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Abstract— This paper considers motion planning and control
problems that are motivated by the design of tethered, extreme
terrain robots. We abstract the mobility structure of these
systems using a tethered differential drive robot with rimless
wheels. We analyze several important issues related to this
geometry. First it is shown that this vehicle cannot be modeled
deterministically unless an additional degree of freedom relative
to the standard differential drive vehicle is provided. The
simplest kinematically consistent model is one that allows
for slight prismatic motion of the axle, approximating the
effects of wheel slip. We show that under mild assumptions,
such a vehicle’s reachable set is dense in SE(2), implying
local maneuverability. Next we study some of the constraints
which the tether places on the vehicle’s motions and derive
scaling laws relating wheel and vehicle speeds. Using these
results, we provide simple planning and approximate path-
following methods that allow tether management. In particular,
we consider trajectories produced by solving an optimal control
problem to minimize the integral of absolute tether-reeling rate.

I. INTRODUCTION

Background. Some of the highest value sites for future
planetary exploration lie in extreme terrain that cannot be
accessed by flight-ready planetary rovers such as Spirit,
Odyssey [1], and Curiosity [2]. Examples of such sites
include geological flows on the sides of martian craters [3],
and cold traps which may harbor water-ice in permanently
shadowed craters on Earth’s Moon [4] . These sites are
characterized by steep or verticle slopes, highly rocky terrain,
and loose debris.

A number of prototype robotic vehicles have been devel-
oped in order to address the challenges of reliable access to
steep terrains (e.g. [5]–[9]). We are motivated in particular by
the design of the Axel rover of Figure 1, developed at The Jet
Propulsion Laboratory in collaboration with the California
Institute of Technology. Axel is a rover with two grouser
wheels and a tether fed through a caster arm. The caster arm
can rotate about the body to change the tether’s angle of
attachment (see [10] for details).

While these vehicles are designed to handle extreme
terrain, it is also true that they will need to traverse stretches
of open ground while accessing the lips of craters and cliffs,
or while operating on the bottom of gulleys and volcanoes.
What are the effects of grouser or cleated wheels on the
movement of these vehicles– do they have the local con-
trollability needed for precise positioning of scientific instru-
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Fig. 1: Axel: An Extreme Terrain Vehicle with Rimless
Wheels and a Tether

ments? The use of a tether places a number of restrictions on
motion. For example, Axel’s on-board winch motor is highly
geared to provide a large margin of safety during ascent and
descent. While this allows large tether forces to be generated,
it also implies that the rate at which the tether can be reeled
in or payed out on flat ground is very limited. Which vehicle
motions are possible or desirable under strong limits of the
tether’s motion? This paper addresses these broad problems
by modeling the tethered rover as a differential drive robot
with rimless wheels. Since it is very likely that many future
robots designed for extreme terrain will use tethers and
grouser-like wheels, the methods developed in this paper may
find application in other robot systems.

Relation to Prior Work. Control of wheeled vehicles on
flat ground is a well studied subject. Shortest paths for a
number of bounded-input car-like vehicles were obtained
in [11]–[13]. A great deal of work (e.g. [14]–[16]) has
addressed the problem of motion planning for non-holonomic
wheeled vehicles. Differential drive vehicles are a popular
wheeled-robot configuration, and minimum time [17] as well
as minimum wheel rotation [18] paths have been found.
However, the interaction of grouser-wheels with the terrain
cannot be modeled by a classical nonholonomic wheel con-
straint. Moreover, none of these earlier works incorporated
the impact of a tether on the optimality or desirability of
specific paths.

The rimless wheel model has been used in a number of
human locomotion and biomechanics studies. McGeer [19]
introduced the paradigm of human locomotion as a natu-
rally occurring, ‘passive’ motion for a class of mechanical
systems, and many works built upon his initial investigation
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[20], [21]. These works consider dynamic stability and limit
cycles for various ‘gaits’ or speeds of the rimless wheel, and
corresponding impacts and energetics in an effort to find the
salient characteristics of bipedal locomotion. The modeling
and tracking results presented in this paper complement these
earlier efforts.

Organization of the Paper. Section II develops a
kinematic model for a rimless differential drive vehicle and
shows that without at least one more degree of freedom
than the standard differential drive vehicle, its motion is
inconsistent. We provide control a methodology with a
number of desirable characteristics in III, and prove that the
vehicle can come arbitrarily close to any goal in SE(2). In
IV, motivated by the use of a tether, we show that given a
path that can be tracked by piecewise constant inputs, we can
select inputs so as to track this path at arbitrary speed. In V
we provide planning algorithms for point-to-point motions
as well as approximate path following, and tether reeling
schedules to accommodate motion in both cases. Simulated
experiments and their results are given in VI and the article
concludes with VII.

II. MODELING

Rovers designed for rough terrain have wheels without
smooth, circular perimeters. Instead they often have grooves,
points and sharp edges in order to facilitate traction and climb
over rocks (often called grouser or cleated wheels). This class
of wheels is approximated by the ‘Rimless Wheel’ shown in
Figure 2.
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Fig. 2: A Rimless Wheel in 2D

We consider motion on hard ground. Suppose the wheel
has n spokes that are uniformly spaced around the perimeter
of the circular hub. Then

Vc = Va + ω × rac (1)

where Vc is the contact point velocity, Va is the wheel’s
center of mass velocity, ω is the wheel’s angular velocity
and rac is the vector from the wheel’s center to the contact
point. Denote the angle between the vertical and the contact
point by γ. Let ψ denote the angle that a fixed reference
point (e.g. a spoke) on the wheel makes with the vertical.
By inspection, notice that

γ(t) =
(
ψ(t)− π

n

)
mod

2π

n
− π

n

so that
rac(t) =

(
−ρ sin γ(t)
ρ cos γ(t)

)
where ρ is the wheel radius. Assuming that the contact does
not slip (i.e. Vc = 0),

Va =

(
ẋa
ẏa

)
=

(
ωρ cos γ(t)
ωρ sin γ(t)

)
(2)

Evolving (2) in time with constant angular velocity results
in the motion of Figure 3.
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Fig. 3: 2D Rimless Wheel Motion

Proposition 1: A differential drive vehicle with rimless
wheels cannot execute a turn without slipping.

In other words, if both wheels of a standard differential
drive vehicle are replaced with rimless wheels, one or both
of its wheels must slide to accommodate turning. Before
proving this proposition, we first pursue a modification that
allows us to uniquely determine motion and approximate the
effect of slip.
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Fig. 4: Coordinate Systems for the Rimless Differential Drive
Vehicle. Left: Bird’s eye view. Right: View from behind the
vehicle.

To ensure consistency of the kinematic description of the
vehicle that arises from the no-slip assumption, we endow
the robot with an additional degree of freedom: the distance
between the wheels is allowed to vary. This is represented
by the addition of a prismatic joint on the axle (figure 4).
The modified robot’s state is then given by

(x, y, z, b, θ, φ) ∈ R4 × S1 × S1

where z is positive out of the page, b is the distance between
wheel centers, and φ is the roll angle (positive about the
direction xB).1

1The reader may worry that b may take unreasonably
large or small values. For any realistic choice of ρ and
initial condition b(0), the maximum range of b is exactly[√

1/4(
√

3− 2)ρ2 + b2(0),
√
b(0)2 + 1/4(2−

√
3)ρ2

]
. In the case of

Axel, this means that the wheel span (2.1 m) will deviate from reality by
about 1 cm in the worst case.
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Vehicle motions are obtained by enforcing no-slip con-
straints (1) at the spokes’ contacts with the ground. After
some algebra, we get a set of first order differential equations
that govern the vehicle’s motion as a function of wheel rates

ẋ =
ρ

2
[cosA(φ̇ cosφ sin θ + cosθ(θ̇ sinφ− ω1))+

cosB(φ̇ cosφ sin θ + cos θ(ω2 + θ̇ sinφ))+

sin θ(sinA(θ̇ − ω1 sinφ)− sinB(θ̇ + ω2 sinφ))]

ẏ =
ρ

2
[− cosA(φ̇ cos θ cosφ+ sin θ(ω1 − θ̇ sinφ))+

cos B(−φ̇ cos θ cosφ+ sin θ(ω2 + θ̇ sinφ))+

cos θ(sinA(ω1 sinφ− θ̇) + sinB(θ̇ + ω2 sinφ))]

ż = −ρ
2
[cosφ(ω1 sinA+ ω2 sinB) + φ̇(cosA+ cosB) sinφ]

θ̇ =
ρ(ω1 cosA+ ω2 cosB)

ρ(cosA− cosB) sinφ− 2b cosφ

φ̇ =
ρ cosφ(ω1 sinA− ω2 sinB)− 2ḃ sinφ

2b cosφ+ ρ(cosB − cosA) sinφ

ḃ =
−(ω1 + ω2)ρ

2 sin(A+B)

4b

where

A =

(∫ t

0

ω1dt+A0 +
π

n

)
mod

2π

n
− π

n
(3)

B =

(∫ t

0

ω2dt+B0 +
π

n

)
mod

2π

n
− π

n
(4)

and A0, B0 are the initial values of A and B respectively.
Now we prove proposition 1.

Proof: Notice that the vehicle turns when θ̇ 6= 0,
and this happens if and only if ω1 6= −ω2. The kinematic
model of the vehicle without the additional prismatic joint
is obtained by making b a constant. When this degree of
freedom is removed, one finds that the velocities of the
contact points are

Vc1 =
ρ2(ω1 + ω2) sin(A+B)

4b cosφ+ 2ρ(cosB − cosA) sinφ

− sin θ
cos θ

0


Vc2 =

ρ2(ω1 + ω2) sin(A+B)

4b cosφ+ 2ρ(cosB − cosA) sinφ

 sin θ
− cos θ

0

 .

These velocities are well defined, as the denominators are
non-zero for any configuration, since φ ∈ [0, π2 ) is close
to zero and far from π

2 . Observe that when ω1 6= −ω2, the
contact points cannot be stationary — sin θ and cos θ cannot
both be zero, and sin(A+B) is zero only on a set of measure
zero (i.e. for at most countably many instants during any
interval of time) regardless of A0, B0.

III. REACHABILITY ANALYSIS

While operating in harsh conditions, it is important to min-
imize the possibility of failure. Hence, motion plans should
preferably ensure that the robot starts and stops in a stable
stance, with exactly two spokes of each wheel touching the
ground at symmetric angles from the vertical. Note that the
vehicle will naturally tend toward such configurations when
its actuators are turned off and the wheels are unlocked. This
restriction makes plans less sensitive to wheel angle estimates
and motor position-control performance.

A concern with such a restriction is that it may limit the
configurations which can be reached. For car-like robots,
reachability is usually assessed using Chow’s Theorem,
which says that a system is controllable if and only if
the lie algebra generated by its input vector fields is full
rank (see [13] for details). Unfortunately it cannot be used
here because of the non-smooth nature of the vehicle’s
kinematics.

If the vehicle motions are limited to a countable set of
primitives, the reachable set of states may be considered
as a discrete subset of SE(2). If this set is dense in SE(2)
(i.e. the closure of the reachable set is equal to SE(2)) then
the vehicle can reach any goal configuration with arbitrary
accuracy (for the interested reader, [22] formally presents a
notion of reachability for discretely nonholonomic systems
e.g. rolling polyhedra). We take the topology on SE(2) to be
the product of the standard topologies on R2 and S1.

Theorem 1: The subset of SE(2) that is reachable by the
rimless differential drive vehicle is dense.

Proof: Let n denote the number of spokes on each
wheel. The claim will be proven for n = 12, and the same
method will apply to many other n’s (oddly, this proof is
difficult to generalize with respect to n, but holds for most
n). We also assume that ρ < b(0) and ρ

b(0) ∈ Q.
We need only consider two classes of motion: turning in

place (equal wheel speeds) and stepping forward or backward
(equal and opposite wheel speeds). In both cases the vehicle
is assumed to move from its present stable stance to the
nearest stable stance. The euclidean norm of the change in
position due to stepping forward or backward ∆h is obtained
by noticing that in such motion, the robot resembles a regular
n-polygonal prism (e.g. for n = 12, the robot resembles a
dodecagonal prism). One finds that

∆h = 2ρ sin
π

n

To compute the net displacement due to a turn ∆θ, we
suppose without loss of generality that ω1 = ω2 = 2π

n
(Section IV shows that the path of the robot depends only on
the ratio of wheel rates, and not their magnitudes), so that the
time taken for a turn is one second. To ensure that the initial
and final positions are associated with stable stances, and
that the motion is associated with a single step, we require
that A0 = B0 = −πn in (3) and (4), and that time t ∈ [0, 1].
After integrating to find b as a function of time, θ̇ can be
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integrated to yield

∆θ =

∫ 1

0

θ̇dt = −2 tan−1

(
ρ

b(0)
sin

π

n

)
.

First, we show that the set of reachable configurations is
dense with respect to rotation (i.e. the robot’s heading can be
brought arbitrarily close to any direction) using the following
lemma:

Lemma 1: If θ mod 2π
π ∈ R\Q, then the set {nθ mod 2π :

n ∈ N} is dense in S1 (where S1 = [0, 2π]0∼2π) [23] .
For this lemma to apply, the robot needs to be able to turn

by an irrational angle. One can show that ∆θ is an irrational
angle by using a second lemma:

Lemma 2: [24] Let α = 2mπ
N where m ∈ Z and N ∈ N

have no common factors. Then
i. cosα is an algebraic number.

ii. cosα is an algebraic number of degree d > 1 if and
only if ϕ(N) = 2d.

Here the arithmetic function ϕ(N) : N → N is Euler’s
‘Phi’ or ‘Totient’ function, that specifies the number of
naturals smaller than N that have no factors in common
with N . Q is the set of rational numbers.

Observe that |∆θ| ≤ π
2 since 0 < ρ

b(0) sin π
n ≤ 1 and

tan−1(x) ≤ π
4 for x ∈ [0, 1]. Then, notice that it is totally

equivalent to show that η = − 1
2∆θ satisfies lemma 2, since

a ∈ Q⇔ −a2 ∈ Q. One finds2 that

cos η =
2√

4− ρ2

b(0)2 (
√

3− 2)
.

This is an algebraic number3 with degree d = 4, since its
minimal4 polynomial is

(β4 + 16β2 + 16)x4 − 8(4 + 2β2)x2 + 16 = 0

where β = ρ
b(0) . Now we look to Lemma 2, and consider

the set {N : ϕ(N) = 2d = 8}. Explicitly, this set is

{15, 16, 20, 24, 30}.
The rationals less than 1

4 that have denominators in this set
(after simplification) are

F = { 1

15
,

2

15
,

1

16
,

3

16
,

1

20
,

3

20
,

1

24
,

5

24
,

1

30
,

7

30
}.

Therefore cos η and cos2πf cannot be equal for any f ∈ F
(checked by obtaining exact expressions for the cosines of
these angles, observing that none can be equal to cos η).
Thus, by Lemma 2, η is an irrational multiple of π as is ∆θ.
Using Lemma 1 we conclude that the set of orientations
obtained by rotating in place repeatedly is dense in S1.

To show that we can get arbitrarily close to any desired
position in translation, first suppose that any rotation can be

2Using the fact that cos(tan−1 x) = 1√
1+x2

, and simplifying.
3A number that is the root of a polynomial with rational coefficients.
4Check that the polynomial has cos η as a root by calculation. To see that

it is minimal (i.e. cannot be factored into other polynomials with rational
coefficients), factor the quartic in to a product of 4 linear factors, and realize
that neither any of them individually nor any sub-product with each other
are polynomials with rational coefficients.

Possible Transition Point
Goal Position
Steps Along Connecting Line
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N − 1
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N + 3θ1
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θ2 θ3

Fig. 5: Reaching an Arbitrary Goal by Stepping

achieved exactly, then observe that we can specify a sequence
of motions that take us to any goal as follows (see Figure
5):
• Rotate to θ = θ1, so that the robot is pointed along the

vector from the initial position to the desired position.
• Take a number (N in Figure 5) of steps towards the

goal that ensures that the circle of radius ∆h centered
at this step and the circle of radius ∆h centered at the
goal intersect.

• Rotate to the angle θ = θ2 pointing from the position
at the N th step to an intersection of the two circles
mentioned above.

• Step forward once to reach the intersection point (it does
not matter which one), shown as a red cross.

• Rotate to θ = θ3 so that the robot is pointed at the goal.
• Step forward once to reach the goal.

∆h

d

ζ

x

θ2

y

θ3
θ1

Fig. 6: Geometry of the Last Step

To account for the fact that the robot may not be able to
achieve rotations exactly, suppose that instead of rotating to
θ1, θ2, θ3, it rotates to the erroneous angles θ1 + δ1, θ2 +
δ2, θ3 + δ3. Without loss of generality, suppose the initial
configuration is (0, 0, 0), and that the goal is (x̂, ŷ, θ̂). We
have

x̂

∆h
= N cos θ1 + cos θ2 + cos θ3

ŷ

∆h
= N sin θ1 + sin θ2 + sin θ3

for some N ∈ N, by the above construction. The position
reached due to erroneous rotation is given by

x̃

∆h
= N cos(θ1 + δ1) + cos(θ2 + δ2) + cos(θ3 + δ3)

ỹ

∆h
= N sin(θ1 + δ1) + sin(θ2 + δ2) + sin(θ3 + δ3).

Let the angle between the direction defined by θ1 and the
vector between the N th step and the intersection point be
ζ (refer to Figure 6). Using simple geometry, one finds that
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θ2 = θ1 + ζ and θ3 = θ1 − ζ, where ζ = tan−1 2∆h
d . Then,

the squared position error is

E ,
1

∆h2
[(x̂− x̃)2 + (ŷ − ỹ)2]

= 2(1− cos(δ1))N2 + 2 ([(1− cos δ1)(sin δ2 + sin δ3)

+(cos δ2 − cos δ3) sin δ1] sin ζ

+[(1− cos δ1)(cos δ2 + cos δ3) + (sin δ2 + sin δ3) sin δ1] cos ζ)N

+2(2− (cos δ3 + cos δ2)− 4 cos(ζ +
δ2 − δ3

2
) sin

δ2

2
sin

δ3

2
).

It is clear that E can be made arbitrarily small by bounding
δ1, δ2, δ3. These angles may be made arbitrarily small since
the vehicle’s rotations are dense. Thus, every open set in
the product topology on SE(2) contains a point that can be
reached by the vehicle.

IV. ACCOMMODATING A TETHER

A tether can be useful (and potentially necessary) to oper-
ate on steep terrain. The motor used to spool the tether must
be capable of applying large torques, and as a result it oper-
ates at an accordingly low top speed. Vehicle motions must
be chosen such that the tether is almost taut all the time. One
might think to model this reeling constraint explicitly, and
solve the corresponding time optimal trajectories between
points, but this is analytically intractable and computationally
(very) slow. Instead, we make observations about the motion
generated by constant inputs and plan motions based on these
facts.

Proposition 2: For constant wheel speeds, the standard
differential drive vehicle follows a circle of radius between
0 (turning in place) and ∞ (driving in a straight line). This
circle depends only on the ratio of wheel speeds and initial
conditions

This is easily proved by integrating the kinematics with
constant inputs, and observing that the resulting configura-
tion path is a circle. Notice that for a fixed ratio of wheel
speeds, scaling the speeds does not affect the circle followed.

Proposition 3: Suppose that φ and φ̇ are negligible. Then,
then Proposition 2 holds for the rimless differential drive
vehicle.

This statement likely holds without the assumption, but the
proof is tough due to severe non-linearity in the kinematics.
The assumption though is not a bad one, as φ is small,
particularly as n grows large.

Proof: With the assumptions, the kinematics become
ẋ
ẏ
ż

θ̇

ḃ

 =
ρ

2


− cosA cos θ cosB cos θ
− cosA sin θ cosB sin θ
− sinA − sinB
1
b cosA 1

b cosB
− ρ

2b sin(A+B) − ρ
2b sin(A+B)


(
ω1

ω2

)
.

Without loss of generality, suppose that ω1 = M and ω2 =
αM with M 6= 0, 0 ≤ α ≤ 1. Let A0 = B0 = −πn Let
θ̇M (t) be the rate of change of θ associated with a particular

value of M . Using simple calculus, it can be shown that

θ̇M (t) =
Mρ

2b(t)

(
cos

(
Mt mod

2π

n
− π

n

)
+α cos

(
Mαt mod

2π

n
− π

n

))
=Mθ̇1(t/M).

Integrating with respect to τ = Mt, one finds that θM (t) =
θ1(t/M). Using a similar approach, one can show that
position as a function of time satisfies

xM (t) = x1(t/M)

yM (t) = y1(t/M)

zM (t) = z1(t/M).

That is, the paths of the vehicle for different values of M are
the same provided the time allocated is scaled appropriately
in each case.
Let the distance of the vehicle from the origin (the anchor
point for the tether) be given by r(t). Then

ṙ =
xẋ+ yẏ + zż√
x2 + y2 + z2

.

Corollary 1: For a given path associated with a wheel
speed ratio, scaling the wheel speeds results in the same
scaling of ṙ(t) over the path. More generally, if p is the
distance to an arbitrary point fixed with respect to the robot,
then the same fact holds for ṗ(t).

This means that the rate at which a tether attached any-
where on the robot must be reeled in or out scales with
the wheel speed, provided the ratio of the wheel speeds
remains fixed. This fact implies that a given path generated
by piecewise constant inputs and the reeling rates on that path
are independent — the path can be followed with arbitrarily
low spooling rates.

V. PLANNING, PATH FOLLOWING AND OPTIMAL
CONTROL

We will detail two simple methods for controlling robot
motions. The first provides a means to go from one configu-
ration to another using a set of motion primitives. The second
allows the robot to follow a parametrized path. Applying the
methods, one obtains a schedule of inputs and tether reeling
rates. If, in each of the scenarios, the scaling step is done
carefully, then the resulting piecewise constant rates can be
tracked easily in practice by tuned motor velocity-controllers.

Note that this method works whether the tether is attached
at the origin of the vehicle-fixed frame, or to an appendage
that is fixed with respect to this frame (e.g. held by a caster
arm as is the case with the Axel Rover). The spokes of the
wheels cause the rate of change of distance to the vehicle
(or any point fixed on the vehicle) to change in a jagged
an discontinuous manner. As a result, it is hard to spool the
tether to complement motion exactly.
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A. Paths Between Configurations Using Fixed Primitives

We assume that a set of motion primitives

{Pi | i = 1 . . . N}

are generated using constant wheel speeds (i.e. each primitive
is an arc, a straight line, or a turn in place). For each
primitive, obtain a time parametrization of the trajectory
obtained by applying the primitive at the initial condition

(x, y, z, θ, φ, b)|t=0 = (0, 0, 0, 0, 0, b(0))

We also assume a cost function f : (i, x, y, θ) → R≥0 is
specified, that assigns the cost of using primitive i starting
at (x, y, θ).

Assume that the vehicle starts at the origin, and is required
to reach a point (xg, yg, θg) ∈ SE(2), to an accuracy defined
by a euclidean ball of radius εp centered at (xg, yg) and
the interval of size εθ centered at θg . By Theorem 1, a path
from any starting point in SE(2) to this set exists. Therefore,
dynamic programming (e.g. Dijkstra’s Algorithm) can be
used to obtain the path and the associated primitive sequence
to reach the goal set that minimizes accumulated cost. Once
this path is found, the tether reel rate associated with the
path, R(t) can be found exactly. Then, the speeds and time
allocated to each primitive are scaled to ensure that the reel
motor is not saturated (by Proposition 3, the path taken will
be the same).

In general, the reeling rate as a function of time is not
a pleasant function, so the tether motor is made to slightly
overcompensate vehicle motion as follows: Let Rmax be the
maximum rate that the tether motor can spin at. The range
[−Rmax, Rmax] is quantized to get k tether motor operating
rates, O = {R1, R2 . . . , Rk} where R1 = −Rmax and Rk =
Rmax. Thereafter, the following method is applied to select
reel rates as a function of time
• Discretize time (the resolution of the discretization is a

design parameter).
• For each time t, compute the overcompensatory reel rate

R̄(t) =

{
0 reel rate is zero

min
i∈1,..,k

{Ri|Ri ≥ R(t)} otherwise

In this way, we obtain a schedule of reeling rates and a
sequence of control inputs to go from point to point. After
the motions have been executed, because the reeling schedule
overcompensates, the tether must be reeled slightly until taut
using simple tension feedback.

B. Path Following

Suppose that there is a particular path defined by

σ : [0, α]→ SE(2)

(i.e. for τ ∈ [0, α], σ(τ) = (x(τ), y(τ), θ(τ)) for the vehicle
to follow, such that the parametrization is regular (see [25]
for a definition and background), and such that the derivatives
of the trajectory with respect to the parameter are known (or
can be approximated well using finite differences). Then we

may reparametrize the curve with respect to arc length, an
infinitesimal element of which we define by

ds = dx2 + dy2 + dz2 + db2 + (dθ2 + dφ2)b2.

We want to find piecewise constant inputs to follow the
path approximately, and to do this we exploit Proposition
3. Suppose that the vehicle traverses the path in such a way
that ds

dt is constant. This means

ds

dt
=

(ω2
1 + ω2

2)ρ2[8b2 + ρ2 − ρ2 cos(2(A+B)]

16b2
(5)

= constant.

To make things simpler, ignore the effect of the time-varying
cosine term in (5), which is very small compared to other
terms (it is easily added back in by integration to get motion
as a function of time). We obtain a piecewise constant input
approximation of the path as follows:
• Obtain samples along the path of the derivatives and

values of the vehicle state (with respect to arc length)
• For each sample si and corresponding path and deriva-

tive values, solve for ω1 and ω2 satisfying

(ω2
1 + ω2

2)ρ2[8b2 + ρ2]

16b2
= 1 (6)

ω1 + ω2

2b
=
dθ

ds

∣∣∣∣
si

(7)

so that (
(ω1+ω2)

2 cos(θ(si))
(ω1+ω2)

2 sin(θ(si))

)
·
(
x(si)
y(si)

)
≥ 0. (8)

We require (8) because there are two solutions to the
system of equations given by (6) and (7), and we select
the one with the right local curvature.

• Motion due to these constant inputs is integrated to
obtain R(t) (or R(s)) as in section V-A.

• Wheel speeds (and corresponding allocated times) are
scaled to ensure that the tether reeling motor is not
saturated. This can be a global scaling, whereby all
inputs are scaled by the same factor, or a piecewise
scaling. Again, R̄(t) is selected (see section V-A) to
overcompensate vehicle motion.

• After motion is complete, a small amount of reeling
using tension feedback is done to remove remaining
slack.

VI. SIMULATIONS

A. Example Using Motion Primitives

We select our primitives to be a set of straight lines
and arcs, as shown in Figure 7. The forward and backward
primitives (straight lines) are generated by taking a single
step, with equal and opposite wheel speeds. The arcs are
generated by selecting one wheel speed to be five times (in
general a whole number λ ∈ N) of the other in magnitude,
allowing all sign combinations. In order to ensure that the
vehicle goes from stable stance to stable stance, the slower
spinning wheel takes one step, while the other wheel takes 5
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Fig. 7: Motion Primitives

(in general λ) steps. Our task is to plan a path from (0, 0, 0)
to an open ball centered at (3, 2, 0). In this case, the cost
assigned to a given primitive is the sum of the euclidean
distance to its end point and the net angle change multiplied
by b. εp is set to 0.2 and εθ is set to 10 degrees.The resulting
shortest path is shown in Figure 8. We suppose the maximum
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Fig. 8: Shortest Path

allowable reel rate is 0.25, and scale wheel speeds and time
for each step of the path accordingly (scaling the wheel
speeds does not change the path). The unscaled and scaled
reel rates are shown in Figure9. Notice that the unscaled rate
exceeds the spooling limit.
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Fig. 9: Reel Rates. Left: Unscaled. Right: Scaled

B. Path Following: Optimal Trajectory

We apply the method of section V-B to approximately
follow the path obtained by solving an optimal control prob-
lem for the standard differential drive vehicle, whose motion

model is considerably simpler and amenable to computation.
The path following method of the previous section is then
applied to this solution. Consider the problem5

minimize
∫ T

0

R(t)2 dt

subject to q̇ = f(q, u) (9)
q(0) = q0, q(T ) = qf

where f represents the vehicle’s equations of motion, q the
vehicle state, u the inputs and R the tether rate (proportional
to the rate of change of radial distance to the vehicle from
the origin or anchor point). For the standard differential drive
vehicle, the state is given by q = (x, y, θ). In the example
below we seek a path from q(0) = (2, 2, π/3) to q(30) =
(0, 0, 0) . The path produced by the solving the optimal
control numerically (using pseudospectral transcription, [26])
is shown in red in Figures 10 and 11. Corresponding control
inputs, reel rates and reeling schedules are shown in Figures
12 and 13 respectively. Note that we assume the tether reel
has a fixed radius of 1, and that the maximum reeling rate
is 0.25 meters per arc length (arc length is proportional to
time).
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Fig. 10: Path Following: x vs y
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Fig. 11: Path Following: θ vs Arc Length

5This problem cannot be solved analytically using pontryagin’s maximum
principle.
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Fig. 13: Path Following: True Reel Rate and According Reel-
Rate Schedule

VII. CONCLUSION AND FUTURE WORK

We presented a kinematic model of a tethered differential
drive rover with rimless wheels, studied its mobility and
obtained principles to motivate the control architecture for a
tethered extreme terrain vehicle. We introduced two simple
planning methods, one that uses motion primitives to go from
point to point, and another that follows parametrized paths
by approximation. In both cases, we provide a means for
tether management.

The methods presented in this paper will be implemented
and experimentally tested on the Axel Vehicle.
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