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Abstract— This paper presents a throwing motion planner
based on a goal manifold for two-point boundary value problem.
The article outlines algorithmic and geometric issues for planar
throwing of rigid objects with a nonprehensile end-effector.
Special attention is paid to the challenge of controlling a
desired 6-dimensional state of the object with a planar 3-DoF
robot. Modeling of the contacts is discussed using a state
vector of the coupled robot and object dynamics. Robustness
against uncertainty due to varying model parameters such as
object inertia and friction between the end-effector and the
object is investigated. An approach for obtaining manifolds of
terminal constraints from the goal configuration is described.
Classification of these constraints is given. Finally, feasible
trajectory generation conditions for successful execution of the
generated optimal controls are discussed.

I. INTRODUCTION

Intensive development of space robotics, industrial appli-

cations and robotic sports require simple and cost-effective

robots capable of dealing with highly dynamic and precise

tasks. In areas such as part feeding [1] and transportation

within logistic chains [2] one of the main challenges is to

position and orient the manipulated object. An effective way

is to throw the object from its initial state to the final state

using a simple robot with a generic end-effector. Usually

such a generic end-effector is designed as a flat plate, so the

manipulation is nonprehensile.

Conventional methods for object manipulation in robotics

are based on grasping the object, moving it in a workspace

and finally releasing it at a desired position. To overcome

shortcomings of the pick and place paradigm, dynamic

manipulation was introduced. Mason and Lynch [3] defined

dynamic manipulation as an operation that uses not only

kinematics, static and quasi-static forces but also forces

of acceleration. They discussed different manipulation tasks

with control of object unactuated degrees of freedom (DoFs)

using dynamic coupling. As an example, throwing of a club,

including carry and release conditions, was investigated. It

was shown that a larger number of DoFs of the object can be

reached using simple 1-DoF robots by exploiting centrifugal

and Coriolis forces and by allowing the object to slip and

roll [4]. This strategy of using all possible capabilities of

the simple robot mechanics was continued in a number of

works.

Frank et al. [2] suggested to use throwing for industrial

applications to speed up transportation of parts in flexi-

ble manufacturing systems. They discussed various simple

throwing and shooting mechanisms and their applications in
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logistic chains. A 1-DoF rotational robot capable of throwing

a ball up to 8m with high precision was discussed in [5].

A throwing model with simple kinematics including an air

drag influence was presented in [6]. Miyashita et al. [7], [8]

suggested a control strategy for a 1-DoF rotational robot

with edges based on iteration optimization learning. For

this purpose a nonlinear optimization problem is solved by

the sequential quadratic programming (SQP) method for

different initial conditions with constraints on actuator limits

and final object position.

Tabata et al. [9] presented a passing manipulation. Their

simple system consists of one throwing and one catching

1-DoF rotational robots that transfer a ball from one to

another. A solution for motion planning was found using

Newton’s method with top height of the parabolic orbit,

torque of the actuators and total passing time as performance

indices. Mori et al. [10] showed that using a finger-link con-

tact model makes it possible to implement pitching motion

with prescribed velocity, angular velocity and direction of

a circular object using only a 1-DoF robot. Global search

and simulated annealing methods were used with criterion

function as a weighted error between kinematic variables

at the time of release and desired variables. However, the

extent to which the three kinematic variables could be

independently controlled is limited.

The contribution of this paper is a novel motion planning

algorithm for throwing based on the manifold of possible

release states leading to a desired object goal state. The goal

manifold is obtained using partial knowledge of the desired

state of the object. An optimal control method is designed

as a two-point boundary value problem (2PBVP). Specific

conditions and challenges of nonprehensile throwing tasks

are discussed.

The manipulation tasks require fast and accurate motions.

Therefore the main challenges lie in the field of optimality,

robustness and feasibility of generated trajectories. We intend

to broaden the capability of reaching the desired object goal

state by increasing the number of actuators to three and im-

proving optimal control for motion planning by introduction

of corresponding constraints and objectives. The number of

controlled DoFs is dictated by the minimal requirements on

the number of constraints imposed on the goal data for throw-

ing. The goal is to access the whole 6-dimensional (6-D)

state of the object and increase the reachability of the system.

The throwing tasks are investigated in a two-dimensional

workspace. For this purpose the experimental setup consist-

ing of a manipulator with three rotational joints (3R) and an

inclined air-table was designed. The air-table compensates

the gravity component that acts perpendicular to the surface
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with an air-flow and provides the environment for investiga-

tion of planar throwing with decreased gravity, see Fig. 1.

θ

Fig. 1: Side-view of planar robotic arm mounted on the inclined air-table.

The dependency of the inclination of the table after gravity

modification is

gm = g sin θ, (1)

where θ is the angle of inclination of the robot and the table

from its horizontal position.

Sec. II formulates a problem and provides theoretical

background for task definition. In Sec. III the approach for

optimal throwing of the rigid object with the nonprehensile

end-effector in presence of Coulomb friction is presented.

The terminal constraint manifold leading to the desired

end state of the object is thoroughly researched. Based on

discussed assumptions and terminal constraint manifold anal-

ysis, the optimal control method is presented. Corresponding

simulation and numerical results of optimization are shown.

Experimental results and hardware description are to be

found in Sec. V. Finally, Sec. VI contains conclusions on

conducted work and future research directions.

II. PROBLEM FORMULATION

Given the 3-DoF planar robot with flat end-effector, see

Fig. 2, the robot configuration is defined as

q = [ q1 q2 q3 ]T . (2)

A simple algorithm for task execution is as follows: go

to initial position and receive the object, carry it to the

release point, and finally release the object. Without loss of

generality, the initial configuration of the robot is taken at

the initial time t0 = 0, with initial position q(0) = q0 and

initial velocity q̇(0) = 0. The goal is to achive a desired

object velocity at a desired goal position and orientation.

The object configuration

p = [ x y φ ]T (3)

is shown in Fig. 2 and Fig. 3. The robot dynamics in joint

space are described as

M(q)q̈ = τ − τ ′, (4)

τ ′ = C(q, q̇)q̇ +G(q) sin θ + F (q̇), (5)

Final configurationInitial configuration

q1

gm

q2

−q3

Vy

Vx

ω

x

y

Fig. 2: Initial and final(release) postures of the robot.

where q, q̇, and q̈ are the generalized position, velocity and

acceleration vectors, τ is the torque produced by the motors,

M(q) is the inertia matrix of the manipulator, C(q, q̇) is a

matrix of Coriolis and centrifugal forces, G(q) is a matrix of

gravity forces and F (q̇) is a matrix of friction forces. Thus,

the generalized accelerations of the joints are calculated as

q̈ = M -1(q)(τ − τ ′). (6)

State equations are defined

ẋ =

[

0 I

0 0

]

x+

[

0 0

0 M−1(x)

]

u−

[

0

M−1(x)τ ′(x)

]

τ ′(x) = C(x) +G(x) + F (x),

(7)

with the state variable x = (q, q̇)T and the torque u

produced by the motors. The motion planner has to execute

nonprehensile throwing task and generate optimal trajectories

based on the choice of the goal state of the object. Thus, 3R

robot is controlled in such a way that the model uncertainty

influence is minimized.

III. MODELING AND CONTROL OF NONPREHENSILE

THROW

A. Contact modeling

It is assumed that an object has a line contact with the end-

effector. We consider a rectangular object which is displaced

from the center of the end-effector, as depicted in Fig. 3. The

goal is to bring the object to the release point with desired

position, orientation and velocities. This task can be fulfilled

with the help of dynamic grasp [3]. Due to the dynamic grasp

property the object remains attached to one fixed position on

the end-effector under the influence of the contact friction.

This constraint is investigated for the case of a 3R robot.

The contact conditions for robust carrying and release of the

object are analyzed.
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Fig. 3: Flat end-effector with rectangular object having a line contact.

1) State space representation: The state space equations

for the object in the frame of reference related to the robot’s

base are

ẋo,gr =

[

ṗ

p̈

]

=





















−v̇o cosβ − ẇo sinβ

−ẇo cosβ + v̇o sinβ

α̇o

−v̈o cosβ − ẅo sinβ

−ẅo cosβ + v̈o sinβ

α̈o





















(8)

knowing that

[

v̇o ẇo α̇o

]T

= J(q, r)q̇
[

v̈o ẅo α̈o

]T

= J(q, r)q̈ + J̇(q, r)q̇,
(9)

where J is a Jacobian from the base of the robot to the center

of the line contact on the end-effector, r is the distance from

the center of the end-effector to the center of the contact.

The force equilibrium is as follows

mgm sinβ −mv̈o + fs = 0

N −mẅo −mgm cosβ = 0

|fs| ≤ µsN.

(10)

So, the constraint to prevent slipping is

Jsl = |mv̈o −mgm sinβ|−mµs(gm cosβ+ ẅo) ≤ 0. (11)

In order to increase margin for anti-slipping property, one has

to minimize Jsl. In case of uncertain µs the cost function

transforms into

Jµs,sl =
|v̈o − gm sinβ|

gm cosβ + ẅo

. (12)

If both model parameters µs and gm are uncertain, sepa-

rate variables |v̈o|, |β| and −ẅo are minimized with corre-

sponding weighting coefficients. Consequently, an increase

of µs will have a positive effect on the robustness.

The constraint for preventing rolling has the following

form

−Izα̈o +m(hv̈o − hgm sinβ − kẅo − kgm cosβ) ≤ 0

Izα̈o −m(hv̈o + hgm sinβ − kẅo − kgm cosβ) ≤ 0,
(13)

where Iz is the inertia of the object around the vertex contact

point. After simplification (13) becomes

Jrol = |−Izα̈o − hmv̈o + hmgm sinβ|

−kmgm cosβ − kmẅo ≤ 0.
(14)

The minimization of Jrol leads to an increase of the margin

of the anti-rolling property.

As for the uncertainty of multiple model parameters, e.g.

Iz , k, h, m and/or gm, the minimization of the separate

variables |α̈o|, |β|, −ẅo and |v̈o| with corresponding weight-

ing coefficients is being achieved. If condition (14) is not

fulfilled, the object will start rolling whether around vertex A
or B. In this case the positive design properties are obtained

by maximizing length of the object.

Using the introduced object state representation, slipping

and rolling dynamics could be also allowed. For example,

the object dynamics for slipping will take the form

ẋo,sl =

[

ṗ

p̈

]

=





















−v̇o cosβ − ẇo sinβ

−ẇo cosβ + v̇o sinβ

α̇o

C(−v̈o cosβ − ẅo sinβ)

C(−ẅo cosβ + v̈o sinβ)

α̈o





















, (15)

where C = 1+sgn(|fs|−µsN)
2 is a slipping condition. In case

of slipping, µkN is used instead of fs for calculation of v̈,

where µk is a kinetic friction coefficient. However, additional

constraints on the maximum distance from the center of the

end-effector are imposed

r(t) = r0 + C
tŕ

0

tŕ

0

v̈o dt

rmin ≤ r(t) ≤ rmax,

(16)

where tr is a release time.

The object state variables are appended to robot state

variables. Hence, the full state vector will consist of twelve

state variables

xext =

[

x

xo

]

. (17)

With the help of such a representation it is possible to com-

pletely describe the robot and the object coupled dynamics.

2) Release conditions: For releasing the object the fol-

lowing conditions are to be fulfilled

ẅo(tr) + gm cosβ ≤ 0

α̈o(tr) = 0.
(18)

These equations impose additional constraints on the state at

the final time of the motion.
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B. Two-point boundary value problem for 6-D goal state

The throwing task is formulated as an optimal control

problem with initial and final states and number of con-

straints including actuator limits, workspace constraints and

contact conditions for nonprehensile manipulation.
1) Constraints: Optimization constraints are divided into

equality and inequality constraints. The equality constraints

are presented as a dynamical constraint (7) as well as initial

robot state constraints q(0) = q0, q̇(0) = 0 and object initial

state p(0) = p0, ṗ(0) = 0. To generate feasible motions,

inequality constraints on the controls umin ≤ u(t) ≤ umax,

on the joint positions qL ≤ q ≤ qU and on the angular ve-

locities q̇L ≤ q̇ ≤ q̇U are introduced. Workspace constraints

are presented as

l1c1 + l2c12 + l3c123 > xmin

l1s1 + l2s12 + l3s123 > ymin,
(19)

where xmin and ymin are workspace safety boundaries of

the table, cij = cos(qi + qj) and sij = sin(qi + qj) and li is

the length of link i. The safety distances from the edges of

the table are equal to half of the length of the end-effector.

The robot is designed in such a way that self collisions

between links are not permitted if the end-effector is within

the workspace constraints. Thus, self collision constraints

are omitted. Constraints in case of dynamic grasp are (8),

(10), (11), (14) and (17). In case of slipping (14), (15) and

(17) have to be used. Release constraints (18) are presented

as explicit constraints of a second kind on a final time.

Additionally, the constraints imposed by the goal definition

are discussed in Sec. IV.A.
2) Objective function: Incomplete knowledge about the

parameters, especially the contact friction, can result in

undesired slipping or rolling during the carrying. The 3-DoF

robot makes it possible to reduce such effects. The objective

function is constructed as a sum of the components from

(11) and (14). The terms are represented in a Lagrange form

J(u, tr) =
tŕ

t0

l(t, x(t), u(t)) dt. (20)

3) 2PBVP statement: Find the control variable and free

final time tr that in case of known model parameters mini-

mizes the functional

J(u, tr) =

tr
ˆ

0

[

ksl krol

]

[

Jsl

Jrol

]

dt, (21)

where ksl and krol are the weighting coefficients for (11) and

(14). In case of undefined friction coefficient we get

J(u, tr) =

tr
ˆ

0

Jµs,sl dt, (22)

When several parameters are uncertain the objective function

takes the following form

J(u, tr) =

tr
ˆ

0






k̃rol |α̈o|+QT







|β|

−ẅo

|v̈o|












dt (23)

subject to the constraints from Sec. III.B.

An initial time t0 is given and fixed. k̃rol and Q repre-

sent the weighting coefficients for anti-rolling and mutual

anti-slipping and anti-rolling costs for completely uncertain

parametric model. It increases the robustness of the whole

motion. If the final state of the end-effector is defined,

inverse kinematics is used to obtain the final state of the

robot. Therefore, special attention is paid to two different

admissible postures of the three-link planar arm as sketched

in Fig. 4.

Fig. 4: Admissible release postures.

An additional constraint on the internal structure of the robot

is imposed to receive well-defined final state of all 3-DoF at

terminal time. For simplification, the elbow-down throwing

posture is chosen. Although, in general, it has to be selected

based on the optimization problem which is solved for each

posture separately.

IV. SIMULATION AND NUMERICAL SOLUTION

A. Goal manifold

At the time of release tr the state of the object in the

base frame is described with position x, y and orientation

φ, translational velocities Vx, Vy and rotational velocity ω.

The object travels along the parabolic trajectory defined by

these parameters. Using the inverse differential kinematics

equation

q̇ = J−1(q, r)
[

Vx Vy ω
]T

, (24)

three constraints are imposed on the robot. By integration of
both sides of (24) these constraints come to a new form

tr
ˆ

0

q̇ dt = q(tr)− q(0) = f(q(tr),q(0),p(tr),p(0)), (25)

where f is a nonlinear function that represents the inte-

grals of the right side of (24). In (25) the initial position

q(0) = q0 is given, x(0), y(0) and φ(0) are obtained
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through forward kinematics






x

y

φ






=







l1c1 + l2c12 + l3c123

l1s1 + l2s12 + l3s123

q1 + q2 + q3 −
π
2






. (26)

Since (25) consists of five unknowns q(tr), x(tr) and y(tr)
and f is of dimension three, the system is underconstrained.

However, additional constraints on the motion of the object

can be imposed. Algebraic equations for the parabolic tra-

jectory of the object that lead to a final goal are presented

x(tr) = xm − Vxthit

y(tr) = ym +
1

2
gmt2hit − Vythit

φ(tr) = φm − ωthit − 2πn,

(27)

where thit is the time when the object center of the mass

hits a prescribed mark, n is the number of full rotations.

The variables x(tr) and y(tr) are both dependent on the

variable thit. Thus, substituting (27) into (25) reduces the

number of unknowns from five to four. Therefore, different

variations of thit lead to the same goal object position. Hence,

the goal state of the object is reached with an infinite number

of possible final states of the robot x(tr). The six object state

variables at release time define the terminal constraint and the

final state. Depending on a number of assigned state variables

there are 64 possible combinations of defined parameters

without repetitions

6
∑

i=0

(

6

i

)

= 64, (28)

including cases when the whole 6-D object state is defined,

and when none of the parameters is given. We would like to

constrain ourselves to the discussion about cases when the

destination position is present. In total, there are 16 cases,

as depicted in Fig. 5.
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Fig. 5: Classification of the possible goal states of the object with fixed
center of the mass.

Example: If we fix 5-Ds of the object and specify the

final orientation of the end-effector, it will be equivalent to

specifying the 6-Ds of the object. The resulting manifold

with varying time in the workspace of the robot is presented

in Fig. 6.

−φ

−φ

0.2

0.4

0.5 1.5

0.6

0.8

1

1
0

0 2

gr(x(tr), tr)

Vx

Vy

x [m]

y [m]

Fig. 6: Manifold of final end-effector position with constant Vx and Vy .
The throw is taken from any point lying on the manifold with the angle
φ(tr) but without ω so that it results in hitting the prescribed mark with
the center of gravity of the object.

Cases from Fig. 5 are discussed in detail. The analysis is

split in two parts. First, we discuss the parabolic trajectory

described by the first two equations of (26). When only the

position is determined, the throw is made from any reachable

point in the workspace. In case of one velocity being defined

we observe the set of terminal manifolds dependent on the

flight duration, see Fig. 7.

0 0.5 1 1.5

0.2

0.4

0.6

0.8

1

 

 

Vx not defined

Workspace constraints

Vy not defined

y
[m

]

x [m]

thit = 1.1 [s]

thit = 0.6 [s]

Air-table

Fig. 7: Manifolds of final end-effector position with varying Vx (set of
non-intersecting blue curves) and Vy (set of non-intersecting green curves).
Increase of Vx results in moving the manifold left, increase of Vy results
in lowering the manifold. The upper point of every curve is taken with
thit = 1.1 [s], the lower point of every curve is taken with thit = 0.6 [s].

Finally, if both velocities are defined, there exists a unique

manifold gr(x(tr), tr) in the workspace, e.g. see Fig. 6.

Second, angular rotation is defined by (26). If the φ and ω are

not assigned, then any release orientation fits. Let us describe

the rotational term in the case where ω is not prescribed, thus

the terminal position manifold is identical to the one from

Fig. 8. In this case it is important to set the rotation direction

and number of full rotations n. In case where the φ is not

given, we have the set of curves as shown in Fig. 8. The

last case is when the φ and ω are both defined. Thus we

have a unique point for end-effector release angle. Any case

from Fig. 5 can be analyzed using these manifolds in the

workspace.
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Fig. 8: Angular velocity of the end-effector dependent on the robot release
orientation and number of object full rotations.
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Fig. 9: Angular position of the end-effector dependent on the release angular
velocity.

B. Numerical solution

For optimal control simulation we used DirCol code with

the sparse SQP nonlinear method SNOPT to solve the

nonlinear optimization problems (NLPs) [11]. This code is

a direct collocation method that discretizes the control and

the state. Thus, the infinite dimensional problem is divided

in a number of optimal point-to-point trajectories with state

constraints. These trajectories are used later for tracking

control. Simulation results for the throwing task with the

3-DoF robot are shown in Fig. 10.

The 2PBVP is sequentially simplified to get the most suit-

able form for the numerical optimization. First, the boundary

value constraint for initial and final states is divided into

separate constraints. The initial state x(0) consists of q(0) =
q0 and q̇(0) = 0, and the terminal constraint is a manifold,

which is mathematically modeled as gr(x(tr), tr) = 0 with

free tr. The manifold from Sec. IV.A is transferred to the

state space using inverse kinematics and inverse velocity

kinematics. For the optimal control problem this manifold

is presented as an implicit boundary of the second kind, i.e.

it is a condition for time tr.

V. EXPERIMENTAL VERIFICATION

A. Experimental setup

1) Manipulator: The robot manipulator was built using

aluminum hollow links and RE-40 Maxon motors. The arm is

located at the edge of the table. Every single joint is actuated

by a separate motor. The end-effector was designed as a flat

plastic end-effector to implement planar manipulations with

the objects. The control is simulated and executed using the
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Fig. 10: Desired (dashed) and actual (solid) positions, velocities and currents
of the robot arm, and optimal cost J.

Fig. 11: Front-view of planar robotic arm mounted on the inclined air-table.

Matlab Simulink with built-in real-time Linux environment

PRT. Mass-inertia parameters, as well as centers of mass of

the links are found from the CAD model, where the robot

was designed. The dynamical model of the 3R arm was

simulated in Autolev.

2) Air-table: An inclined air-hockey table with dimen-

sions of 1.6m x 0.8m serves as a testbed for simulation

of planar object manipulation with decreased gravity. The

air-flow is equally distributed through more than thousand

of holes drilled in the surface. The inclination of the table

is variable. For example, with the angles θ = 24◦ and

θ = 10◦, the air-table produces gm1 = 3.99m/s2 and

gm2 = 1.7m/s2. Thus the object movement on the table

is comparable to the object flying in the gravitational field

of Mars and Moon respectively.

3) Objects: The manipulated objects are convex polyhe-

drons made by rapid prototyping. The orientation and angular

velocity during the nonprehensile manipulation plays a more

significant role for these objects than for the circular objects.
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B. Sources of uncertainty

Due to the absence of a plenum chamber in the constructed

air-hockey table, the airflow distribution on the surface is not

perfect and leads to a slight change in the object velocities.

Another source of unmodeled dynamics is a highly nonlinear

friction in the robot joint gears. The control scheme using

optimal histories for torque in feedforward loop is used to

overcome this problem. Desired position and velocities are

tracked in feedback loops with PD controller. The schematic

is shown in Fig. 12.
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Fig. 12: The control structure consisting of presented optimal control block
and feedforward compensation [12].

C. Experimental results

Each joint is controlled in a way that reduces the ob-

jective function (21). Using the obtained desired trajectory

histories for optimal states and control, the throwing motion

is executed successfully. Experimental results are shown

in Fig. 13 and Fig. 14.

Three experiments with a robust nonprehensile throw

were carried out. Several convex objects were released from

different points on the manifold and resulting trajectories

were obtained using the tracking system.

VI. CONCLUSIONS AND FUTURE WORK

By using a well defined 2PBVP with researched dynamics,

task constraints and objectives, a motion planning algorithm

for nonprehensile throw has been presented. It was shown

that the goal definition leads to different types of constraint

manifolds. Therefore, the proposed method takes advantage

of task redundancy. An objective function consisting of

components responsible for robustness of task execution

chooses a single 6-dimensional point on this manifold.

This method can be generalized to the other multiple

contact tasks with a flat end-effector that deal with slipping

0

0.1

0.2

0.3

0.4

xdes ydes φdes Vx,des Vy,des
ωdes

Fig. 13: The object state error from the desired 6-dimensional goal. In all
the experiments states are taken in the vicinity of fixed xdes. The central red
line is the median, the edges of the box are the 25th and 75th percentiles.

(a) th = 0 s (b) 0.25 s (c) 0.5 s

(d) 0.75 s (e) 1 s (f) 1.25 s

(g) 1.5 s (h) 1.75 s (i) 2 s

Fig. 14: Frames of the throwing experiment.

and rolling. The future work will focus on the multiple

objects nonprehensile manipulation including robot-robot

cooperation, task synchronization and online action planning.
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