
Deformation-based Loop Closure for Large Scale Dense RGB-D SLAM

Thomas Whelan1, Michael Kaess2, John J. Leonard2 and John McDonald1

Abstract— In this paper we present a system for capturing
large scale dense maps in an online setting with a low cost
RGB-D sensor. Central to this work is the use of an “as-rigid-as-
possible” space deformation for efficient dense map correction
in a pose graph optimisation framework. By combining pose
graph optimisation with non-rigid deformation of a dense map
we are able to obtain highly accurate dense maps over large
scale trajectories that are both locally and globally consistent.
With low latency in mind we derive an incremental method for
deformation graph construction, allowing multi-million point
maps to be captured over hundreds of metres in real-time.
We provide benchmark results on a well established RGB-
D SLAM dataset demonstrating the accuracy of the system
and also provide a number of our own datasets which cover a
wide range of environments, both indoors, outdoors and across
multiple floors.

I. INTRODUCTION

Simultaneous Localisation and Mapping (SLAM) is a key
problem in the area of robotics that has been the focus of an
enormous research effort for over twenty years. A robot’s
ability to create a map of an unknown environment and
know its position within that map is crucial for intelligent
autonomous operation. 2D SLAM, which allows a robot to
map and localise on a plane, has always been a large focus in
the robotics community, however in recent years 3D mapping
has become a more extensively studied problem.

The release of the Microsoft Kinect and other RGB-D
sensors has caused a surge in 3D perception research in
the past few years. Previous to this, devices such as time
of flight (TOF), stereo vision and 3D LIDAR sensors were
required for 3D perception. The low cost of the Kinect sensor
coupled with its high quality sensing capabilities has proven
to be an attractive alternative to previous more expensive 3D
sensing platforms. As a result of this many visual SLAM and
3D reconstruction systems relying purely on RGB-D sensing
have been created in recent times.

One of the most notable RGB-D 3D reconstruction sys-
tems of recent times is KinectFusion [1], which enables
dense volumetric modeling of a static scene in real-time at
sub-centimetre resolution, although restricted to a fixed re-
gion in space. In previous work we proposed the Kintinuous
system [2], which allows dense volumetric modeling over an
extended area by virtually translating the volumetric model
as the sensor moves. However this is an open-loop process
which inevitably suffers from unbounded drift.

1T. Whelan and J. McDonald are with the Department of Computer
Science, National University of Ireland Maynooth, Co. Kildare, Ireland.
thomas.j.whelan at nuim.ie

2M. Kaess and J. J. Leonard are with Computer Science and Artificial
Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology
(MIT), Cambridge, MA 02139, USA.

Fig. 1. Loop closed 49.6m camera trajectory containing approximately
1.3 million vertices at a resolution of 1.38cm; Effective volume mapping of
17,795m3. The inset shows map consistency at the point of loop closure.

In this work we present a method for dealing with loop
closures in a volume shifting-based mapping system like
Kintinuous which takes advantage of camera pose graph
optimisation and non-rigid space deformation. The result is
a visual SLAM system which captures high fidelity dense
maps in real-time with the local reconstruction quality of
KinectFusion and the advantages of global consistency given
by camera pose graph optimisation. We present quantitative
results on the widely used Freiburg RGB-D benchmark [3]
and also a number of datasets demonstrating the quality and
scale at which the system can function.

II. RELATED WORK

One of the first approaches to RGB-D SLAM was that of
Henry et al., who used visual feature matching in conjunction

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 548

Fig. 2. System architecture diagram. Differently colored function blocks are executing asynchronously in separate CPU threads. The ms quantity denotes
the volume shifting threshold and mp denotes the place recognition movement threshold.

with Generalised Iterative Closest Point (GICP) to build a
pose graph and subsequently build an optimised surfel map
of the environment [4]. Working in an offline manner, they
contrast the use of pose graph optimisation versus sparse
bundle adjustment (SBA) to minimise feature reprojection
errors in a strictly rigid transformation framework. Similar
work by Huang et al. computes a map by SBA as a post-
processing step, by minimising rigid reprojection errors [5].
Recent work by Hu et al. and Lee et al. also attempts to
minimise rigid reprojection error for map correction after
optimisation [6], [7].

In the RGB-D SLAM system of Endres et al. visual
features are used for camera pose estimation and global
consistency is achieved using pose graph optimisation [8].
The map is represented by probabilistically reprojecting all
point measurements into an octree-based volumetric map,
provided by the OctoMap framework [9]. OctoMap has the
advantage of taking measurement uncertainty into account,
being space efficient and implicitly representing free and
occupied space. However like most voxel representations
integration of measurements (by raycasting) and non-rigid
transformations are computationally expensive to perform.

The GPSlam algorithm of Pirker et al. uses sparse visual
features in combination with a dense volumetric occupancy
grid for the modeling of large environments [10]. Sliding
window bundle adjustment is used with visual place recog-
nition in a pose graph optimisation framework. Upon loop
closure the occupancy grid is “morphed” into a globally
consistent grid using a weighted average of the log-odds
perceptions of each camera for each voxel. Audras et al.
estimate a warping function using both geometric and pho-
tometric information for pose estimation but do not make use
of a pose graph and rely on rigid reprojection to produce a 3D
map reconstruction [11]. An octree-based multi-resolution
surfel map representation is used by Stückler and Behnke
which registers surfel maps for pose estimation and relies
on pose graph optimisation for global consistency [12]. A
globally consistent map is computed by fusing key views
after graph optimisation has completed.

An independent method of extended KinectFusion was
presented by Roth and Vona [13]. However no method for
recovering the map is provided. Recent work by Zeng et

al. replaces the explicit voxel representation of KinectFu-
sion with an octree representation, which allows volumetric
mapping of areas up to 8m×8m×8m area [14]. A drawback
of this approach is that it increases the amount of possible
drift within the volume and no method for correcting such
drift is provided.

Many of the above techniques are capable of producing
impressive globally consistent maps, however most are ei-
ther unable to operate in real-time, efficiently incorporate
large non-rigid updates to the map or provide an up-to-date
optimised representation of the map at runtime. In contrast
to this, the system we present operates in real-time, provides
a means of efficiently updating the existing map with a non-
rigid map deformation to reflect an optimised pose graph
and preserves dense high quality small scale features. In the
remainder of this paper we describe our approach followed
by a set of quantitative and qualitative experimental results.

III. ARCHITECTURE

Our SLAM system is made up of two main components,
the frontend (for camera tracking and surface extraction)
and the backend (for pose graph and map optimisation). A
detailed system architecture diagram is shown in Figure 2.

A. Frontend

The frontend used in our system is the dense Kintinuous
mapping system [15]. The Kintinuous system is based on
the KinectFusion system of Newcombe et al. [1]. KinectFu-
sion is a GPU-based real-time dense mapping system that
integrates all depth measurements into a volumetric data
structure, known as the truncated signed distance function
(TSDF) [16]. Camera pose estimation is then carried out via
dense ICP between the current depth frame and a raycasted
surface prediction from the TSDF. Kintinuous implements
this functionally but in contrast to KinectFusion also allows
the region in space which is being reconstructed to move
with the camera trajectory. We use the robust visual odometry
variant of Kintinuous that utilises both dense photometric and
geometric information in camera pose estimation (henceforth
referred to as ICP+RGB-D odometry) [15]. As discussed
in our previous work on the volume shifting approach of
Kintinuous [2], as the TSDF volume moves, the region of

549

the surface that leaves the volume is extracted in point cloud
form. Hence along a camera trajectory there exists a stream
of “cloud slices”. Each cloud slice has an associated camera
pose; the pose of the camera at the time of the slice’s
creation. This relationship is shown in Figure 3 and is one
of importance as we later expand on in Section IV-C. The
final component which lies in the frontend is a visual place
recognition module relying on the DBoW place recognition
system [17], which detects visual loop closures and computes
appropriate relative camera pose constraints.

B. Backend

We propose a novel optimisation backend for deformation-
based dense SLAM, comprised of incremental pose graph
optimisation coupled with incremental non-rigid dense map
optimisation. We use iSAM [18] to optimise a dense every-
frame pose graph according to loop closure constraints pro-
vided by our place recognition module. The optimised dense
camera trajectory is then used in conjunction with matched
visual features to constrain a non-rigid space deformation
of the map. We adapt the embedded deformation approach
of Sumner et al. [19] to apply it to large scale dense maps
captured with the Kintinuous frontend and derive efficient
incremental methods to prepare the map for deformation.

IV. APPROACH

In this section we provide a detailed description of each
component involved in our SLAM pipeline including pose
graph representation, place recognition and loop closure,
deformation graph construction and map optimisation.

A. Pose Graph

In contrast to a number of existing SLAM systems a dense
every-frame pose graph is used, as opposed to a keyframe-
based pose graph. Given the robustness of the camera pose
estimation coupled with the resolution of the reconstructed
surface we choose to maintain as much information as possi-
ble for map optimisation. A camera pose Pi is composed of a
rotation PiR ∈ SO(3), a translation Pit ∈ R3 and timestamp
i. A camera pose Pi is estimated for every processed frame.
Some camera poses also have an associated cloud slice as
shown in Figure 3 where the relationship between pose
Pγ and cloud slice Cj is shown. This provides a useful
association between camera poses and the extracted surface,
capturing both temporal and spatial proximity. We define CjP
to be the pose associated with cloud slice Cj .

Referring to our previous work on dense visual odometry
[15], we can approximate the constraint uncertainty with the
Hessian as Σ = (J>J)−1, where J is the measurement
Jacobian. We also experimented using uniform (identity)
covariances for every constraint (Σ = I).

B. Place Recognition

We use Speeded Up Robust Feature (SURF) descriptors
with the bag-of-words-based DBoW loop detector for place
recognition [17]. Adding every RGB-D frame to the place
recognition system is non-optimal, therefore we utilise a

movement metric sensitive to both rotation and translation
which indicates when to add a new frame to the place
recognition system. Defining r(R) : SO(3)→ R3 to provide
the rotation vector form of some rotation matrix R, we
compute a hybrid movement distance between two poses a
and b that compounds both translation and rotation into a
single quantity as:

mab =
∥∥r(P−1aR PbR)

∥∥
2

+ ‖Pat − Pbt‖2 (1)

For each frame we evaluate the movement distance between
the current frame pose and the pose of the last frame added to
the place recognition system according to Equation 1. If this
metric is above some threshold mp, a new frame is added.
Empirically we found mp = 0.3 provides good performance.

Defining the image space domain as Ω ⊂ N2, an RGB-D
frame Ii is composed of an RGB image Iirgb

: Ω → R3,
a depth image Iid : Ω → R and a timestamp i. Upon
receiving a new RGB-D frame Ii the place recognition
module first computes a set of SURF keypoints and as-
sociated descriptors Si ∈ Ω × R64 for that frame. These
features are cached in memory for future queries. The depth
image Iid is also cached, however to ensure low memory
usage it is compressed on-the-fly using lossless compression
[20]. Following this, the existing bag-of-words descriptor
database is queried. If a match is found the SURF keypoints
and descriptors Sm and depth data Imd

(on-the-fly decom-
pressed) for the matched image are retrieved for constraint
computation. A number of validation steps are performed to
minimise the chance of false positives. Overall we choose
very high threshold parameters to prevent any false place
recognitions in our experiments. They are as follows:

1) SURF Correspondence Threshold: Given Si and Sm
we find correspondences by a k-nearest neighbour search
in the SURF descriptor space. We use the Fast Library
for Approximate Nearest Neighbors (FLANN) to perform
this search and populate a set of valid correspondences
V ∈ Ω×Ω, thresholding matches using an L2-norm between
descriptors in R64. We discard the loop closure candidate if
|V | is less than some threshold; a value of 35 has been found
to provide adequate performance in our experiments.

2) RANSAC Transformation Estimation: Given V and
Imd

, we first attempt to approximate a 6-DOF relative
transformation between the camera poses of frames i and
m using a RANSAC-based 3-point algorithm [21]. Given
a calibrated camera intrinsics matrix K, depth image Imd

and keypoint location p ∈ Ω, we can compute the 3D back-
projection pw = Imd

(p)K−1(p|1)>, where pw ∈ R3. Each
matching keypoint in V is back-projected from image m to
a 3D point, transformed according to the current RANSAC
model and reprojected into the image plane of frame i (using
standard perspective projection onto an image plane) where
the reprojection error quantified by the L2-norm in R2 is
used for outlier detection. Empirically we chose a maximum
reprojection error of 2.0 for inliers. If the percentage of
inliers for the RANSAC estimation is below 25% the loop
closure is discarded. Otherwise, we refine the estimated

550

Fig. 3. Two-dimensional example showing the current position of the TSDF
shifting volume as a checkerboard pattern and the previously extracted
cloud slices as textured columns. Also shown is the dense pose graph as
small green points as well as a pose Pγ which caused a volume shift. The
association between Pγ and the extracted cloud slice is shown with a dotted
red line. A k = 4 connected sequential deformation graph is also shown,
demonstrating the back-traversal vertex association algorithm on a random
vertex v.

transformation by minimising all inlier feature reprojection
errors in a Levenberg-Marquardt optimisation.

3) Point Cloud ICP: At this point only candidate loop
closures with strong geometrically consistent visual feature
correspondences remain. As a final step we perform a non-
linear ICP step between Iid and Imd

. Firstly we back-project
each point in both depth images to produce two point clouds.
In order to speed up the computation, we carry out a uniform
downsampling of each point cloud in R3 using a voxel grid
filter. Finally, using the RANSAC approximate transforma-
tion estimate as an initial guess, we iteratively minimise
nearest neighbour correspondence distances between the two
point clouds using a Levenberg-Marquardt optimisation. We
accept the final refined transformation if the mean L2

2-norm
of all correspondence errors is below a threshold. Typically
we found a threshold of 0.01 to provide good results.

Once a loop closure candidate has passed all of the de-
scribed tests, the relative transformation constraint between
the two camera poses is added to the dense pose graph
maintained by the iSAM module. Section IV-D describes
how this constraint is used to update the map.

C. Space Deformation

Our approach to non-rigid space deformation of the map is
based on the embedded deformation approach of Sumner et
al. [19]. Their system allows deformation of open triangular
meshes and point clouds; no connectivity information is
required as is the case with many deformation algorithms
[22], [23]. Exploiting this characteristic, Chen et al. applied
embedded deformation to automatic skeletonised rigging and
real-time animation of arbitrary objects in their KinÊtre
system [24]. Next we describe our adaptation of Sumner et
al.’s work to apply to large scale dense maps with a focus
on automatic incremental deformation graph construction.

1) Deformation Graph: Sumner et al. propose the use
of a deformation graph to facilitate space deformation of a
set of vertices. A deformation graph is composed of nodes
and edges spread across the surface to be deformed. Each
node Nl has an associated position Nlg ∈ R3 and set of
neighbouring nodes N (Nl). The neighbours of each node

Fig. 4. Two-dimensional example of deformation graph construction.
On the left a spatially-constrained graph is constructed over a pre-loop
closure map suffering from significant drift. The nodes highlighted in red
are connected to nodes which belong in potentially completely unrelated
areas of the map. On the right our incremental sampling and connectivity
strategy is shown (two-nearest neighbours for simplicity) which samples
and connects nodes along the dense pose graph, preventing unrelated areas
of the map being connected by the deformation graph.

are what make up the edges of the graph. Each node also
stores an affine transformation in the form of a 3× 3 matrix
NlR and a 3 × 1 vector Nlt , initialised by default to the
identity and (0, 0, 0)> respectively. The effect of this affine
transformation on any vertex which that node influences is
centered at the node’s position Nlg .

2) Incremental Graph Construction: The original work of
Sumner et al. relies on a uniform sampling of the vertices
in R3 to construct the deformation graph [19]. Chen et al.
substitute this with a method that uses a 5D orientation-
aware sampling strategy based on the Mahalanobis distance
between surface points in order to prevent links in the graph
between physically unrelated areas of the model [24]. Neither
strategy is appropriate in a dense mapping context as drift
in odometry estimation before loop detection may cause
unrelated areas of the map to completely overlap in space.
This issue also arises in determining connectivity of the
graph. Applying sampling and connectivity strategies that are
only spatially aware can result in links between completely
unrelated areas of the map, as shown in Figure 4. For this
reason we derive a sampling and connectivity strategy that
exploits the dense camera pose graph for deformation graph
construction and connection. The method is computationally
efficient and incremental, enabling real-time execution. Our
sampling strategy is listed in Algorithm 1.

We connect deformation graph nodes returned by our
sampling strategy in a sequential manner, following the
temporal order of the pose graph itself. That is to say our set
of graph nodes N is ordered. We sequentially connect nodes
up to a value k. We use k = 4 in all of our experiments. For
example, a node l will be connected to nodes (l±1, l±2). We
show k = 2 connectivity in Figure 4. Note the connectivity
of end nodes which maintains k-connectivity.

3) Incremental Vertex Weighting: Each vertex v has a set
of influencing nodes in the deformation graph N (v). The
deformed position of a vertex is given by [19]:

v̂ =
∑

k∈N (v)

wk(v)
[
NkR(v −Nkg) +Nkg +Nkt

]
(2)

where wk(v) is defined as (all k summing to 1):

wk(v) = (1−
∥∥v −Nkg∥∥2 /dmax)2 (3)

551

Algorithm 1: Incremental Deformation Node Sampling
Input: P dense camera pose graph

i pose id of last added node
dp pose sampling rate

Output: N set of deformation graph nodes
do

l← |N |
if l = 0 then

Nlg ← P0t
l← l + 1
i← 0

Plast ← Pi
for i to |P | do

if
∥∥Pit − Plastt

∥∥
2
> dp then

Nlg ← Pit
l← l + 1
Plast ← Pi

end

Here dmax is the Euclidean distance to the k + 1-nearest
node of v. In previous work based on this technique the
sets N (v) for each vertex are computed in batch using a k-
nearest neighbour technique. Again, being based on spatial
constraints alone this method fails in the example shown in
Figure 4. To overcome this issue we derive an algorithm
that assigns nearest neighbour nodes to each vertex using a
greedy back-traversal of the sampled pose graph nodes.

Algorithm 2: Back-Traversal Vertex Association
Input: C cloud slices

N set of deformation graph nodes
bp number of poses to traverse back

Output: N (v) for each v
do

foreach Cj do
foreach v ∈ Cj do

l← binary search closest(CjP , N)
N ′ ← ∅
n← 0
for i← 0 to bp do

N ′
n ← Nl

n← n+ 1
l← l − 1

sort by distance(N ′,v)
N (v)← N ′

1→k

end

Referring back to Figure 3, we recall that each pose
that causes a volume shift has an associated set of vertices
contained within a cloud slice. We can exploit the inverse
mapping of this association to map each vertex onto a single
pose in the dense pose graph. However, the associated pose
is at least a distance of half the TSDF volume size away
from the vertex, which is not ideal for space deformation.
In order to pick sampled pose graph nodes for each vertex
that are spatially and temporally optimal, we use the closest
sampled pose to the associated cloud slice pose as a starting
point to traverse back through the sampled pose graph nodes
to populate a set of candidate nodes. From these candidates
the k-nearest neighbours of the vertex are chosen. We list
the algorithm for this procedure in Algorithm 2 and provide
a visual example in Figure 3.

The per-vertex node weights can be computed within
the back-traversal algorithm, which itself can be carried
out incrementally online while the frontend volume shifting
component provides new cloud slices. The ability to avoid
computationally expensive batch steps for deformation graph
construction and per-vertex weighting by using incremental
methods is the key to allowing low latency online map
optimisation at any time.

D. Optimisation

On acceptance of a loop closure constraint as described in
Section IV-B we perform two optimisation steps, firstly on
the dense pose graph and secondly on the dense vertex map.
The dense pose graph optimisation provides the measurement
constraints for the dense map deformation optimisation in
place of user specified constraints that were necessary in
Sumner et al.’s original approach [19]. Dense pose graph
optimisation is carried out using the iSAM framework [18].
Although we are optimising a massive number of variables
by using a dense every-frame pose graph, we benefit from the
sparse linear algebra representation used internally in iSAM,
such that execution time is reasonable.

1) Map Deformation: Sumner et al. define three cost
functions over the deformation graph and user constraints
to optimise the set of affine transformations over all graph
nodes N . The first maximises rigidity in the deformation:

Erot =
∑
l

∥∥N>lRNlR − I
∥∥2
F

(4)

Where Equation 4 is the alternative Frobenius-norm form
provided by Chen et al. [24]. The second is a regularisation
term that ensures a smooth deformation across the graph:

Ereg =∑
l

∑
n∈N (Nl)

∥∥NlR(Nng −Nlg) +Nlg +Nlt − (Nng +Nnt)
∥∥2
2

(5)

The third is a constraint term that minimises the error on a
set of user specified vertex position constraints U , where a
given constraint Up ∈ R3 and φ(v) is the result of applying
Equation 2 to v:

Econ =
∑
p

‖φ(v)− Up‖22 (6)

We link the optimised dense pose graph to the map
deformation through the Econ cost function. With P being
the pose graph before loop constraint integration we set
P ′ to be the optimised pose graph returned from iSAM.
We then add each of the dense camera pose translations to
the deformation cost as if they were user specified vertex
constraints, redefining Equation 6 as:

EconP
=
∑
i

∥∥φ(Pit)− P ′it
∥∥2
2

(7)

A dense constraint distribution across the surface obtained
from this parameterisation aids in constraining both surface
translation and orientation. However at some points the

552

TABLE I
ROOT MEAN SQUARED ABSOLUTE TRAJECTORY ERROR IN METRES ON

EVALUATED DATASETS WITH VARIOUS UNCERTAINTY ESTIMATES.

Dataset Estimate
Uniform Hessian

fr1/room 0.083 0.078
fr1/desk2 0.088 0.075
fr3/longOffice 0.054 0.029
fr3/noStructureTextureLoop 0.037 0.031

surface orientation may not be well constrained. In order
to overcome this issue we add additional vertex constraints
between the unoptimised and optimised 3D back-projections
of each of the matched inlier SURF keypoints detected in
Section IV-B, where Pi is the camera pose of the matched
loop closure frame:

Esurf =
∑
q

∥∥φ((PiRVq) + Pit)− ((P ′iRVq) + P ′it)
∥∥2
2

(8)

The final total cost function is defined as:

wrotErot + wregEreg + wconP
EconP

+ wsurfEsurf (9)

With wrot = 1, wreg = 10, wconP
= 100 and wsurf = 100,

we minimise this cost function using the iterative Gauss-
Newton algorithm choosing weighting values in line with
those used in [19]. As highlighted by Sumner et al., the
Jacobian matrix in this problem is sparse, enabling the use
of sparse linear algebra libraries for efficient optimisation.
We use the CHOLMOD library to perform sparse Cholesky
factorization and efficiently solve the system [25]. We then
apply the optimised deformation graph N to all vertices over
all cloud slices C in parallel across multiple CPU threads.
As described in previous work we compute an incremental
mesh surface representation of the cloud slices as they are
produced by the frontend [2]. We use an incremental variant
of Marton et al.’s fast triangulation algorithm to maintain
edge connectivity between cloud slices [26]. The incremental
mesh can be deformed by applying the deformation graph to
its vertices. In our experience an incremental mesh typically
contains more minuscule holes than a batch mesh, which
in path planning is functionally almost identical but less
visually appealing. In all results we show the batch mesh
computed over the set of optimised vertices.

V. RESULTS

We evaluate our system both quantitatively and qualita-
tively, demonstrating strong performance in trajectory esti-
mation, map quality and computational performance.

A. Quantitative Performance

To evaluate camera trajectory estimation we present results
on the widely used RGB-D benchmark of Sturm et al. [3].
We evaluated four datasets with results shown in Table I.
Figure 5 shows the measured trajectory errors using the
hessian uncertainty method. Our results show that regardless
of the method for uncertainty used, consistent performance
is achieved.

Fig. 5. Absolute trajectory errors on the four evaluated RGB-D benchmarks
using the hessian uncertainty estimate.

Fig. 6. Large outdoor dataset. Inset shows brickwork is clearly visible.

Fig. 7. Dataset composed of two floors. Inset shows everyday objects such
as chairs and computers are captured in high detail.

553

TABLE II
STATISTICS ON FOUR HANDHELD DATASETS CAPTURED OVER A WIDE

VARIETY OF ENVIRONMENTS.

Dataset Data
Length Vertices Volume Figure

Indoors 49.6m 1,301,593 17,795m3 1
Outdoors 152.6m 2,460,663 28,836m3 6
Two floors 173.9m 3,285,373 38,500m3 7
In/outdoors 316.6m 5,161,204 60,483m3 8

B. Qualitative Performance

We present a number of datasets collected in a handheld
fashion that span a wide range of scales over static scenes.
Statistics on each dataset are shown in Table II. These
results demonstrate the viability of our system for use over
large scale trajectories, indoors, outdoors (when absence of
sunlight permits structured light-based sensing) and across
multiple floors. We compute an effective volume statistic
for each dataset as the number of vertices times the voxel
resolution of the frontend volumetric TSDF. A volume size
of 6m was used in all datasets except the “Indoors” dataset
(Figure 1), where a 7m volume was used to provide a larger
overlap between the TSDF volume and camera field of view.
In all experiments a 5123 voxel TSDF was used with an
ASUS Xtion Pro Live RGB-D camera at a frame rate of
30Hz. We provide additional qualitative results and visual-
isations of the deformation process and final dense maps
in a video available at http://www.youtube.com/
watch?v=MNw-GeHHSuA. Accurate large scale dense sur-
face reconstruction ground truth appears to be an open
problem (as opposed to trajectory ground truth), which
makes it difficult to evaluate whether a single pass with
deformation approach is more or less accurate than a two
pass approach that reruns and reintegrates the RGB-D data
based on an optimised trajectory. The latter approach no
longer benefits from explicit frame-to-model tracking, which
has been shown to provide superior tracking performance [1].

C. Computational Performance

As discussed in previous work the frontend runs at camera
frame rate, 30Hz [15]. As a measure of computational
performance in the context of an online SLAM system we
measure the latency of the system. That is, how long it
takes for 1) a loop closure to be recognised when one is
encountered and 2) map deformation to be completed. Table
III shows execution time statistics on our test platform, a
standard desktop PC running Ubuntu 12.04 with an Intel
Core i7-3960X CPU at 3.30GHz, 16GB of RAM and an
nVidia GeForce 680GTX GPU with 2GB of memory. The
results show that the frontend scales very well, which is
expected with the DBoW loop detector [17]. Both iSAM
and the deformation processes scale with the size of the map
and number of poses, however given the size and detail of
the maps we consider the detection-to-correction map loop
closure latency to be acceptable for online operation.

TABLE III
COMPUTATIONAL PERFORMANCE STATISTICS ON FOUR DATASETS.

Quantities Datasets
Indoors Outdoors Two floors In/outdoors

DBoW images 306 1181 1570 2626
Poses 3007 5295 12949 25377
Nodes 56 176 189 363
Vertices 1,355,059 2,801,265 3,878,785 6,356,911
Process Timings (ms)
Frontend 681 596 820 520
iSAM 364 1341 2676 7487
Deformation 393 918 2230 4463
Total latency 1438 2855 5726 12470

VI. CONCLUSION

In this paper we have presented a novel SLAM system that
makes use of non-rigid map deformations for map correction
during loop closures. With online operation in mind we have
presented new methods for constructing a deformation graph
incrementally in real-time and demonstrated the system’s
ability to non-rigidly correct multi-million vertex maps in
a matter of seconds. In future work we aim to better
model the dense visual odometry uncertainty, look at issues
with redundancy or “over-representation” in the map and
scalability above hundreds of metres.

VII. ACKNOWLEDGEMENTS

Research presented in this paper was funded by a Strategic
Research Cluster grant (07/SRC/I1168) by Science Founda-
tion Ireland under the Irish National Development Plan, the
Embark Initiative of the Irish Research Council and by ONR
grants N00014-10-1-0936, N00014-11-1-0688, N00014-12-
1-0093, and N00014-12-10020. The authors would also like
to thank Guillaume Gales and Richard H. Middleton.

REFERENCES

[1] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon,
“KinectFusion: Real-time Dense Surface Mapping and Tracking,” in
Proc. of the 2011 10th IEEE Int. Symposium on Mixed and Augmented
Reality, ISMAR ’11, (Washington, DC, USA), pp. 127–136, 2011.

[2] T. Whelan, J. McDonald, M. Kaess, M. Fallon, H. Johannsson, and
J. Leonard, “Kintinuous: Spatially Extended KinectFusion,” in 3rd
RSS Workshop on RGB-D: Advanced Reasoning with Depth Cameras,
(Sydney, Australia), July 2012.

[3] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of RGB-D SLAM systems,” in Proc. of
the Int. Conf. on Intelligent Robot Systems (IROS), October 2012.

[4] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “RGB-D
mapping: Using Kinect-style depth cameras for dense 3D modeling of
indoor environments,” The Int. Journal of Robotics Research, 2012.

[5] A. S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana, D. Fox,
and N. Roy, “Visual odometry and mapping for autonomous flight
using an RGB-D camera,” in Int. Symposium on Robotics Research
(ISRR), (Flagstaff, Arizona, USA), August 2011.

[6] G. Hu, S. Huang, L. Zhao, A. Alempijevic, and G. Dissanayake, “A
robust RGB-D SLAM algorithm,” in Intelligent Robots and Systems
(IROS), 2012 IEEE/RSJ International Conference on, pp. 1714 –1719,
October 2012.

[7] D. Lee, H. Kim, and H. Myung, “GPU-based real-time RGB-D 3D
SLAM,” in Ubiquitous Robots and Ambient Intelligence (URAI), 2012
9th International Conference on, pp. 46 –48, November 2012.

[8] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Bur-
gard, “An evaluation of the RGB-D SLAM system,” in Proc. of the
IEEE Int. Conf. on Robotics and Automation (ICRA), (St. Paul, MA,
USA), May 2012.

554

Fig. 8. Large indoor and outdoor dataset made up of over five million vertices. Insets show the high fidelity of small scale features in the map.

[9] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “OctoMap: An efficient probabilistic 3D mapping framework
based on octrees,” Autonomous Robots, 2013.

[10] K. Pirker, M. Rüther, G. Schweighofer, and H. Bischof, “GPSlam:
Marrying sparse geometric and dense probabilistic visual mapping,”
in Proc. of the British Machine Vision Conf., pp. 115.1–115.12, 2011.

[11] C. Audras, A. I. Comport, M. Meilland, and P. Rives, “Real-time dense
RGB-D localisation and mapping,” in Australian Conf. on Robotics
and Automation, (Monash University, Australia), December 2011.

[12] J. Stückler and S. Behnke, “Integrating depth and color cues for dense
multi-resolution scene mapping using RGB-D Cameras,” in Proc. of
the IEEE Int. Conf. on Multisensor Fusion and Information Integration
(MFI), (Hamburg, Germany), September 2012.

[13] H. Roth and M. Vona, “Moving volume KinectFusion,” in British
Machine Vision Conf. (BMVC), (Surrey, UK), September 2012.

[14] M. Zeng, F. Zhao, J. Zheng, and X. Liu, “A Memory-Efficient Kinect-
Fusion Using Octree,” in Computational Visual Media, vol. 7633 of
Lecture Notes in Computer Science, pp. 234–241, Springer, 2012.

[15] T. Whelan, H. Johannsson, M. Kaess, J. Leonard, and J. McDonald,
“Robust real-time visual odometry for dense RGB-D mapping,” in
IEEE Intl. Conf. on Robotics and Automation, ICRA, (Karlsruhe,
Germany), May 2013.

[16] B. Curless and M. Levoy, “A volumetric method for building complex
models from range images,” in Proc. of the 23rd annual Conf. on
Computer graphics and interactive techniques - SIGGRAPH ’96, (New
York, New York, USA), pp. 303–312, August 1996.

[17] D. Galvez-Lopez and J. D. Tardos, “Real-time loop detection with

bags of binary words,” in Intelligent Robots and Systems (IROS), 2011
IEEE/RSJ International Conference on, pp. 51 –58, September 2011.

[18] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental
smoothing and mapping,” IEEE Transactions on Robotics (TRO),
vol. 24, pp. 1365–1378, December 2008.

[19] R. W. Sumner, J. Schmid, and M. Pauly, “Embedded deformation for
shape manipulation,” in ACM SIGGRAPH 2007 papers, SIGGRAPH
’07, (New York, NY, USA), ACM, 2007.

[20] P. Deutsch and J.-L. Gailly, “Zlib compressed data format specification
version 3.3,” 1996.

[21] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Commun. ACM, vol. 24, June 1981.

[22] K. S. Karan, “Skinning characters using surface-oriented free-form
deformations,” in In Graphics Interface 2000, pp. 35–42, 2000.

[23] A. Jacobson and O. Sorkine, “Stretchable and twistable bones for
skeletal shape deformation,” ACM Transactions on Graphics (proceed-
ings of ACM SIGGRAPH ASIA), vol. 30, no. 6, pp. 165:1–165:8, 2011.

[24] J. Chen, S. Izadi, and A. Fitzgibbon, “KinÊtre: animating the world
with the human body,” in Proceedings of the 25th annual ACM
symposium on User interface software and technology, UIST ’12,
(New York, NY, USA), pp. 435–444, ACM, 2012.

[25] T. A. Davis and W. W. Hager, “Modifying a sparse Cholesky factor-
ization,” SIAM J. Matrix Anal. Appl., vol. 20, May 1999.

[26] Z. C. Marton, R. B. Rusu, and M. Beetz, “On fast surface reconstruc-
tion methods for large and noisy datasets,” in Proc. of the IEEE Int.
Conf. on Robotics and Automation (ICRA), (Kobe, Japan), May 2009.

555

