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Abstract— One increasingly popular approach for creating
robot controllers for complex tasks is to automatically synthe-
size a hybrid controller from a high-level task specification.
Such an approach, in addition to reducing the time and
expertise required for creating a controller, guarantees that
the robot will satisfy all of the underlying specifications, given
perfect sensing and actuation. This paper investigates the
probabilistic guarantees that can be made about the behavior of
the robot when the actuation of the robot is no longer assumed
to be perfect, as well as the possible specification revisions that
can be made to improve the behavior of the robot. The approach
described in this paper composes probabilistic models of the
environment behavior and the robot actuation error with the
synthesized controller, and uses probabilistic model checking
techniques to find the probability that the robot satisfies a set of
high level specifications. This paper also presents a preliminary
approach for analyzing the composed model and automatically
generating revisions to improve the robot’s high-level behavior.

I. INTRODUCTION

Creating robotic controllers for complex tasks is a difficult
process, often requiring a high level of technical expertise
and a great deal of effort to program and debug the con-
troller. Additionally, extensive testing is required to validate
the behavior of the controller; such testing can be a time
consuming and expensive process, and cannot guarantee the
performance of the controller for all possible situations. In
some cases, experimental validation of the controller may
even be infeasible due to complexity, time requirements, cost,
or the availability of data.

One potential method for lessening this burden is to use
formal techniques to automatically synthesize correct-by-
construction hybrid controllers from high-level task speci-
fications [1]–[13]. Such methods take advantage of formal
synthesis techniques to provide guarantees about the behav-
ior of the controller. The correct-by-construction controllers
synthesized using the approach in [7], for example, offer the
guarantee that, when the robot’s sensing and actuation are
perfect, the robot will behave in a manner that satisfies all
of the specifications (if a controller is generated).

Unfortunately, this assumption of perfect sensing and ac-
tuation is often inappropriate for practical systems. Consider,
for example, the modified iRobot Create, pictured in Figure
1. This robot is outfitted with a vacuum-driven universal
gripper [14], and is tasked with finding a number of small
objects in its workspace, picking them up, and delivering
them to a particular location. During operation, however,
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Fig. 1. Photograph of an iRobot Create, modified with additional sensors
and a universal gripper to pick up objects. Photo source: Lindsay France.

it becomes apparent that, due to errors in sensing (e.g.
mis-detecting the location of an object) and actuation (e.g.
prematurely dropping an object), the robot is not able to
perfectly execute its task.

This paper considers formally synthesized controllers, and
relaxes the assumption of perfect actuation, analyzing the
controller to determine what probabilistic guarantees may
then be made about the behavior of the robot. Additionally,
this paper presents a method for automatically providing
feedback to the user, in the form of suggested revisions to
the original specification, with the goal of improving the
behavior of the synthesized controller.

Related work includes [3], in which the authors present
an approach for generating a feedback control strategy that
satisfies a temporal logic specification, despite disturbances
in the continuous dynamics of the system. Building on that
work, the authors of [8] and [11] present an approach in
which they model the uncertainty in the outcomes of the low-
level continuous controllers by a set of probabilities on the
discrete transitions of the system. Leveraging temporal logic
model checking techniques, the authors then find the control
strategy that maximizes the probability that the controller
satisfies the specification. In [15] the authors improve the
computational feasibility of this technique by using dynamic
programming techniques to obtain an approximately optimal
solution. In [16], the authors present a method for synthe-
sizing control strategies such that the synthesized controller
maximizes the probability that the robot satisfies a temporal
logic specification within a given time-bound.

In [17], the authors address a different type of environmen-
tal uncertainty: that of changes in the topology of the robot’s
workspace, which may render execution of the synthesized
automaton infeasible. They propose a method for locally
resynthesizing “patches” of the automaton to navigate around
the blocked topology, while maintaining the guarantees on
the behavior of the robot and avoiding the computational
burden of resynthesizing a global solution.

Additionally, the work presented here is closely related to
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the authors’ previous work in [18] and [19], which presents a
method for analyzing the probabilistic guarantees that can be
made when actuators are assumed to be perfect, but sensors
exhibit false positives and false negatives. In these papers, the
authors create a probabilistic model of the system, modeling
the sensor inaccuracies with a set of abstract propositions that
imperfectly mimic the state of the environment. They then
apply model-checking techniques to find the probability that
the model satisfies a set of temporal logic specifications. In
[13], the authors applied this approach to an autonomous
car, where the behavior of other vehicles is probabilistically
anticipated, and analyzed the effect of the uncertainty in that
anticipation on the safety of the vehicle’s behavior.

The work described in this paper presents a method that
compliments that proposed in [18] and [19], and allows
for the probabilistic analysis of controllers under actuation
uncertainty. Specifically, the discrete model of the controller,
which is obtained from the synthesis algorithm, is expanded
to include new transitions and states caused by inaccuracies
in the system actuation. The new probabilistic system is then
evaluated using a probabilistic model-checker.

This paper also presents a method for using the evaluation
of the probabilistic system to automatically generate specifi-
cation revisions for the consideration of the user. The use of
probabilistic analysis to automatically inform revisions of the
specification is a novel approach and is not, to the knowledge
of the authors, presented elsewhere in the literature. The
most closely related work is that of [20] and [21], in which
the authors present a method for revising a temporal logic
specification that is found to be unsynthesizable, by relaxing
the initial specification with the minimal changes that result
in a synthesizable specification. This is in contrast to the
proposed approach, which suggests revisions to the already
synthesizable specification to improve the probabilistic be-
havior of the synthesized controller.

The paper is organized as follows. Section II defines pre-
liminary concepts. Section III provides a detailed description
of the problem addressed in this paper. Section IV describes
the approach, which Section V demonstrates with several
examples. The paper concludes in Section VI.

II. PRELIMINARIES

A. Linear Temporal Logic

Linear Temporal Logic (LTL) formulas are defined over
a set of Boolean propositions Π. A formula φ is defined
recursively, as shown in Equation 1.

φ ::= true | π ∈ Π | ¬φ | φ ∧ φ | © φ | φUφ (1)

The Boolean operators ¬ (“not”) and ∧ (“and”) can be
used to define the additional Boolean operators ∨ (“or”), →
(“implies”), and↔ (“if and only if”). Similarly, the temporal
operators © (“next”) and U (“until”) can be used to define
the additional temporal operators ♦ (“eventually”) and �
(“always”).

The semantics of LTL are defined over an infinite sequence
of states, where each state is labeled with a truth assignment

to the set of propositions Π. Intuitively, the formula ©φ is
true if and only if the formula φ is true in the next time
step. The formula ♦φ is true if and only if φ is true at some
point in the future, and �φ is true if and only if φ holds
for the current state and all future states. A more complete
description of the semantics can be found in [22].

B. Synthesized Controller

The robot controllers used in this paper are synthesized
using the approach described in [7], and take the form of an
automaton A = {S, S0,X , δ,Y, L,Γ}, where S is a set of
states and S0 ⊆ S is the set of initial states. The transition
relation δ : S × 2X → S defines the possible next states for
a given state and subset of the input alphabet X , where X =
{x1, . . . , xn} is the set of Boolean propositions describing
the abstract characteristics of the environment state (e.g.
trash may represent the presence of a piece of trash in front
of the robot). The labeling function L : S → 2Y labels each
state with a subset of the robot propositions in Y , where
Y = {y1, . . . , ym} is the set of propositions representing
the location of the robot in a partitioned workspace and the
abstract actions for the robot (e.g. pickup may refer to using
a manipulator to pick up an object). Finally, since the robot
may have multiple goals it must eventually satisfy (e.g. take
the trash to the TrashCan), Γ : S → N is a function which
maps each state to a positive integer, representing the index
of the robot’s high-level goal, at that state.

C. Discrete-Time Markov Chains

A Discrete-Time Markov Chain (DTMC) is defined as
D = {S, S0,∆,Π, L}, where S and S0 are the states and
initial states, respectively. The transition function ∆ : S ×
p → S defines the probability p ∈ (0, 1] for each possible
transition between states. The labeling function L : S → 2Π

labels each state with a subset of the propositions in Π.

III. PROBLEM STATEMENT

This paper considers robot controllers that are synthesized
from a set of temporal logic specifications defining the
desired behavior of the robot, such that when the robot’s
sensors and actuators are perfectly accurate the controller
is guaranteed to satisfy the underlying specifications. This
paper investigates the probabilistic guarantees that can be
made for the controller, when the robot’s actuators are no
longer assumed to be perfect (i.e. the outcome of an actuator
or low-level controller may not be the intended outcome),
and presents a preliminary method for using these guarantees
to inform the revision of the original specification.

Example 1: Consider the four-region workspace shown
in Figure 2. The robot has a single sensor X = {x}, and is
capable of moving between regions in the workspace Y =
{R1, R2, R3, R4}. The robot is tasked with moving between
regions R2 and R3 infinitely often, while avoiding R1 when
x is true and avoiding R4 when x is false.

The high-level task specification for the robot is written
using the General Reactivity (1) fragment of LTL, restricting
the specification to the form ϕ = ϕe → ϕs [23]. Such a
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Fig. 2. Environment workspace Example 1.

format prescribes a desired robot behavior (defined by ϕs)
for a set of environment behaviors (defined by ϕe). A subset
of ϕs for Example 1 is shown below, where specifications
1 and 2 are safety specifications (things the robot should
always do or avoid) and specifications 3 and 4 are liveness
specifications (tasks it should repeatedly accomplish).

1) �(©x→©¬R1) “Avoid R1 when x is true”
2) �(©¬x→©¬R4) “Avoid R4 when x is false”
3) �♦(R2) “Repeatedly visit R2”
4) �♦(R3) “Repeatedly visit R3”
The environment behavior is modeled with a set of prob-

abilities P (X ′|X,Y ) describing the change in the abstract
environment propositions. Each new environment state X ′

is modeled such that it is dependent only on the preceding
environment and robot states (X and Y , respectively). Ad-
ditionally, uncertainty in the robot actuation is modeled by a
set of probabilities P (Y ′|Y ′, Y ) describing the probabilistic
evolution of the robot propositions. Each new robot state Y ′

is dependent only on the preceding robot state Y , and the
desired next robot state Y

′
as given by the automaton.

Previous work [7] has assumed that the robot actuators
operate without possibility of failure. That is, all robot propo-
sitions change precisely as desired, such that P (Y ′|Y ′, Y ) =

1 when Y ′ = Y
′
, and P (Y ′|Y ′, Y ) = 0 when Y ′ 6= Y

′
. This

paper investigates the following problem.
Problem: Given a synthesized robot controller A, and

probabilistic models of the environment P (X ′|X,Y ) and
imperfect robot actuation P (Y ′|Y ′, Y ), find the probability
that the system satisfies some set of high-level specifications.
Additionally, provide the user with possible revisions to the
original specification, aimed towards avoiding some undesir-
able behavior of the system (as defined by the user).

IV. APPROACH

The overall approach proposed in this paper is illustrated
in Figure 3. The robot controller is synthesized from a set
of high-level task specifications, as well as abstract models
of the environment and robot. This controller is then used,
along with probabilistic characterizations of the environment
event probabilities and robot actuation error, to compose
a model for the complete system. A probabilistic model
checker is then used to find the probability that the composed
model satisfies some set of temporal logic specifications.
Additionally, the composed model is analyzed to provide the
user with potential revisions to the original task specification.

Fig. 3. Diagram of the approach presented in this paper, where an
automatically synthesized robot controller is composed with models of the
environment and actuation error, and used to find probabilistic guarantees on
the behavior of the robot or to suggest revisions to the original specification.

A. Error Analysis

The probabilistic model construction is described in Al-
gorithm 1. The inputs to the algorithm are the controller
automaton A, the set of probabilities governing the changes
in the state of the environment P (X ′|X,Y ), and the set of
probabilities characterizing the error in the outcome of the
robot actuation P (Y ′|Y ′, Y ). The output of the algorithm,
D, is the DTMC for the complete system model.

The input probabilities for the environment and actuation
uncertainty can be estimated using statistics from experi-
mentation or simulation. In [11], for example, the authors
discuss the experimental determination of outcome probabil-
ities for motion primitives; these probabilities are then used
to synthesize an optimal motion plan for the robot. In [13],
the authors use simulated data to obtain estimated success
rates for high-level sensor values, which are used to analyze
the performance of a synthesized controller. Such methods
could be similarly applied to obtain estimated values for the
modeled uncertainty in actuation outcome.

Consider Example 1, from Section III. The synthesized 8-
state controller, A, is shown in Figure 4. Each state is labeled
with the state number, the goal index for that state Γ (given
in parentheses), and its region (denoting the robot’s location).
Each transition is labeled with the input sensor value, where
x refers to the sensor being true and ¬x refers to it being
false (¬x is equivalent to a transition label of X = ∅).

For this example, let the sensor x be modeled such that it
is independent of both its previous value and the state of the
robot, where P (x′) = 0.65 and P (¬x′) = 1−P (x′) = 0.35.
The actuator uncertainty, on the other hand, is modeled such
that the region transition Y ′ is dependent on both the current
region Y and the intended next region Y

′
. These probabilities

are modeled such that the robot can reliably stay in its current
region: P (R′i|Ri

′
, Ri) = 1 and P (R′j |Ri

′
, Ri) = 0 for j 6= i.

When moving out of its current region, the robot will move to
its intended destination with a probability of 0.9, while it has
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Algorithm 1 Create complete system model, with actuation error.

1: procedure COMPOSEMODEL(A = {S, S0,X , δ,Y, L,Γ}, P (X ′|X,Y ), P (Y ′|Y ′, Y ))
2: Q = ∅, Q0 = ∅, ∆ = ∅
3: for sj ∈ S do
4: L(qj) = L(sj) ∪Xj s.t. ∃si, (si, Xj , sj) ∈ δ
5: Q = Q ∪ qj
6: if sj ∈ S0 then
7: Q0 = Q0 ∪ qj
8: for si ∈ S do
9: for Xj ∈ 2X s.t. ∃sj | (si, Xj , sj) ∈ δ do

10: for Yk ∈ 2Y s.t. p(Yk|L(sj), L(si)) > 0 do
11: if Yk = L(sj) and (si, Xj , sj) ∈ δ then . robot makes the correct state transition
12: ∆ = ∆ ∪ (qi, p(Xj |Xi, L(si)) · p(L(sj)|L(sj), L(si)), qj) where Xi = L(qi) \ L(si)
13: else if ∃sh, sk s.t. (sh, Xj , sk) ∈ δ and L(sk) = Yk then . labels describe existing states in Q
14: sl = argminsk((Γ(sj)− Γ(sk)) modulo max(Γ)) . choose nearest preceding goal
15: ∆ = ∆ ∪ (qi, p(Xj |Xi, L(si)) · p(Yk|L(sj), L(si)), ql) where Xi = L(qi) \ L(si)
16: else . if an appropriate state does not exist
17: L(qj,k) = Xj ∪ Yk
18: Q = Q ∪ qj,k . add a deadlock state
19: ∆ = ∆ ∪ (qi, p(Xj |Xi, L(si)) · p(Yk|L(sj), L(si)), qj,k) where Xi = L(qi) \ L(si)
20: ∆ = ∆ ∪ (qj,k, 1, qj,k) . make the deadlock state a sink
21: return D = {Q,Q0,∆,X ∪ Y,L}

Fig. 4. Graphical representation of the robot controller for Example 1, as
synthesized from the set of high-level specifications. Each state is labeled
with the state number, the robot region, and the goal Γ, in parentheses. The
state transitions are labeled with the sensor inputs.

a 0.05 probability of moving into the other adjacent region
and a 0.05 probability of remaining in its current region.

Figure 5 illustrates Algorithm 1 for the portion of the
synthesized automaton shown in Figure 5(a), including states
s4, s5, and s6. For each state sj in the controller automaton,
a new state qj is created for the composed system (robot and
environment), and labeled (by the new labeling function L)
with the labels on the corresponding automaton state L(sj)
as well as the inputs Xj (representing the truth values of
the sensor propositions) into that automaton state (lines 3-
5). As in Figure 4, X = ¬x is used in place of X = ∅ to
represent the robot’s sensor x being false. If the automaton
state in question is an initial state, then the corresponding
new system state is added to the set of initial system states

(lines 6-7). Figure 5(b) shows the composed system states
q4, q5, and q6, that are created from the automaton states s4,
s5, and s6, respectively.

Line 8 of the algorithm loops through each state si in
the automaton. Figure 5(c) shows the results for si = s4.
Line 9 then loops through each possible configuration for
environment (each label Xj on the transitions out of the
automaton state si), and line 10 loops through each possible
new robot configuration (any configuration Yk with a positive
transition probability originating in si, with a desired next
state as prescribed in the automaton for the inputs Xj). For
this example, line 9 of the algorithm will loop through all
possible sensor configurations: Xj ∈ {x,¬x}. When Xj =
x, the desired next automaton state is sj = s6, and line 10
loops through each possible next region when attempting to
move from R3 to R4 (as is the prescribed action for s6):
Yk ∈ {R1, R3, R4}. The region R2 is omitted from this set,
since the robot cannot transition directly to it from R3

If the robot makes the desired transition (i.e. the new robot
configuration matches the labels on the desired next state
Yk = L(sj)), then a transition is added to the corresponding
system state with the appropriate probability, as evaluated
from P (X ′|X,Y ) and P (Y ′|Y ′, Y ) (lines 11-12). This can
be seen in the example when Xj = x and Yk = R4, and
two such states exist in the automaton (s2 and s6). As s6 is
the desired next state in the automaton, a new transition is
added to the corresponding state in the composed system q6.

If, on the other hand, the environment and robot configu-
ration match the labels on some other state in the automaton,
then the transition to the corresponding new system state is
added with the appropriate probability. Because the automa-
ton may contain multiple states that share the same set of
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(a) An excerpt of the synthesized
controller for Example 1.

(b) Composed states for the Example
1 automaton excerpt (lines 3-7).

(c) Excerpt of the complete proba-
bilistic model for Example 1.

Fig. 5. Illustrative example for Algorithm 1, applied to a excerpt of the synthesized automaton for Example 1, introduced in Section III.

labels, the state sl with a goal index most closely preceding
the desired state sj is used, and the transition is added to the
corresponding state ql in the composed model (lines 13-15).
This is seen in the example, where Xj = x and Yk = R3,
where the one allowable state that exists in the automaton
(s3) is not the desired next state for the automaton. As such,
the goal index Γ of the state is compared to all other existing
states with the corresponding labels (though in this case,
no such states exist), and a transition with the appropriate
probability is made to the corresponding state with the most
closely preceding goal (in this case, q3).

For the final case, if no such state, where L(q) = Xj∪Yk,
exists in the automaton, a new state qj,k is created and a
transition to it is added with the appropriate probabilities
(lines 16-19). That new state is then made a sink (transitions
to itself with probability 1), since the automaton does not
include a prescribed transition from such a state (line 20).
This can be seen in the example, when Xj = x and Yk = R1,
since moving into region R1 is not allowed when x is true.
The new state q6,5 is then created, a transition is added with
the appropriate transition probability, and the new state is
made a sink.

This process is repeated for Xj = ¬x, resulting in
transitions to q5, q4, and the creation of and transition to
the new sink state q5,6. The resulting excerpt of the output
DTMC is shown in Figure 5(c).

The DTMC D that is output by this algorithm can be
analyzed using a probabilistic model checker, and can be
used to provide automated feedback to the user. The exam-
ples given in Section V of this paper are analyzed using the
PRISM model checking software [24], which offers, among
other capabilities, the ability to calculate the probability with
which a DTMC model will satisfy an LTL formula.

B. Revision Suggestion

In Algorithm 2 we present a method for providing auto-
mated feedback to the user, in the form of an LTL formula
that may be added to the original specification to improve

the behavior of the robot. This approach uses the complete
system model (from Algorithm 1), along with the set of goal
states Qgoal, deadlock states Qdeadlock, a specified number
of look ahead steps N , and a temporal logic formula Ψ
describing undesirable robot behavior. One example for the
formula Ψ would be the negated conjunction of all of the
original safety specifications (i.e. the formula representing
all unsafe behaviors). The algorithm returns a possible LTL
revision to the original task specification, for consideration
and inclusion by the user. Intuitively, the algorithm finds
the set of states that is most likely to cause the robot to
exhibit undesirable behavior, and returns an LTL formula
representing the common characteristics of those states.

On line 2 of the algorithm, the set of considered states
Qcheck is restricted to exclude the initial states (which the
robot cannot avoid), the goal states (which the robot does
not want to avoid), and the deadlock states (which the robot
is already trying to avoid). Line 3 then calls an external
procedure (such as the previously mentioned model-checker:
PRISM) to find the probability that each of the states in
the restricted set exhibits, within N steps, the undesirable
behavior described by Ψ. If this procedure does not find
any states with a positive probability of exhibiting the
undesirable behavior, the algorithm exits with the suggestion
of increasing the number of look-ahead steps N (lines 4-5).

On line 6, the algorithm finds the set of states Q∗ that
have the maximum probability of exhibiting the undesirable
behavior. On lines 7 and 8, the algorithm finds the set of
robot propositions YT that are true in every state q ∈ Q∗

and the set of robot propositions YF that are false in every
state q ∈ Q∗. If both of these sets are empty (that is, there
are no robot propositions that maintain a constant value for
all of the states in Q∗), then the set of states Q∗ is reduced
to the largest set of states that share a consistent value (either
true or false) for at least one robot proposition (lines 9-15).

Lines 18 and 19 then find the set of environment proposi-
tions XT that are true and the set of environment propositions
XF that are false, in every state q ∈ Q∗. The output for the
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Algorithm 2 Suggest revisions to the task specification.
1: procedure SUGGESTREVS(D = {Q,Q0,∆,X ∪Y,L},
Qgoal, Qdeadlock, N,Ψ)

2: Qcheck = Q \ (Q0 ∪Qgoal ∪Qdeadlock)
3: P ← N -StepProbability(Qcheck,Ψ, N)
4: if p = 0 : ∀p ∈ P then
5: return No problematic states: try increasing N.
6: Q∗ = argmaxq∈Qcheck

P(q)
7: YT = {y ∈ Y : y ∈ L(q) ∀ q ∈ Q∗}
8: YF = {y ∈ Y : y 6∈ L(q) ∀ q ∈ Q∗}
9: if YT = ∅ and YF = ∅ then

10: y∗ = argmaxy∈Y(|{q ∈ Q∗ : y ∈ L(q)}|)
11: y∗ = argmaxy∈Y(|{q ∈ Q∗ : y 6∈ L(q)}|)
12: if |{q ∈ Q∗ : y∗ 6∈ L(q)}| >

|{q ∈ Q∗ : y∗ ∈ L(q)}| then
13: Q∗ ← {q ∈ Q∗ : y∗ 6∈ L(q)}
14: else
15: Q∗ ← {q ∈ Q∗ : y∗ ∈ L(q)}
16: YT = {y ∈ Y : y ∈ L(q) ∀ q ∈ Q∗}
17: YF = {y ∈ Y : y 6∈ L(q) ∀ q ∈ Q∗}
18: XT = {x ∈ X : x ∈ L(q) ∀ q ∈ Q∗}
19: XF = {x ∈ X : x 6∈ L(q) ∀ q ∈ Q∗}
20: if XT 6= ∅ or XF 6= ∅ then
21: Φ = �((

∧
x∈XT

©x ∧
∧

x∈XF
¬© x)→

¬(
∧

y∈YT
©y ∧

∧
y∈YF

¬© y))
22: else
23: Φ = �(¬(

∧
y∈YT

©y ∧
∧

y∈YF
¬© y))

24: return Φ

algorithm, Φ, is one of the two LTL formulas defined on lines
21 and 23. In either case, Φ is a safety formula requiring that
the robot avoid the configuration of robot propositions that
is identified as consistent across the set of states Q∗. The
formula defined on line 21 is the more specific case, where
the configuration of consistent environment propositions is
used as a precondition for the configuration that the robot is
required to avoid, while the formula defined on line 23 is the
more general case, when no specific precondition is found.

This algorithm describes a preliminary approach for semi-
automated specification revision, and it is important to note
that the suggested revisions are not guaranteed to improve
the behavior of the robot once included in the specification,
and may even result in an unsynthesizable specification (i.e.
a task description that the robot can not accomplish). While
the suggested revisions cannot guarantee a better performing
controller, the process described in Algorithm 2 ensures
that the suggested revision is constructed to force the robot
to avoid the single behavior that is most likely to lead
to a violation of the given specification. Furthermore, this
approach is meant to provide feedback to the user, who can
then perform an analysis of the new controller (via Algorithm
1) to determine whether or not to include the suggested
revision. By including the user in the revision process, this
approach also ensures that any changes to the specification
preserve the intent of the original specification.

Fig. 6. Comparison of safety results for Example 1, of the original and
revised controllers, over varying probabilities of sensing x. The analysis
was performed for a time-bound of 50 discrete transitions.

V. EXAMPLES

A. Basic Example

Scenario and Probabilities: Consider the scenario pre-
sented in Example 1, where the robot must navigate the
partitioned workspace shown in Figure 2 while avoiding R1

when its sensor x is true, and avoiding R4 when x is false.
The probabilistic behavior of the environment and the error
in the robot’s actuation are described in Section IV-A.

Analysis and Revision: The probabilistic system model
was analyzed with respect to the following formula, which
is a combination of the safety specifications in the original
task, and represents the overall safety of the system.

�((©x→©¬R1) ∧ (©¬x→©¬R4))

Additionally, the approach described in Section IV-B was
applied to this example to automatically obtain a revision
for the controller specification. The returned revision to the
original specification, �(©x → ¬© R4), requires that the
robot avoid region R4 even while x is true. Figure 6 shows
a comparison of the probability that the robot will safely
complete 50 discrete state transitions, for both the original
and the revised controller. The figure shows the probability
that the robot remains safe, for a range of values on the
probability that the robot senses x; the revision was found
for p(x) = 0.65, indicated by the vertical line.

As expected, the probability that the robot remains safe is
higher for the revised controller than the original controller,
for high values of the sensor frequency. For the specified
system model (where the probability that x is true is 0.65 in
any time step), this plot shows that including the suggested
revision in the synthesis of the controller results in a sig-
nificant improvement in the performance of the robot with
regards to the original safety specifications.

At low probabilities of sensing x, the most likely cause
of unsafe behavior results from the robot unintentionally
remaining in R1 while the value of x becomes false, and the
revised controller performs slightly worse than the original
controller. Indeed, had the probability of x used to get the
revision been low (e.g. 0.35), the states most likely to cause
undesirable behavior would be those in which the robot is
in R1, and the suggested revision would have instead been
to avoid region R1 while x is false: �(©¬x → ¬© R1).
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Fig. 7. Partitioned workspace for Example 2 (adversary avoidance).

The resulting controller would show analogous results, but
with improvement occurring at lower sensor probabilities
(essentially, mirrored about P (x′) = 0.5).

B. Adversary Avoidance Example

Example 2: For this example, the robot is tasked with
moving between regions G1 and G2, in Figure 7, while
avoiding an adversary that patrols regions R1−R5. because
of the workspace topology, this task requires the robot to
traverse through regions R1 − R5, but do so in a manner
that it avoids being in the same region as the adversary.

The robot has the ability to sense the current location
of the adversary, denoted by the set of mutually exclusive
propositions AR1

− AR5
, and can move freely between

adjacent regions. The synthesized controller for this example
has 60 states, and proceeds across the adversarial regions in
the following manner.
• If the adversary is in regions R2−R5 (i.e. one of AR2−
AR5

is true), then the robot proceeds through R1.
• If the adversary is in region R1 (i.e. AR1

is true), then
the robot proceeds through R4.

The motion of both the robot and adversary are modeled as
instantaneous transitions by each, where the robot reacts to
the motion of the adversary. If the robot’s motion is perfectly
reliable, it will always safely pass through the adversarial
regions and accomplish its assigned task. If, however, the
motion of the robot is imperfect, it may end up in the same
region as the adversary, violating the task specification.

Probabilities: For this example, the motion of the adver-
sary is modeled probabilistically, such that, at each discrete
time step, it has a probability of 0.5 of remaining in its
current region; if it does not remain in the same region, it
moves to an adjacent region with uniform probability among
the adjacent regions. That is, if it is in region R1 (resp. R5),
the adversary has a 0.5 probability of staying where it is
and a 0.5 probability of transitioning to R2 (resp. R4). If the
adversary is in R2, R3, or R4, it has a 0.5 probability of
staying in the same region, and a 0.25 probability of moving
to each of the adjacent regions.

The motion of the robot is also modeled probabilistically,
allowing for error in the robot’s actuation. Its motion is
modeled such that whenever it attempts to move to a new
region, it has a 0.9 probability of correctly doing so, and a
0.1 probability of erroneously remaining in the same region
(i.e. getting stuck). The robot is assumed to be able to remain
stopped without error, so if it desires to remain in the same
region, it will do so with a probability of 1.0.

Fig. 8. Probability that the robot avoids the adversary, for the original and
revised controllers, over a time-bound of 50 discrete transitions.

Analysis and Revision: For this example, a series of
revisions were found using the approach outlined in Section
IV-B. After each revision was added to the specification, a
new controller was synthesized and modeled, and a revision
was found for the new controller. The controller revisions
were generated for the undesirable behavior where the robot
ends up in the same region as the adversary.

Ψ = (AR1
∧R1) ∨ (AR2

∧R2) ∨ (AR3
∧R3)

∨ (AR4
∧R4) ∨ (AR5

∧R5)

A series of 7 revisions were found and added to the
original controller specification. These revisions are given
below, in order. It should be noted that, while revisions 1,
3, and 5 were found with a look-ahead of N = 1 steps,
revisions 2, 4, and 6 required looking ahead N = 2 steps
and revision 7 required a look ahead of N = 3 steps.

Rev1. �(©AR2 → ¬©R1)
Rev2. �(©AR3 → ¬©R1)
Rev3. �(©AR3

→ ¬©R4)
Rev4. �(©AR3

→ ¬©R5)
Rev5. �(©AR3

→ ¬©R2)
Rev6. �(©AR2 → ¬©R4)
Rev7. �(©AR1 → ¬©R4)

The resulting probability that the robot successfully avoids
the adversary robot during the bounded execution of 50
discrete transitions is shown in Figure 8. These results show
that, while the suggested revisions do not always improve
the performance of the robot (e.g. revisions 2 and 4), they
can result in a dramatic improvement over the original (base)
controller (e.g. revisions 1, 3, 5, 6, and 7).

As a result of the first revision, the robot chooses to avoid
R1 whenever the adversary is in R2, and instead elects to
go through R4. This puts the robot further away from the
adversary when it traverses the middle regions, so it is less
likely to get stuck long enough for the adversary to enter
the same region as it. The result is a marked improvement
in performance. The second revision, on the other hand,
requires that the robot avoid R1 when the adversary is in
R3; as a result, the revised controller elects to go through
R4 in such a case, placing the robot closer to the adversary,
and making it more likely to fail.

The next three revisions (Rev3-5) continue to restrict the
behavior of the robot when the adversary is in R3 to the
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point where, in the revised controller that includes revisions
1-5, the robot elects to stop and wait until the adversary is in
a region that is further from the one the robot is traversing.

After the inclusion of all 7 revisions, the behavior of the
robot is dramatically different from the original controller:
whenever the adversary is in regions R4 or R5 the robot
still elects to traverse through region R1, but whenever the
adversary is in regions R1 or R2 the robot traverses through
region R5, and whenever the adversary is in R3 the robot
waits for it to move to a more easily avoidable region. As a
result, it stays consistently further away from the adversary
than for the behavior created by the original controller.

VI. CONCLUSION

This paper presents a novel approach for analyzing the
probabilistic behavior of correct-by-construction robot con-
trollers when influenced by uncertainty in the outcomes of
the robot’s actuation. The presented algorithm composes
probabilistic models of environmental state changes and
the actuation uncertainty with the synthesized controller to
obtain a DTMC for the complete probabilistic system. This
DTMC is then analyzed with respect to a set of desired task
specifications (given as LTL formulas) using probabilistic
model checking techniques.

Additionally, this paper presents a novel technique for pro-
viding feedback to the user in the form of possible revisions
to the original specification. By analyzing the system to find
the set of states most likely to yield an undesirable behavior
(such as violating the original safety specifications), the
presented approach can suggest an LTL specification aimed
towards avoiding such states and reducing the probability of
exhibiting the undesired behavior.

Computationally, the most restrictive step in the presented
approach is the model checking of the constructed probabilis-
tic model. LTL model checking is exponential in the size of
the formula, and polynomial in the size of the model [25].

The presented techniques, along with methods for synthe-
sizing robot controllers from temporal logic task specifica-
tions, provides a method for easing the time and difficulty
burdens inherent in programming and testing robot con-
trollers for complex tasks. Future work with the presented ap-
proach will include combining it with the method presented
in [18] and [19] for the assessment of a synthesized controller
with uncertainty in both the sensing and actuation, as well as
the inclusion of error-recovery capabilities. In addition, the
authors will explore the extension of the presented approach
to fully-automated specification revision, and the synthesis
of controllers that are robust to some modeled uncertainty.
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