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Abstract— In this paper energy optimal solutions for the
approach of red traffic lights are derived. As cars waste most of
the fuel in city traffic and especially in queuing at traffic lights,
the presented framework provides solutions to save fuel and to
protect the environment. The solutions are obtained using the
definition of spent physical work which has to be minimized. It
covers both cases, that the time of switching of the traffic lights
is known and that the time of switching can only be modeled as
a stochastic process. For a known time of switching a continuous
solution is derived using Pontryagin Minimum Principle; in the
stochastic case a modified Bellmann equation is formulated.
The latter is solved with dynamic programming techniques.
The presented solutions can be used for autonomous driving as
well as for driving assistant systems. Simulation results show
the potential savings using the presented approach.

I. INTRODUCTION
Future transportation systems need to increase fuel ef-

ficiency as cheap energy resources are getting rare. But
not only economics is a convincing reason to increase fuel
efficiency. Every investment in fuel economy pays off twice,
in decreased costs for the driver and in the protection of the
environment. To fulfill the requirement of higher efficiency
many research technologies have been developed in recent
years to decrease fuel consumption of vehicles. The range
of optimizations include more efficient engines, adjusted
vehicle designs and lighter chassis. This way the losses
e.g. due to friction and air drag are aimed to be reduced.
Furthermore researchers put effort in developing intelligent
traffic management systems of cities.

Either way, the driving style plays its role in energy effi-
ciency as well. Economic driving has been shown to reduce
fuel consumption significantly [1], hence saving money and
protecting the environment. Therefore newer cars come with
several driving assistance technologies that help the driver to
minimize energy demand. As an example many automobile
companies include a gear shift indicator (GSI) system that
suggests the most efficient gear. The start-stop-systems which
can be found in recent cars can also be seen as such a system.

On the other side, research has been made regarding the
inter-connection of vehicles and the infrastructure. They aim
to make cities smart by means of maximizing throughput
while minimizing fuel consumption e.g. by coordinated
switching of traffic lights. The next big step in this do-
main, vehicular ad-hoc networks systems like Car2X or
infrastructure-to-vehicle (I2V) have not yet found their way
in production vehicles. Up to now, these systems are limited
to research areas as challenges like reliable communication
and security of the system persist.
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Apart from conventional vehicles, the domain of intelligent
transport systems received much attention in recent years, by
addressing the problem of completely autonomous driving.
The motivation behind these autonomous systems is that they
can continuously collect and process large amounts of data
to increase safety, comfort and fuel efficiency, e.g. by in-
corporating congestion and traffic lights information directly
into motion planning. A notable step in autonomous driving
is the famous DARPA Urban challenge [2] – an autonomous
driving challenge. While the main idea at this point was to
handle all traffic situations correctly, research goes now one
step further into optimization of driving behavior.

This paper concentrates on energy optimal approaching
red traffic lights. This is done by providing solutions to the
optimal control problems. It covers situations where I2V is
present and the switching time is known exactly as well as
to situations where the switching time is only known with
arbitrary uncertainty. An example implementation of this
framework that provides optimal solutions for the approach
of traffic lights is presented and validated by simulations.

Note that, although the content described herein is about
cars, it is perfectly applicable to other traffic participants as
bicycles or even trains.

II. RELATED WORK
The challenge of energy efficient transportation systems

has been discussed from different perspectives. Recently,
many researchers e.g. [3] have focused on optimal switching
of traffic lights based on historic traffic data or on current
traffic monitoring. These systems aim to minimize the inter-
ruption for intersecting traffic flows caused by traffic lights.

The problem how to optimize the approach of traffic lights
has been addressed as well. In [1] speed profiles have been
compared to their energy demand. The work investigated
the effect of energy aware driving with driving assistance
systems. However, only a limited set of profiles has been
considered, so it lacks mathematical justification that the
presented speed profile is optimal.

Another system to control the approach of traffic lights
is presented in [4]. Without discussing the optimal control
problem behind it, the authors describe a solution using
constant negative acceleration. This solution is suboptimal as
will be shown later. In [5] a similar approach is introduced,
that assists the driver with an optimal speed to reach the
traffic lights exactly when they are switching, what helps
to save fuel. Unfortunately, the approach does not consider
dynamic constraints, thus allowing jumps in velocity (i.e.
infinitely high accelerations) which is not applicable in real
world scenarios. The influence of the correct gear choice
on fuel consumption at an traffic lights approach has been
discussed in [6], again using a set of speed profiles.
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In [7] the problem of crossing multiple traffic lights with
minimal energy is discussed. The authors aim to find a single,
constant speed to get through a series of traffic lights without
having to stop using a predictive cruise control algorithm.
However, as a solution of this problem is often infeasible a
model-predictive-control architecture is used.

Other research has been done in predicting the switching
of traffic lights without communication to the infrastructure.
With the help of a camera of a mobile phone the SignalGuru
[8] makes assumptions about the future state of the traffic
lights. Communication between multiple vehicles equipped
with these mobile phones allowed to obtain high precision.
Another approach is to learn the phase of traffic light
schedules from speed profiles of multiple vehicles as in [9].

A communication framework to I2V is set up in [10].
Furthermore, a possible human-machine-interface (HMI) to
assist the driver is described. In [11] the concept of a traffic
light assistant is discussed by means of acceptance of the
driver using a simulator survey.

In contrast to the former approaches, [12] proposes a
concept of energy optimal trajectories for trains. The com-
munication issues and a possible framework is discussed to
send optimal trajectories to the drivers of trains.

The common approach to energy optimal trajectories is to
use an linear-quadratic-regulator (LQR) system [13]. With
its nice mathematical properties, LQR systems can be solved
completely. Either way, the obtained results do not comply
with the definition of physical work and kinetic energy.

More recently, a similar problem as discussed here can
be found in [14]. The authors tackle the problem with
an optimal control approach minimizing a cost function
weighting time spent, high accelerations and idling using
deterministic dynamic programming. Similar to this work,
the authors give an optimal control trajectory even for the
case that only incomplete knowledge about signal phase
times is available. The results and the approach however
differ as their cost function is only heuristically motivated.

So none of the former works derived a solution to the
optimal control problem based on the definitions of physical
work. The solution with known time of switching of the
traffic lights is shown for completeness, although being quite
straight forward with Pontryagin’s minimum principle. But,
this work also provides solutions to the non-trivial optimal
control problem that the knowledge of the time of switching
can only be modeled with a probability distribution.

III. PROBLEM STATEMENT

The focus of this paper is to find the energy optimal
control input to approach red traffic lights. Assuming a
frictionless driving model the presented framework solves
an optimization problem with restrictions in input and state
space. It aims to minimize the physical work that has been
spent while the lights remained red plus the work that needs
to be spent to accelerate back to the desired speed.

Unlike former works where for the sake of ease squared
energy functions are used, it is strictly based on the def-
initions of kinetic energy. It respects the fact that only

acceleration is costly not braking (which is still true for most
of today’s cars). However, note that the presented approach
can easily be extended to friction-aware models and vehicles
with (partially) regenerative braking. For this approach only
a single vehicle is considered, since interaction is not in the
scope of this work. It is also assumed that only a single red
phase of the traffic lights has to be regarded.

In the following, the one-dimensional system is modeled
with x1 being the position of the bumper of the vehicle, and
x2 being the speed of the regarded vehicle while u is the
input acceleration. Both state variables are packed into a state
vector x which fulfills the equations of a double-integrator
system

x =
[
x1 x2

]ᵀ
ẋ = f(x, u) =

[
x2 u

]ᵀ
. (1)

The optimal control problem needs to respect the follow-
ing constraints of the state space X =

[
X1 X2

]ᵀ
and the

input space U
x2 ∈ X2 = [0, vMax] (2)
u ∈ U = [uMin, uMax] (3)

where vMax > 0 and uMin < 0 < uMax.
The red traffic lights are detected at t = 0. The initial

condition is denoted as
x1(0) = 0

x2(0) = v0 ∈ X2 (4)

as illustrated in Fig. 1. The distance between x1 = 0 and the
stop line is d.

Fig. 1. At t = 0 the vehicle detects the red traffic lights. Its initial state
is denoted [0, v0]ᵀ. The distance to the traffic lights is d.

The optimization aims to minimize the physical work that
has to be applied in this situation, respecting the constraints.

The time the traffic lights switches from red to green is
denoted as T > 0. So, the work that has to be spent for
a certain trajectory can be separated into the work that has
been used in the interval [0, T ], denoted as WAccelerate, and
the work that has to be supplied after t = T , denoted as
WRemaining, to reach a desired speed. Hence, the optimiza-
tion problem is to minimize

WAccelerate +WRemaining → min . (5)

The remainder derives the solution to this problem for both,
that T is known and that T is unknown.

IV. APPROACH
Using the definition of the physical work W , make a

separation of acceleration work and braking work
T∫

0

mu(t)x2(t) dt

︸ ︷︷ ︸
W

=

T∫
0

mu+(t)x2(t) dt

︸ ︷︷ ︸
WAccelerate

+

T∫
0

mu−(t)x2(t) dt

︸ ︷︷ ︸
WBrake
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with m being the mass of the vehicle and

u+(t) = u(t) Θ(u(t))

u−(t) = u(t) Θ(−u(t)),

where Θ is the unit step function. Denote the initial kinetic
energy as E0. The energy at the switching time T is written
as ET and defined using the energy equilibrium as

ET − E0 = WAccelerate +WBrake. (6)

Without loss of generality, it is assumed that the desired
energy of the vehicle is again E0, so

WRemaining = E0 − ET . (7)

With (6) and (7), the problem (5) can be similarly rewritten
as

−WBrake = −m
∫ T

0

u−(t)x2(t) dt→ min (8)

For the easy of notation let m = 1 without losing generality.
Of course, it is assumed that it is still possible to brake

enough by the time the traffic lights are detected. Hence, the
stop line has not been crossed while the lights are still red

t = min{ v0
uMin

, T} : 1
2uMint

2 + v0t ≤ d. (9)

In the remainder, the optimization problem (8) is solved,
first for the case that the time of switching is known.
Afterwards, it is solved for the case that the knowledge about
T can only be stochastically modeled.

A. Optimal Control with Known Switching Time

In this section the optimal control problem is solved under
the assumption that the switching time T is known. The end
condition is set to

x1(T ) = d (10)
x2(T ) free,

where the solution is later extended for a free end position
x1(T ) ≤ d. Note, that the case that the detected red lights
are far enough away that the vehicle does not have to react
is trivial and hence not considered here, so assume

Tv0 > d. (11)

1) Solving the Optimization Problem: With (8) the cost
function is consequently defined as

J = −
∫ T

0

u−(t)x2(t) dt. (12)

As shown later, the state constraint (2) is never active under
(9) and is hence not considered in the calculation.

The corresponding Hamiltonian [15] of (12) is with (1)

H = −u−x2 + λ1x2 + λ2u, (13)

omitting time dependencies. Evaluating the costates λ =
[λ1 λ2]ᵀ,

λ̇ = −∇xH = −
[
0 −uΘ(−u) + λ1

]ᵀ
λ̇1 = 0 ⇒ λ1 = c ⇒ λ̇2 = uΘ(−u)− c

is concluded, with an unknown constant c.
Using Pontryagin’s minimum principle (PMP) [15], H is

minimized w.r.t. u. It is obtained that the input u is

u(t) =


uMax, λ2 < 0

0, 0 ≤ λ2 ≤ x2

uMin, λ2 > x2.

(14)

From the transversality condition with (10) the final
costate is λ2(T ) = 0. With this, it is concluded that in an area
around T the input u ≥ 0, so the derivative of the second
costate is λ̇2 = −c.

Respecting the start conditions (4) and restrictions (2) and
(11) only c > 0 is allowed. Therefore, it is necessary that
there is an unknown input switching time

∃tsw ∈ (0, T ) : λ2(tsw) = x2(tsw).

Hence, it is concluded with (4) that the optimal strategy is
to perform a braking till t = tsw with maximum deceleration
and to keep the speed afterwards

x2(t) =

{
uMint+ v0, t ≤ tsw
uMintsw + v0, t > tsw.

(15)

0

umin

u
(t

)

0 tsw T
t

0

v1

v0

x
2
(t

)

d1

d2

Fig. 2. The energy optimal control is to perform a braking with uMin till
tsw and keep the speed afterwards. tsw can be calculated easily using the
area under the speed graph, defining d1 � and d2 �.

2) Finding Input Switching Time tsw: A geometric ap-
proach can be used to find tsw as in Fig. 2. With

d = d1 + d2 where

d1 = v0tsw + 1
2uMint

2
sw

d2 = (v0 + uMintsw)(T − tsw)

the input switching time tsw can be obtained as

tsw = T −
√
T 2 + 2

uMin
(v0T − d). (16)

Hence the minimal dissipated energy is

WBrake = 1
2 (v2

0 − (uMintsw + v0)2). (17)

Note that restriction (2) is never active given (9). There-
fore, it was not considered in the Hamiltonian (13).
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3) Free endpoint x1(T ): Eq. (16) can be generalized
with its end state using the general free end position x1(T )
according to

tsw = T −
√
T 2 + 2

uMin
(v0T − x1(T )). (18)

It is obvious that for reasons of monotonicity tsw in (18) is
minimal for maximal x1(T ). WBrake is minimal for x1(T ) =
d like assumed in IV-A.

With this, the optimal control trajectory is obtained for
the approach of traffic lights when T is known. While this
solution was given for completeness, the related problem how
to behave optimal with non-exact knowledge about the time
of switching of the traffic lights T is shown in the remainder.

B. Optimal Control for Stochastically Modeled Knowledge

This section now discusses the optimal control problem
(8) in a scenario that the time of switching of the traffic
lights T is not perfectly known. However, it is assumed that
the knowledge about T can be modeled using a stochastic
distribution. These are characterized by a probability density
function ρ(T ).

This scenario is extremely important if I2V systems are
not available. So, this set-up is facing reality that hardly any
of today’s traffic lights are equipped with I2V devices.

In the remainder, it is assumed that there exists a finite

TMax = sup{T |ρ(T ) 6= 0}, (19)

so that T is bounded. Loosely speaking, it is known that the
lights will switch before TMax. Of course, the constraints
(9) and (10) have to be adjusted appropriately. With this the
energy optimal trajectory is searched.

Note, that this case is special as accelerating does not add
anything to the costs as in (12). Put differently, it is not of
relevance how the acceleration trajectory after the switching
of the traffic lights looks like. Consequently it is obvious
that we are only interested in the trajectory if the traffic
lights do not switch in [0, TMax). As T is the actual (but
unknown) switching time, it is optimal to behave according
to the available knowledge at this time step for t < T and
then, after T to re-accelerate. The following finds the solution
to the optimal control problem according to the available
knowledge at each time step.

1) Reformulation of the Optimal Control Problem: In the
remainder the time is discretized in n steps, each of duration
∆t. So, the modified optimization problem can loosely be
described with: What is the best input to drive for the next
timespan ∆t with the currently available knowledge about
T ? It is assumed that the vehicle can only react on green
lights after a time step, not in between.

The chance that traffic lights will not switch between the
current time step k and the following time step k+ 1 under
the condition that they have not switched up to k is denoted
as β(k) and defined as

β(k) = 1−
∫ (k+1)∆t

k∆t
ρ(T ) dT∫∞

k∆t
ρ(T ) dT

= 1−
∫ (k+1)∆t

k∆t
ρ(T ) dT∫ TMax

k∆t
ρ(T ) dT

.

(20)

This probability that the light will not switch in the interval
[k∆t, (k + 1)∆t] uses the fact, that a probability density
function is cropped and scaled if the event did not happen
up to point in time. The detailed proof of this can be found
in the appendix of this paper.

So the expected cost consists of the actual cost for the
action φ(x, uk) and the expected cost of the situation of the
next time step. This leads to a modified Bellmann equation
using the system definition (1) for k = 0 . . . (n− 1)

J∗k (xk) = min
uk

[
φ(xk, uk) + β(k)J∗k+1(f(xk, uk))

]
with J∗n(xn) = J∗n = 0.

Note that β(k) is a function of the discretized time k. In each
time step, this function incorporates the knowledge that the
traffic lights did not switch yet, but minimizes the cost for
the expectation.

2) Implementation of the Solver: In order to find the
energy optimal input trajectory a grid based solution is
used in the presented framework. This type of strategy
is also commonly known as discrete, stochastic dynamic
programming and described e.g. in [13].

An illustration of such a grid can be seen in Fig. 3. The

Fig. 3. A grid is representing the three dimensions of time and state space.
Each cell stands for a discrete point in this coordinate system. The size of
the grid is given by maximum distance to the traffic lights, the maximum
speed and the upper bound for the switching time.

grid consist of three dimensions, representing the time in
the interval [0, TMax] and the two-dimensional state space
x, in [0, d] and [0, vMax] respectively as restrictions apply
analogous to the above. Each cell in this grid represents
a point in time k with the state xk. Assuming small ∆t
the input uk(t) can be regarded as constant uk(t) = uk.
This decreases the computational demand to find the optimal
solution. For a piecewise constant input uk the cost for the
action simplifies to φ(xk, uk) = uk∆t(x2,k + 1

2uk∆t).
With this framework arbitrary probability density func-

tions can be considered, if they fulfill the condition in
(19). As examples the optimal control trajectories in case of
uniform probability distributions and in case of a triangular
distribution are presented.

3) Uniform Probability Distribution: In this section the
special case is discussed, that ρ is distributed uniformly, as
shown in the top plot of Fig. 4. Note that this case occurs
especially if the length of the red light phase TMax is known
(or can be overestimated), but the time the vehicle first
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detects the lights in respect to the phase is unknown. So
the uniform distribution is of great practical use.

For ρ being uniform, the equation (20) simplifies to

β(k) = 1− ∆t

TMax − k∆t
.

The obtained resulting optimal input and the corresponding
state trajectories are sketched in Fig. 4.

0

1
TMax

ρ
(t

)

0

uMin

u
(t

)

0

vMax

x
2
(t

)

0 TMax

t

0

d

x
1
(t

)

Fig. 4. In case of a uniform distribution as sketched in the top plot, the
obtained optimal control trajectories are as shown in the lower plot. The
second plot presents the trajectory of the optimal input, the two lower plots
the resulting trajectories of the state.

4) Triangular Probability Distribution: As an academic
example, a triangular distributed probability density function
like in the top plot of Fig. 5 is regarded in this section. Again,
the optimal input and state trajectories are shown in Fig. 5.

0

2
TMax−t∗

ρ
(t

)

0

uMin

u
(t

)

0

vMax

x
2
(t

)

0 t∗ TMax+t∗

2
TMax

t

0

d

x
1
(t

)

Fig. 5. Optimal control trajectory in case of triangular ρ as shown in top
plot. The lower plots show the optimal input u and the optimal two state
trajectories x1 and x2 respectively.

The last section gave a qualitative overview over the
optimal solutions of the approach of red traffic lights. In the
following sections the potential fuel savings of the optimal
trajectories are discussed.

V. RESULTS
The presented algorithm to energy optimal approach to red

traffic lights has been exemplary implemented. As discussed
in IV-B.2 the solution is realized as a three-dimensional grid.

For these scenarios the parameters of this grid have been
chosen as follows. It is assumed that m = 1000 kg, TMax =
20 s, the maximum distance to the line is x1,max = 200 m
and the maximum speed is x2,max = 15 m/s. The input space
is U = [uMin, uMax] where uMax = −uMin = 3.0 m/s2.

For this grid, the input space has been discretized in 13
steps, so ∆u = 0.25 m/s2. Furthermore the time space is
represented by 41 discrete time steps, resulting in ∆t = 0.5 s.

From the above parameters the discretization of the state
space is implied. With this, the speed is consequently sam-
pled in 121 steps according to ∆x2 = ∆u∆t = 0.125 m/s.
Likewise the position x1 has to be discretized with ∆x1 =
1
2∆u∆t2 = 0.03125 m resulting in 6401 steps.

The code has been tested on a standard PC with an Intel i5
with 3.30 GHz on Linux. With the presented, single-threaded
exemplary implementation in Python it takes 37 s to obtain
the whole grid with the above dimensions. However with a
multi-threaded implementation in a compiled language on-
line capability is expected even for finer grids.

With this implementation optimal trajectories can be ob-
tained which are in the remainder compared to other possible
trajectories. In Fig. 6 the obtained optimal input trajectory is
compared to a constant acceleration trajectory as well as to
an optimal trajectory for known T = TMax, as described in
Sec. IV-A. The plot in Fig. 6a shows an histogram of the 107

samples illustrated in bins that have been used, and below the
compared input trajectories with the corresponding course of
energy. As reported in Tab. 6b the optimal trajectory out-
performs the other exemplary functions by more than 25%.
The optimal trajectory for a triangular probability distribution
function is compared in Fig. 7 to the other functions. Again,
the optimal trajectory significantly outperforms the other
functions as listed in Tab. 7b.

Note that the presented probability distributions are just
for illustration purposes. Arbitrary probability distributions
that model the perception and prediction uncertainties can
be used in this framework.

VI. CONCLUSION AND FUTURE WORK

This paper presented a framework to approach red traffic
lights optimally w.r.t. energy consumption. The optimal
control problem is deduced from the definition of physical
work. It derives optimal trajectories for the case the time
of switching of the lights is known as well as for the case
that the switching can only be stochastically modeled. It has
been shown that there are notable potential energy savings in
the optimization. The system has been created for both, as a
future driving assistant system and as part of an intelligent,
autonomous vehicle.

Either way, the proposed approach is yet limited to sim-
ulation results. Hence, future work includes implementation
in real life environments. With a more more sophisticated
implementation on-line capability is expected for arbitrary
probability density functions.

APPENDIX

The following definitions are used to show that a prob-
ability density function is only cropped and scaled if the
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(a) In this plot an histogram of the sampled probability distribution is shown.
Below, the optimal input (solid), a constant acceleration solution (dotted) and
the optimal solution for the worst case T = TMax (dashed) are sketched.
The plots show the acceleration and the energy trajectory over time.

Trajectory optimal CA opt. for
T = TMax

avg. energy loss/kJ 43.7 58.3 62.6

avg. saving – 25.2% 30.2%

(b) The optimal solution for the uniform probability density function
outperforms the other candidates taking the average over all samples.

Fig. 6. Comparing the optimal solution for a uniform probability distribu-
tion to a constant negative acceleration (CA) trajectory and to the optimal
trajectory for the case T = TMax. Although other solutions have less energy
loss at some samples, the optimal solution outperforms them in average.

event has not occurred up to a point µ ∈ R. The probability
density function ρ(T ) is given and the random variable is
X . Furthermore, let a, b ∈ R and the interval I = [a, b].

With the definition of the conditional probability

P (X ∈ I|X > µ) =
P (X ∈ I,X > µ)

P (X > µ)
(21)

=


P (X∈I)
P (X>µ) µ ≤ a∫ b
µ
f(t) dt

P (X>µ) a < µ < b

0 b ≤ µ.
(22)

Note that with α = P (X > µ)−1

P (X ∈ I)

P (X > µ)
= αP (X ∈ I).

So, in particular the probability density function ρ(T ) is
cropped at µ and ρ(T ) is scaled by factor α for T > µ.
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