or estimated. Here,
the focus is on estimation of the joint positions.

Traditionally, many non-linear estimation problems are
solved using the extended Kalman filter (EKF) [2]. In [14]
an EKF is used to improve the trajectory tracking for a
rigid 2-degree-of-freedom (DOF) robot. The robot dynamics
are non-linear and the measurement noise is not always
Gaussian. Hence, linearised models may not always be a
good approach. The particle filter (PF) [9], [10] provides
a general solution to many problems where linearisation
and Gaussian approximations are intractable or would yield
too low performance. The PF method is also motivated
since it provides the possibility to design control laws and
perform diagnosis in a much more advanced way. The use
of Bayesian recursive estimation methods such as EKF and
PF has been evaluated in simulations in e.g. [18], [22]. The
recent publications [5], [6] present results based on real data
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from an ABB industrial robot where actuator positions and
acceleration of the tool are fused using an EKF and PF.

Here we focus on the next step, i.e., to use the sensor
fusion framework and the estimated joint position or the
estimated tool position for control. In this contribution it is
shown how the improved estimates can be used in an iterative
learning control (ILC) method, [3], [21]. An early approach
to estimation-based ILC is presented in [11], which presents
a simulation study where measurements of the actuator
position are combined with the arm acceleration of a single
link robot. The corresponding approach is implemented and
evaluated experimentally in [12]. For realistic robot struc-
tures the state estimation problems becomes a challenging
non-linear filtering problem. The combination of non-linear
state estimation and ILC is evaluated with promising results
in [25] using a realistic 2-DOF simulation model containing
mechanical elasticities. In [25] only an EKF was used in the
estimation, it was also assumed that the measurement noise
was Gaussian. Here both EKF, UKF, and PF are used, together
with non-Gaussian noise distributions. For simplicity, here
a 1-DOF model is used, but extension to several DOFs is
straightforward.

P
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Fig. 1. System P with reference r(t), ILC input uk(t), measured
variable yk(t) and controlled variable zk(t) at ILC iteration k and time t.

II. ESTIMATION-BASED ILC

Iterative learning control (ILC) is a way to improve
the performance of systems that perform the same task
repeatedly. Here it is assumed that the controlled variable
cannot be directly measured. The situation is schematically
described in Fig 1, where r(t) and uk(t) denote the reference
signal and the ILC input at iteration k, respectively. The
system P can represent an open loop system as well as a
closed loop system with internal feedback. Further details
are given in [26]. There are two types of output signals
from the system, zk(t) denotes the controlled variable and
yk(t) the measured variable at ILC iteration k. In general the
tool position is not directly measurable, therefore the ILC
algorithm has to rely on estimates of the controlled variable
based on measurements of related quantities. The measured
variables are collected in the variable yk(t). In Fig 2 the
actual control structure used for the ILC algorithm presented
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Fig. 2. ILC control structure used in the example in the paper.

in this paper is shown. The control input uk from the ILC
algorithm is added to the reference, which in turn drives
the feedback loop with the controller F and the non-linear
system.

The ILC algorithm used in this paper is given by the
discrete-time filter

uk+1(t) = Q(q)
(
uk(t) + L(q)εk(t)

)
, (1)

where q is the time-shift operator, t is time and k is the
ILC iteration index. The filters Q(q) and L(q) are possibly
non-causal. If the filter Q(q) is omitted and the filter L(q) is
chosen as the inverse of the system, then the error converges
to zero in one iteration. However, inverting the system will
be very sensitive to model errors and may result in a very
complicated ILC filter. Instead, the choice L(q) = γqδ is
often used, where 0 < γ < 1 and δ a positive integer are
the design variables. Moreover, the filter Q(q) is introduced
in order to restrict the high frequency influence from the
error and also reduce the influence of measurement noise.
Including Q(q) makes the ILC algorithm converging slower
and to a non zero error. Other choices of ILC updating laws
can be found in [1], [7], [21]. The error used in the ILC
algorithm is the difference between the reference r and the
estimate ẑk of the controlled variable at iteration k,

εk(t) = r(t)− ẑk(t). (2)

The estimation procedure is described in detail in Section III.
For every ILC iteration k, the system is simulated using a new
noise realisation for both the process and measurement noise.
For evaluation of the performance of the ILC algorithm, the
true error is used,

εk(t) = r(t)− zk(t). (3)

III. BAYESIAN ESTIMATION

Consider the discrete-time state-space model

xt+1 = f(xt,ut,wt), (4a)
yt = h(xt) + et, (4b)

with state variables xt ∈ Rn, input signal ut and measure-
ments Yt = {yi}ti=1, with known probability density func-
tions (PDFs) for the process noise, pw(w), and measurement
noise pe(e). The notation xt = x(t) will be used alternately
in the sequel of the paper to denote time dependency, not
to be confused with the subscript k used to indicate the ILC
iteration. Moreover, boldface lower-case variables indicate
vectors and boldface upper-case variables indicate matrices.

The non-linear posterior prediction density p(xt+1|Yt)
and filtering density p(xt|Yt) for the Bayesian inference [15]
are given by

p(xt+1|Yt) =

∫
Rn

p(xt+1|xt)p(xt|Yt)dxt, (5a)

p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
. (5b)

For the special case of linear-Gaussian dynamics and linear-
Gaussian observations, the Kalman filter [17] is the optimal
solution. For non-linear and non-Gaussian systems, the PDF
cannot, in general, be expressed with a finite number of
parameters. Instead approximative methods are used. This
is usually done in two ways; either by approximating the
system or by approximating the posterior PDF, see for
instance, [4]. Here, three different approaches of solving the
Bayesian equations are considered; EKF, UKF, and PF. The
EKF will solve the problem using a linearisation of the system
and assuming Gaussian noise. The UKF will also assume
Gaussian noise but keeping the non-linearity as it is. The
PF on the other hand will approximately solve the Bayesian
equations by stochastic integration. Hence, no linearisation
errors occur. The PF can also handle non-Gaussian noise
models where the PDFs are known only up to a normalization
constant. Also, hard constraints on the state variables can
easily be incorporated in the estimation problem.

In the ILC application, due to the repetitive nature of the
algorithm, no computational restrictions on the methods ap-
ply explicitly, hence in this paper only tracking performance
is studied.

A. The Extended Kalman Filter (EKF)

For many non-linear problems, the noise assumptions and
the non-linearity are such that a linearised solution will be
a good approximation. This is the idea behind the EKF [2]
where the model is linearised around the previous estimate.
The time update and measurement update for the EKF are{

x̂t+1|t = f(x̂t|t,ut, 0),

Pt+1|t = FtPt|tFTt + GtQtG
T
t ,

(6a)
x̂t|t = x̂t|t−1 + Kt(yt − h(x̂t|t−1)),

Pt|t = Pt|t−1 −KtHtPt|t−1,

Kt = Pt|t−1HT
t (HtPt|t−1HT

t + Rt)
−1,

(6b)

where the linearised matrices are given as

Ft = ∇xf(xt,ut, 0)|xt=x̂t|t , Ht = ∇xh(xt)|xt=x̂t|t−1
,

Gt = ∇wf(xt,ut,wt)|xt=x̂t|t .

In (6), P denotes the covariance matrix for the estimation
error, and the noise covariances are given as

Qt = Cov (wt) , Rt = Cov (et) , (7)

where the process noise and measurement noise are assumed
to be zero mean Gaussian distributions.
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B. The Unscented Kalman Filter (UKF)
The UKF, [16], utilises the unscented transform and avoids

linearisation by propagating samples, so-called sigma points,
through the dynamic model and in a similar way evaluates
these samples using the measurement relation. These are cho-
sen deterministically as the mean value and values equally
spaces determined by the covariance. Note that the UKF
always approximates the underlying PDF with a Gaussian
distribution. For details see [13], [16]. The advantage over
the EKF is that no linearisation is needed.

C. The Particle Filter (PF)
The PF, [9], [10], provides an approximate solution to

the Bayesian estimation problem formulated in (5). The
PF approximates the density p(xt|Yt) by a large set of N
samples (particles), {x(i)

t }Ni=1, where each particle has an
assigned relative weight, ω(i)

t , chosen such that all weights
sum to unity. The location and weight of each particle
reflect the value of the density in the region of the state
space. The PF updates the particle location in the state space
and the corresponding weights recursively with each new
observed measurement. Using the samples (particles) and
the corresponding weights, the Bayesian equations can be
approximately solved. To avoid divergence, a resampling step
is introduced, [10]. There exist theoretical limits [9] that the
approximated PDF converges to the true as the number of
particles go to infinity.

The estimate for each time, t, is often chosen as the
minimum mean square estimate, i.e.,

x̂t|t = E (xt) =

∫
Rn

xtp(xt|Yt)dxt ≈
N∑
i=1

ω
(i)
t x

(i)
t , (8)

but other choices are possible.

D. Cramér-Rao Lower Bound (CRLB)
When different estimators are used, it is fundamental to

know the best possible achievable performance. As men-
tioned previously, the PF will approach the true PDF asymp-
totically. In practice only approximations are possible since
the number of particles are finite. For other estimators, such
as the EKF, it is important to know how much the linearisa-
tion or model structure used, will affect the performance. The
Cramér-Rao lower bound (CRLB) is such a characteristic for
the second order moment [8], [19]. The theoretical posterior
CRLB for a general dynamic system was derived in [9], [23],
[24]. In this paper we will utilize a parametric CRLB, which
can be found as the EKF solution around the true known state
trajectory for the case with Gaussian measurement noise and
process noise. When the measurement noise is non-Gaussian
this can be handled using the relative accuracy presented in
detail in [13].

IV. DYNAMIC MODELS

In this section a continuous-time robot model is discussed.
The model is transformed into discrete time, where it can be
used by the EKF, UKF, and PF. The measurements are the
angle measurements from the motors and the acceleration at
the end-effector.

l

qa
qm

g

Fig. 3. Single flexible joint corresponding to joint two of a six-axes
industrial manipulator.

A. Robot Model
The robot model is a flexible single joint model, see

Fig 3. The model is based on the two-axes model in [20],
where the parameters are presented. For the two-axes model
the second joint has been positioned in −π/2 and rigidly
attached to the first arm, giving a single joint model. The link
is modelled as a rigid-body. The joint flexibility is modelled
as a spring-damper pair with non-linear spring torque T ( · )
and linear damping. The deflection in each joint is given
by the arm angle qa and the motor angle qm. The motor
characteristics are given by a non-linear friction torque F( · ).
The dynamical relation for the joint is described by

Maq̈a + T (qa, qm) +D(q̇a − q̇m) = 0, (9a)
Mmq̈m − T (qa, qm)−D(q̇a − q̇m) + F(q̇m) = τ, (9b)

where Ma and Mm are the inertia for the arm and mo-
tor, respectively, D is the damping coefficient, and τ is
the applied motor torque. Using the state vector x =(
qa qm q̇a q̇m

)T
and (9) give a non-linear state space

model according to

ẋ =


x3
x4

M−1a (−T (x1, x2)−D(x3 − x4))
M−1m (τ + T (x1, x2) +D(x3 − x4)−F(x4))


︸ ︷︷ ︸

f̃(x,τ)

.

(10)

B. Estimation Model
The estimation methods, described in Section III, need a

discrete-time state space model according to (4). Using Euler
sampling

ẋ ≈ xt+1 − xt
Ts

, (11)

and assuming that the process noise enters the model in the
same way as the motor torque, give the discrete-time model

xt+1 = xt + Tsf̃(xt, τt + wt) = f(xt, τt, wt). (12)

C. Observation Model
The observations used for estimation is the motor angle qm

and the rotational acceleration of the tool position aTCP = lq̈a,
where l is the length of the arm and q̈a is given by the third
row in the state space model (10). The observation relation
can now be written as

h(xt) =

(
qm(t) + em(t)
aTCP(t) + eaTCP

(t)

)
, (13)
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Fig. 4. PID controller in interacting form.

where em(t) and eaTCP
(t) are the measurement noise, de-

scribed in more details in Section V-A.

V. RESULTS

In this section, the simulation results, both for the estima-
tion performance and the ILC performance, are presented.

A. Simulation Setup

The model parameters given in [20] are used with a spring
described by

khigh1 = 0.6 · 106, klow1 = 0.2 · 106, ψ1 = 20. (14)

The robot model in Section IV is unstable, hence a feedback
controller is required for simulation. The performance of the
controller is not important here since the ILC control law
will improve the performance. The robot model is stabilized
using the feedback loop, shown in Fig 4, consisting of a
PID controller in interacting form. The three parts of the PID
controller are, in continuous time, chosen as

FP = 10, FD(s) =
s

0.001s+ 1
, FPI(s) =

0.9s+ 3

0.3s
,

and then discretized using Tustin’s formula with a sample
time of Ts = 1 ms. Note that the feedback loop is not
tuned to give good performance. The reference signal r
is chosen as a step filtered through a FIR filter of length
n = b10 × 0.01/Tsc = 100 with all coefficients equal to
1/n. The filtering is performed in 4 consecutive steps to
get a twice differentiable smooth reference signal. Moreover,
process noise with the distribution pw(w) = N (0, Q) is
added during the simulation, where Q = 106.

The measurement noise em and eaTCP
are chosen to resem-

ble quantization errors according to

e =

 −ζ, with probability 1/3
0, with probability 1/3
ζ, with probability 1/3

, (15)

where ζ = 0.1 for em and ζ = 10 for eaTCP
. For the PF

the distribution pe(e) is not exactly known. It is known that
three peaks are present but the actual values are not known.
It is assumed that the peaks are in the positions −0.8ζ, 0,
and 0.8ζ. To handle expected modelling errors, a Gaussian
kernel is placed at the positions −0.8ζ, 0, and 0.8ζ, giving
the Gaussian mixture distribution

pe(e) =

3∑
i=1

1

3
N (e|µi, σ2), (16)

where µi ∈ {−0.8ζ, 0, 0.8ζ}, and the standard deviations
are chosen as σ = 14 · 10−3 for em and σ = 1.4 for eaTCP

.

Fig 5 shows the true measurement noise as vertical bars
together with the Gaussian mixture. The EKF, which cannot
use the true distribution, uses a Gaussian approximation of
the Gaussian mixture distribution giving the density pe(e) =
N (0,R) where R = 128

3 diag(10−4, 1).

−ζ 0 ζ
0 e

pe(e)

Fig. 5. Distribution for the measurement noise as vertical bars together
with a Gaussian mixture which is used in the PF. Note that the PDFs are
not correctly normalized, the figure shows only the concept.

B. Monte Carlo Estimations and Performance Evaluation
The performance of the EKF, UKF, and PF is evaluated

using the root mean square error (RMSE)

RMSE(t) =

 1

NMC

NMC∑
j=1

‖xTRUE
t − x̂

(j)
t ‖22

1/2

, (17)

over NMC = 1000 Monte Carlo (MC) simulations. The RMSE
is compared to the CRLB, described in Section III-D, using
the following relationship

RMSE(t) ≥
√

trPCRLB(xTRUE
t ), (18)

where tr is the trace operator and PCRLB(xTRUE
t ) is the covari-

ance matrix given from the CRLB calculations using the true
state trajectory. The covariance matrix of the measurement
noise used for the CRLB, denoted as RCRLB, is calculated
as RCRLB = cov(e)Ψ−1, where Ψ is the relative accuracy
presented in [13]. Here numerical calculations give Ψ ≈ 35
for both measurements where p(e) is the Gaussian mixture
in (16) using µi ∈ {−ζ, 0, ζ}. Note that we are here only
looking at the RMSE for qa, hence only qTRUE

a and q̂a are used
in (17) and only the (1,1)-element of PCRLB is used in (18).
Fig 6 shows the RMSE for the EKF, UKF, and PF. The CRLB
is also included. It can be seen that the RMSE for the EKF
and UKF are very similar. We also see that the RMSE for the
PF is close to the CRLB whereas RMSE for EKF and UKF are
significantly higher. The PF used N = 10000 particles too
ensure that this should not effect the performance. In this
paper we have not addressed the issue how to reduce the
number of particles in order to achieve a less computational
demanding algorithm since the estimation can be done off-
line. The estimated arm angle for one of the 1000 MC
simulations is shown in Fig 7 after the step has occurred. The
motor angle qm is also included to show how different it is to
the arm angle qa. The figure also shows the distribution of all
particles visualised as the grey area. The particle distribution
shows that the true qa is almost covered all the time by
the posterior distribution even if the mean estimate given by
the PF does not give the true trajectory. This detail will be
discussed more in Section VI.
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Fig. 6. RMSE over 1000 MC simulations. The performance for the EKF,
UKF, and PF is compared to the CRLB.

TABLE I
NUMERICAL VALUES FOR THE ILC FILTERS.

γ δ fc n
qm 0.95 90 5 2

qa or q̂a 0.95 90 20 2

The similar performance of the EKF and UKF can be
explained by the fact that both the EKF and UKF approx-
imate the underlying distribution by a Gaussian distribution,
together with that the linearisation errors in the EKF are
small. Hence, the good performance of the PF comes from
the fact that the posterior distribution is approximated by the
particles, and not that no linearisation is performed.

C. Estimation-based ILC Simulations

In this section, the ILC update law from Section II will be
used with five different ways to find ẑk(t) in (2). The five
different ways to find ẑk(t) are

1) The motor angle qm including measurement noise.
2) True arm angle qa without any noise.
3) Estimated arm angle q̂a using the EKF.
4) Estimated arm angle q̂a using the UKF.
5) Estimated arm angle q̂a using the PF.

Case 1 is included to show that a lot is gained if the ILC
update law uses information from the variable that is to be
controlled. For Case 1, the motor reference rm is used in (2).
It is here assumed that rm = ηra, where η > 1 is the gear
ratio. Case 2 corresponds to the best solution that can be
obtained with this framework.

The ILC update law described in Section II is used with
L = γqδ and Q as a nth order digital Butterworth filter with
cut-off frequency fc. The numerical values for the filters are
presented in Table I for the two cases i) ILC using measured
qm, ii) ILC using qa or an estimate of qa. The numerical
values for the ILC filters in Table I are chosen to give a
satisfactory behaviour.

The performance of the five ILC algorithms is evaluated
using the relative reduction error of the 2-norm in percentage

0.7 0.8 0.9 1 1.1 1.2

0.96

0.98

1

1.02

Time [s]

q a
(t
)

Particles True qm EKF

UKF PF

Fig. 7. Estimated qa for EKF, UKF, and PF. The motor angle qm is also
included. The grey area shows the distribution of all the particles.

with respect to the error when no ILC signal is applied, hence

ρk = 100
||εk(t)||2
||ε0(t)||2

. (19)

The relative reduction error ρk averaged over 100 MC
simulations is shown in Fig 8 for the five cases using
100 ILC iterations. It can be seen that ILC using the motor
angles does not give a good result. Using the true qa gives a
lower bound of 0.088 %. The performance from q̂a depends
on the performance of the Bayesian filters, the PF gives a
lower error than the EKF and UKF. The mean of the relative
reduction, averaged over 100 MC simulations, from iteration
50 to iteration 100 for the five ILC algorithms are presented
in Table II.

The final ILC signal at iteration k = 100, for one of the
100 MC simulations, is presented in Fig 9. We can see that
the ILC signals for qa and PF are very similar whereas the
ILC signals for EKF and UKF are more oscillatory.

TABLE II
MEAN OF THE RELATIVE REDUCTION ERROR ρk , AVERAGED OVER 100

MC SIMULATIONS, FROM ITERATION k = 50 TO k = 100.

qm [%] qa [%] EKF [%] UKF [%] PF [%]

12.00 0.088 4.79 4.82 1.27

VI. EXTENSIONS

Due to non-linearities, non-Gaussian measurement noise,
and hard constraints on the state vector, the posterior distribu-
tion is non-Gaussian. One extension to the ILC framework is
to propagate the complete distribution, given by the particles
and the corresponding weights, instead of only the mean
estimate. In Fig 7 the particles cover the true trajectory most
of the time even if the mean estimate differ from the true.
It means that if the complete distribution is used, the ILC
algorithm can converge faster and to a lower value. One of
the difficulties is that the ILC control law is a filter, hence
it is not possible to propagate the distribution at each time
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Fig. 8. The relative reduction error ρk in (19), averaged over 100 MC
simulations, using 100 ILC iterations.
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Fig. 9. The ILC signal u after 100 iterations for one of the 100 MC
simulations. The signals for qa and PF are very similar.

instance, instead complete trajectories are needed, which can
be hard to get due to the degeneracy problem of the PF1 [4].

Since the ILC estimations are off-line we have not con-
sidered the computational burden of the PF. The number of
particles can be reduced and other resampling algorithms can
be applied to speed up the computations. Also model errors
effecting the robustness might be important but is outside the
scope of this paper.

VII. CONCLUSIONS

In the paper we have presented Bayesian estimation tech-
niques for improving the position accuracy of an industrial
manipulator. The proposed PF method outperforms the EKF
and the UKF when non-linearities and quantization noise are
considered in an extensive Monte Carlo simulation. These
estimates are used in an ILC control law, to improve the
reference tracking. Furthermore, the proposed PF method
enables extensions when hard constraints on the state vec-
tor are given. Also, propagation of the complete posterior
distribution through the ILC update law can be considered.

1All or most of the particles at the end time will share a common ancestor,
giving one single trajectory or a few trajectories at the beginning.
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[11] S. Gunnarsson and M. Norrlöf. Iterative learning control of a flexible
mechanical system using accelerometers. In IFAC 6th symposium on
robot control, SYROCO, Vienna, Austria, Sept. 2000.

[12] S. Gunnarsson, M. Norrlöf, E. Rahic, and M. Özbek. On the use of
accelerometers in iterative learning control of a flexible robot arm.
International Journal of Control, 80(3):363–373, Mar. 2007.

[13] G. Hendeby. Performance and Implementaion Aspects of Nonlinear
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