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Abstract— Autonomous vehicles operating in real-world in-
dustrial environments have to overcome numerous challenges,
chief among which are the creation of consistent 3D world
models and the simultaneous tracking of the vehicle pose with
respect to the created maps. In this paper we integrate two re-
cently proposed algorithms in an online, near-realtime mapping
and tracking system. Using the Normal Distributions Transform
(NDT), a sparse Gaussian Mixture Model, for representation of
3D range scan data, we propose a frame-to-model registration
and data fusion algorithm — NDT Fusion. The proposed
approach uses a submap indexing system to achieve operation
in arbitrarily-sized environments. The approach is evaluated on
a publicly available city-block sized data set, achieving accuracy
and runtime performance significantly better than current state
of the art. In addition, the system is evaluated on a data set
covering ten hours of operation and a trajectory of 7.2km
in a real-world industrial environment, achieving centimeter
accuracy at update rates of 5-10 Hz.

I. INTRODUCTION

In recent years, an increasingly large number of complex
autonomous vehicles have been deployed in industrial en-
vironments. In order to operate successfully and efficiently,
such vehicles need to be capable of determining their position
and orientation with respect to the factory environment in
a reliable, repeatable and accurate manner. This need has
resulted in a large number of Automated Guided Vehicle
(AGV) systems, which rely on additional infrastructure in-
stalled in the operational environment. While such systems
operate reliably, there are several drawbacks: physically in-
stalling the reference beacons is time consuming and costly,
modifies the environment and constrains vehicle operation
to specific areas. Using alternative, map-based localization
approaches is thus an important direction of development
for future automated industrial vehicles.

The problem of map-based localization is well researched
in the scientific community and offers a solid base for the
next generation of industrial AGV systems. Simultaneous
Localization and Mapping (SLAM) systems have matured
to a state in which two-dimensional maps are ubiquitous in
robotic research but have not yet gained acceptance in indus-
trial systems. With the increasingly widespread availability
of 3D range sensors and the deployment of AGV systems in
more challenging scenarios, the development of accurate and
reliable 3D mapping and localization algorithms is rapidly
becoming an important industrially relevant research topic.

SLAM in large-scale three-dimensional industrial environ-
ments is a challenging problem in many respects. Vehicles
may move at high speeds and cover long distances in diverse
and large-scale environments, ranging from storage halls,

through production areas, mining or construction sites. In
addition, these environments are highly dynamic, featuring
both slow changes when various goods are delivered for
storage or towed away, as well as fast changes induced
by numerous other moving vehicles. Thus, an industrially
relevant 3D SLAM system needs to be capable of reliable
performance in an environment with varying amount of
dynamic events over long periods of time.

In this work we propose a mapping and tracking system1

that aims at addressing the challenges of 3D mapping in
industrial environments. We build upon the recently proposed
Normal Distributions Transform Occupancy Map (NDT-
OM) [1] representation to produce consistent maps in dy-
namic environments at real-time update rates. We propose
to track the vehicle pose using a frame-to-model registra-
tion approach, based on the recent NDT Distribution-to-
Distribution registration algorithm [2] and iteratively fuse
the sensor data into the NDT-OM map. Using a submap
indexing approach the system is capable of representing
large scale environments, with combined registration and
fusion update times ranging between 100 milliseconds and 2
seconds, depending on configuration parameters, the sensor
used and the environment. The proposed system is evaluated
on a large-scale public data set [3] from a city-block sized
environment, yielding absolute trajectory errors (ATE) as low
as 1.7 meters over a 1.5 kilometer trajectory. In addition,
a ten-hour long data set from a real world deployment of
an AGV in a milk production facility is used to evaluate
the system, resulting in ATEs of under ten centimeters and
update rates of about 5-10Hz.

In the rest of this article we first review the relevant
contributions in the area of SLAM and overview the NDT-
OM and NDT-D2D algorithms. Next, Section III describes
the proposed mapping and tracking approach. Section IV
presents the evaluation metrics and data sets used, before
proceeding to analyze the system performance. Finally, sec-
tion V conclude with a summary of the key findings and
discussion of limitations and future work.

II. BACKGROUND

A. Mapping and Tracking Systems

Simultaneous Localization and Mapping is one of the
most prolific research areas in robotics and a comprehensive
overview of the field is beyond the scope of this work.

1source code available at http://code.google.com/p/
oru-ros-pkg
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Instead, we briefly summarize some key contributions in two
sub-classes of SLAM approaches relevant to this work.

Maximum-likelihood SLAM algorithms [4] take a simple
two step approach to SLAM — first, the most likely range
sensor pose is determined and then the information is fused
into the map. While this class of approaches has been largely
outperformed by more sophisticated recent algorithms, they
offer a simple strategy to achieve locally consistent mapping.
The obvious drawback of ML SLAM algorithms is that they
do not handle loop closures and thus are not capable of
correcting the accumulated pose error, resulting in a possibly
unbounded divergence from the true trajectory. Nevertheless,
this type of approaches have recently been re-examined by
the scientific community, with prominent works such as the
Kinect Fusion algorithm [5] producing impressive tracking
performance in small-scale environments. In this work we
refer to this type of SLAM approaches as “Mapping and
Tracking”, to distinguish them from globally consistent loop-
closure SLAM. The approach proposed in this work falls in
this category of mapping algorithms.

The second relevant class of SLAM systems also follow
a two step approach: first, the sensor data is used to extract
constraints on the vehicle motion, and then those constraints
are used to minimize the global trajectory error. The first step
is often referred to as the front-end and is performed using
registration algorithms, such as ICP [6], [7], Generalized ICP
(GICP) [8] or NDT registration [9], [2]. The second step —
or back-end of the SLAM system, performs the trajectory
optimization and is often based on pose graphs [10], [11]. In
order to over-constrain the optimization problem, a method
for explicitly detecting loop closures [12], [13] in an au-
tomatic fashion is also required. Fusing together all of the
above components of a SLAM system can be a challenging
task, with many free parameters. In order to avoid com-
parisons against a sub-optimally configured baseline SLAM
approach, in this work we compare directly against results
previously reported by the scientific community [14], [15]
on a challenging standardized data set [3].

B. NDT-OM

The Normal Distributions Transform was originally devel-
oped in the context of 2D laser scan registration [16]. The
central idea is to represent the observed range points using
a set of Gaussian probability distributions. The application
of NDT to the problem of 3D range data registration is
discussed in more detail in the next subsection. In the
context of the system presented in this work, it is impor-
tant to first summarize the general properties of the NDT
representation and the recently proposed NDT Occupancy
Map [1] extension. Given a point set, its NDT model is
created by discretising space using a regular grid and fitting
a Gaussian probability density function N = {Ci,µi} to the
samples in each voxel (the data points used in estimating the
Gaussian pdf are then discarded). This formulation of NDT is
feasible when modeling a single point cloud, but has several
shortcomings — it does not explicitly model free space and
cannot be used in an incremental fashion. The NDT-OM

mapping approach [1], used also in this work, improves
on the process by additionally tracking the probability of
occupancy of each cell, the consistency of each Gaussian
distribution and offering efficient incremental update proce-
dures, maintaining numerical stability over an unbounded
number of update range points. The NDT-OM approach
assumes point clouds collected by a mobile range sensor and
provides incremental, viewpoint- and dynamics-aware model
updates. The approach has been demonstrated to produce
consistent maps in the context of mapping with known poses
in large scale dynamic industrial environments [1].

C. NDT-D2D

Magnusson et al. [9] applied the NDT representation to
the domain of 3D scan registration. The central idea in their
approach is to maximize the likelihood of points from one
range scan, given the NDT model created from a previously
known reference 3D scan. In a recent work Stoyanov et
al. [2] propose an extension of the registration approach
which operates solely on NDT models. The algorithm —
NDT Distribution-to-Distribution (D2D) — minimizes the
sum of L2 distances between pairs of Gaussian distributions
in two NDT models. Formally, the transformation between
two point sets M and F is found by minimizing:

f(p) =

nM,nF∑
i=1,j=i

−d1 exp
(
−d2

2
µij

T (RTCiR+ Cj)
−1µij

)
(1)

over the transformation parameters p, where: nM and nF
are the number of Gaussian components in the NDT models
of M and F ; R and t are the rotation and translation
components of p; µi, Ci are the mean and covariance of each
Gaussian component; µij = Rµi+t−µj is the transformed
mean vector distance; and d1, d2 are regularization factors
(fixed values of d1 = 1 and d2 = 0.05 were used). The
optimization over p can be done efficiently using Newton
method optimization with analytically computed derivatives.
The NDT-D2D approach was chosen for use in this work, as
it was shown to yield state of the art registration results at
competitive runtimes and operates using only NDT models.

III. NDT-OM MAPPING AND TRACKING

The algorithm presented and evaluated in this work makes
direct use of the two previously discussed techniques: NDT-
OM for map modeling and NDT-D2D for frame-to-model
registration. As an initial step, the first sensor range scan is
directly inserted in the map, using the standard NDT-OM
update step. The initial pose of the vehicle p0 is then taken
as the reference point for building the full map. In order to
facilitate the subsequent evaluation, we set the initial vehicle
pose to the known initial ground truth vehicle position and
orientation, obtaining the same coordinate system for the
estimated and ground truth trajectories. For each subsequent
range scan, we iterate between two steps - track and fuse.

The track step of the algorithm performs an NDT-D2D
registration between the acquired range scan Pi and the
map MNDT−OM . First, a local NDT map is created by
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inserting the point cloud Pi into a sensor-centric regular grid
of the same spatial resolution as the map and computing
the sample mean and covariance in each cell. The obtained
local NDT model MNDT (Pi) is then offset to an initial
guess pose, obtained using the previous estimated vehicle
pose and the available on-board ego-motion sensors (IMU,
odometry, etc.). Finally, the NDT-D2D algorithm is used to
align the local model MNDT (Pi) to all the consistently
occupied distributions from the global model MNDT−OM .
As described in [1], selecting only the consistently occupied
distributions from the global map reduces the effect of
dynamic entities and thus improves the reliability of the
registration procedure.

The registration algorithm used in the track step has been
slightly modified from the original algorithm [2], to suit
the needs of the proposed system. Unlike the original D2D
registration algorithm, at this stage we only perform regis-
tration at the map resolution, without employing a coarse-to-
fine iteration strategy. This reduces the registration runtime,
but sacrifices on the convergence basin of the algorithm
and makes a good initial guess more important. Finally,
the original registration algorithm presented in [2] makes
an approximation when evaluating Eq.(1) — namely, the
double sum is only evaluated for pairs of closest neighbors
from the two NDT models (a one-to-one data association
strategy). In the current implementation we use a more
accurate one-to-many approximation by associating a fixed
size neighborhood F (Ni) = {Nj ∈ MNDT−OM} for each
distribution Ni from the reference scan. We then evaluate
and sum all the L2 distances between Ni and each Nj .

Once the tracking step has converged to a candidate pose,
the new point cloud is inserted in the NDT-OM. This step
involves another local map creation, this time while keeping
the local and global grids aligned in order to avoid discretisa-
tion effects. The local NDT cells are then used to recursively
update the distributions in the NDT-OM, while the sensor
pose in the global map is used in a ray-tracing step to update
the map occupancy. This approach would already produce
good tracking performance in smaller-scale environments,
but runs into memory size limitations as the size of the
mapped area grows. In order to relax the assumption of an
environment of limited size, we use a submap-based indexing
procedure for the global map MNDT−OM .

Fig. 1 illustrates the proposed submap tiling approach.
Instead of maintaining one big map, we use at all times an
active grid of three by three smaller size submaps. Raytracing
and distribution update are then accomplished by tracking
through multiple submaps. As long as the sensor range (blue
circles in Fig. 1) is not larger than the submap size, data is
not lost and this approach results in maps identical to a single
large map. As the vehicle moves through the environment,
the estimated pose may move out of the central submap (such
cases occur at the red crosses in Fig. 1). When this happens, a
new grid center is set and the set of currently active submaps
(thick black square in Fig. 1) changes. Submaps that no
longer fall in the currently active grid are then saved to
disk, while the newly active submaps are either re-loaded

sensor range

previous grids

center grid

vehicle position

grid switching 
point

local map size

Fig. 1. Illustration of the submap tiling approach. The vehicle (red
rectangle) tracks a path through the environment. The grids are allocated
in a vehicle-aligned coordinate frame. As the estimated sensor pose moves
into the next submap, the grid center switches and old maps (yellow shaded
tiles) are saved to disk. New maps are loaded or allocated to keep the
grid balanced. A local NDT map is created at each step in a sensor-centric
coordinate system, as indicated by the dashed blue line square.

from disk or freshly allocated in cases when the area has
not been explored previously. This approach may induce
time penalties for map loading and saving, but the effects
can be minimized with double buffering and asynchronous
read/writes. In this work, we adopt a naive direct saving and
loading approach and the extra times are factored into the
average update times reported.

Several parameters can be used to influence the accuracy
and runtime performance of the proposed mapping and track-
ing approach. A first important parameter is naturally the cell
size of the regular grids used. As shown previously [17],
the resolution can affect the accuracy of representation and
should be chosen with respect to the sensor data point
density. We note however, that the resolutions used by NDT-
OM are much larger than typical occupancy map resolutions,
as the estimated distributions inside each cell provide an
additional representation flexibility. A second important pa-
rameter is the size of the local NDT maps used in registration
and fusion of new data (illustrated as a blue square in
Fig. 1). This size provides an effective sensor cutoff range —
measurements that fall outside the local maps are not used in
registration or data fusion. Finally, the size of each submap
tile governs the extent of the currently visible map and
influences registration and fusion runtimes and accuracy. In
the subsequent evaluation we will analyze the performance of
the proposed approach when varying these three parameters
— cell size (or map resolution), local NDT map size (or
sensor cutoff) and submap size.

IV. EVALUATION AND RESULTS

A. Data Sets

The proposed algorithm is evaluated on two challenging
large-scale data sets. The first data set [3] was collected
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Fig. 2. Combined absolute trajectory error and runtime plots for different parameters of the mapping and tracking algorithm in the FORD data set. Sensor
cutoff ranges of 70 meters (2(a)), 100 meters (2(b)) and 150 meters(2(c))

by a car equipped with a Velodyne HDL-64E lidar scanner,
driving a 1.6km trajectory in downtown Dearborn, Michigan
USA. The vehicle was equipped with several additional
sensors, of which we use two — an Xsens MTi-G IMU for
providing an initial guess and an Applanix POS-LV 420 INS
for ground truth comparison. The vehicle drives at speeds
of up to 15 m/s and provides laser measurements and pose
estimates at 10Hz and 100Hz respectively. In the subsequent
evaluation, we refer to this data set as the FORD data set.

The second data set is collected by an AGV deployed
in a milk production facility located in southern Sweden.
The data was collected on top of an AGV in production use
and consists of Velodyne HDL-32 measurements at 10Hz
together with localization data from the commercial reflector-
based navigation system and the on-board odometry at 15Hz.
The full data set consists of 10 hours of operation and a total
of 7.2km of vehicle track at speeds of up to 2.5m/s. We use a
representative 10 minute sample run with a trajectory length
of 245 meters in the initial evaluation and then select two
parameter configurations for a full 10 hour run test. We refer
to this data set as the FACTORY data set. Both the data sets
feature many dynamic entities — other vehicles, pedestrians,
and moving goods; thus providing a challenging mapping in
dynamic environments test case.

In order to evaluate the quality of the obtained estimated
sensor trajectories, we compute the absolute trajectory error
measure as described in [18]. In essence, the two trajectories
are first aligned and then the difference in the 3D pose
estimates of corresponding nodes in the two trajectories is
computed. We report mean values and standard deviation
for the ATE, instead of the relative pose errors as ATE is
more suitable for evaluating the overall consistency of the
global trajectories. In addition, for the FORD data set we
compute the final position offset from ground truth, in order
to compare to previously reported results.

B. Tracking from a Moving Car (FORD data set)

Fig. 2(a)-2(c) show the ATE and runtime plots for dif-
ferent configurations of the proposed mapping and tracking
algorithm. Each figure shows the mean ATE and standard

deviation at three distinct map resolutions - 1, 1.5 and 2
meters. These resolutions were selected as suitable, due to the
nature of the available lidar data — namely, sparse samples
with high distances from the sensor origin. Each figure also
shows the average runtimes for the combined registration and
map update cycle, obtained on two cores of a system with
an Intel(R) Core(TM) i7-3770K CPU @ 3.50GHz processor
and 16GB of memory. Fig. 2(a) shows the performance of
the algorithm when a local NDT map of 70x70 meters is
used for registration and fusion, at three different submap
tile sizes — 50, 60 and 70 meters. Evidently, the estimated
trajectory diverges from the ground truth at bigger cell sizes.
The only case in which tracking is maintained reasonably
is at 1m cell sizes, resulting in mean errors of 6-8 meters.
This behavior can be explained by the fact that in some
portions of the data set few features are available in the local
70 meter map and, in this range, the large cell sizes don’t
offer enough expressive representation to maintain tracking.
Fig. 2(b) shows considerably more stable performance at
100 meter sensor cutoff across all tested submap sizes and
resolutions. Finally, the most accurate and most stable results
are obtained when the sensor cut-off is set to 150 meters,
thus using almost all of the available sensor readings for
registration and map update. Fig. 2(c) shows the tracking
performance in this case, at a notably different error scale —
all mean ATEs remain below 5 meters, with best performance
achieved at 1.5m grid size and 100m submap size — 1.7
meters mean ATE.

At an initial glance, the reported errors might seem larger
than expected. Some understanding in the nature of the
tracking performance and an explanation of these errors can
be gained by examining the actual estimated trajectories.
Fig. 3 shows some example reconstructed NDT-OM maps, as
well as a comparison of two of the estimated trajectories to
the ground truth. From these representative trajectory plots,
we can conclude that there is a systematic drift on the z
component of the pose, which results in significant ATEs.
In some cases (for example, the best performance trajectory
with 1.5m grid and 100m submap), the tracked pose re-
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Fig. 3. Mapping and Tracking results on the FORD data set. Left: Maps produced by the system while tracking a) top view, b) zoomed view of the
start of the trajectory c) overview. The ellipsoids represent height-coded scaled covariance matrices in each map cell from a map at 1 m resolution. Right
column: trajectory plots, at the top x-y trajectory for the 100 and 150m cutoff settings, bottom estimated z position over time. Note the zoomed in detail
and the re-entry into previously mapped area.

enters the starting area with a sufficiently small z-component
error in order to re-localize with respect to the first submaps
and successfully close the trajectory loop. Although the z
component exhibits a significant drift, the results are largely
locally consistent with the ground truth. According to the
specifications of the Applanix INS sensor used for recording
the ground truth trajectory, an RMS error of 0.5 meters on
the z component can be expected. Other possible sources
of error include a sensor-to-vehicle pose miscalibration and
intrinsic calibration issues for the Velodyne lidar.

Finally, we compare the obtained results to the perfor-
mance on the same data set reported by two previously
published articles — by Pandey et al. [14] and Tamjidi and
Ye [15]. In the first article, Pandey et al. introduce a method
to use in addition camera images in order to bootstrap
Generalized ICP (GICP). They obtain good frame-to-frame
registration accuracy and use the estimates as constraints in
an iSAM [10] graph SLAM optimization framework. Unfor-
tunately, the authors do not report any performance measures
on the obtained trajectories, other than visually comparing
them to the ground truth (with a 2D projection overlaid on
satellite images). The results look qualitatively similar to the
ones shown in Fig. 3. Tamjidi and Ye [15] also propose to
use fused lidar and camera data for a visual-feature based
tracking system. They use the correspondence results in a
similar fashion to Pandey et al. and obtain globally optimized
pose trajectories using iSAM. The authors also report a
comparison to an open loop GICP track and a combined
GICP and iSAM result. The authors report the error to
ground truth only for the final trajectory position — 16.75
meters for GICP, 26.59 meters for the globally optimized
GICP trajectory and 27.93 meters for the proposed system.
We compare these values to the final position error obtained

TABLE I
FORD: FINAL POSITION ERROR, 100M SUBMAP

Sensor Cutoff 1m cell 1.5m cell 2m cell
100m 8.396m 15.576m 14.992m
150m 3.623m 1.498m 7.061m

for several selected NDT-OM parameter configurations in
Table I. The final position error is significantly lower for
the approach proposed here, with a best-case performance
of 1.49 meters. Lastly, we note that the average runtime for
the combined tracking and map update step for our system in
the configurations tested on this data set is consistently below
2 seconds, compared to an average runtime of 22 seconds
reported for the GICP registration algorithm [15].

C. Operation in Industrial Environments(FACTORY data set)

In this subsection we evaluate the performance of the
proposed mapping and tracking system in a real-world in-
dustrial scenario. Fig. 4(a)-4(f) show the absolute trajectory
errors and runtimes for the system, under different parameter
configurations. For this data set, we test at grid resolutions of
0.2, 0.4, 0.6, 1 and 1.5 meters. The resolutions are lower than
the ones used for the FORD data set, due to the significantly
reduced environment size and the higher average sample
point density. We test three different submap tile sizes — 30,
40 and 50 meters; at three different sensor cutoff ranges —
30 meters in Fig. 4(a) and 4(d), 50 meters in 4(b) and 4(e),
and 70 meters in Fig. 4(c) and 4(f). In addition to testing
the presented 3D tracking system, we also perform a test
under a flat floor assumption by constraining the registration
transformation search to a plane.

The results for the full 3D tracking system in Fig. 4(a)-
4(c) show a clearly identifiable increase in accuracy as
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Fig. 4. Combined absolute trajectory error and runtime plots for different parameters of the mapping and tracking algorithm in the FACTORY data set.
Fig. 4(a)-4(c): sensor range cutoffs of 30, 50 and 70 meters. Fig. 4(d)-4(f): results using registration constrained to a flat floor assumption.

the sensor range cutoff increases. This mirrors the trend
in the FORD data set, suggesting that far-range data is
important for obtaining good tracking performance and that
limiting the local maps for registration and fusion is not
desirable. A second important observation is that the update
runtime decreases significantly for larger cell sizes, while the
accuracy of the approach deteriorates only slightly. When
using the full 70 meter sensor data (Fig. 4(c)) the ATE
remains below 30 cm even for cell sizes of 1.5 meters.
We found the best performance trade-off in this environment
between 0.4 and 0.6 meter cell sizes, resulting in ATEs under
10 cm with update times of about 350ms. Finally, we note
that the performance is relatively unaffected by the size of the
submap tiles, and in fact seems compatible with a reference
monolithic map implementation (labeled no “submaps” in the
figures). Fig. 4(d)-4(f) show the corresponding results when
using the 2D registration approximation. The results follow a
similar pattern as in the 3D case, with accuracy deteriorating
slightly faster at larger cell sizes, but at notably faster run
times. Again, the best performance is obtained at resolutions
about 0.4-0.6 meters and sensor range cutoff of 70 meters
— accuracy of about 10-15 cm at runtimes of about 150 ms.

Based on the previously discussed results, we select two

TABLE II
FACTORY: ABSOLUTE TRAJECTORY ERROR IN 10 HOUR RUN

Method ATE (m) σ(ATE) (m)
No Submaps 0.1043 0.0627
2D Registration 0.0761 0.0534
3D Registration 0.0704 0.0348

parameter configurations — one for 2D and one for 3D
tracking and evaluate the system performance on the full
FACTORY data set. Snapshots from the obtained NDT-OM
maps, as well as a sample full data set trajectory are shown
in Fig. 5. The absolute trajectory errors obtained over the full
10 hours of vehicle operation are shown in Table II. The final
ATE for a reference no-submap implementation operating on
a 150x150 meter map at 0.4m resolution is 10 cm over the
full 7.2 km trajectory. When using 40x40 meter tiles at 0.4
m resolution and 70 meter sensor range, we obtain ATEs of
7.6 and 7 cm for the 2D and 3D registration respectively.
The slightly better performance of the 3D tracking variation
is likely due to a light slope on the factory floor, which can
be identified in the final 3D registered map. The obtained
trajectory precision is on par with that of the commercial
reflector-based localization system, which has an accuracy
in the range of 1-10 cm. Thus, the proposed mapping
and tracking approach is capable of repeatably obtaining
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Fig. 5. Mapping and tracking results on the FACTORY data set. Left: maps obtained by the algorithm during operation — a) product delivery part of
the facility, b) zoom-in on the production area and c) top-level view from the middle of the vehicle trajectory. The ellipsoids represent height-coded scaled
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accurate pose estimates over long periods of time in a highly
challenging dynamic real-world production environment.

V. SUMMARY AND DISCUSSION

This article proposed a mapping and tracking approach,
based on two recent algorithms — NDT-D2D registration and
NDT-OM map building. We use a simple two step maximum-
likelihood approach by registering each new measurement to
the current map and then updating the model. By leveraging
the accuracy and stability of the NDT-OM representation,
we are able to maintain accurate tracking performance in
large scale dynamic industrial environments. We evaluated
the proposed approach on two data sets from different large-
scale environments and obtain accuracy and update rates an
order of magnitude better than previously reported.

Although the results obtained in the industrial environment
are very accurate, the evaluation in the larger city-scale
data set strongly suggests that some drift can accumulate
over longer trajectories. This is a clear limitation due to the
maximum-likelihood SLAM approach used in this work. In
order to address this limitation and provide loop closing ca-
pabilities, the natural future work direction for the proposed
approach is to incorporate the obtained submaps in a hybrid
metric-topological framework, similar to the work proposed
by Blanco et al. [19], and implement loop closing and error
relaxation procedures.
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[19] J.-L. Blanco, J. González-Jiménez, and J.-A. Fernández-Madrigal,
“Subjective Local Maps for Hybrid Metric-Topological SLAM,”
Robotics and Autonomous Systems, vol. 57, no. 1, pp. 64–74, 2009.

4708


