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Abstract—In this paper we study the problem of designing
search strategies to find a target whose motion is described by
a random walk along a one-dimensional bounded environment.
The sensing model and the characteristic of the environment
require the searcher and the target to be on the same site at the
same time to guarantee capture. The objective is to optimize the
searcher’s motion, given by a sequence of actions (move right,
left or remain stationary), so that the probability of capturing
the target is maximized. Each action is associated with an
energy cost. The searcher strategy is constrained by a total
energy budget. We propose a class of randomized strategies
for which we provide an analytical expression for the capture
probability as a function of a single parameter. We then use
this expression to find the best strategy within this class. In
addition to theoretical results, the algorithms are analyzed in
simulation and compared with other intuitive solutions.

I. INTRODUCTION

Searching for a target is a fundamental task in mobile
robotics with applications in monitoring, surveillance and
rescue missions. In a very common scenario the target has
not only an unknown position, but also an unknown motion
model. Often, for non adversarial targets, such motion can
be modeled as a simple random walk. This is the case, for
instance, for many animal systems. Our motivating applica-
tion is monitoring radio-tagged invasive fish. In recent years,
we have been working on building a system of Autonomous
Surface Vehicles (ASVs) to locate radio-tagged carp in inland
lakes [14]. The purpose of the system is to collect data which
can be used for studying carp behavior. Recent experiments
have shown that in the Twin-Cities Metro-Area lakes, the fish
tend to be near the shore most of the time. This observation
allows us to restrict our attention to the boundary of the lake
and reduce the problem to a one-dimensional (1D) setting.
This setting is of interest in other practical applications such
as monitoring national borders, corridors, rivers or, as in our
case, shores (see e.g. [7] and [1]).

In developing a search strategy, a crucial aspect of the
system (especially for battery powered robots) is energy.
Even though the capabilities of field robots have increased
significantly in recent years, most of them are subject to
severe energy limitations. In particular, robot developers
face trade-offs between payload capacity and battery life
since current batteries are heavy and last a short amount of
time under full actuation. In order to deal with this issue,
it is desirable to extend the lifetime of a robotic system
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by energy-aware algorithms which use existing resources
efficiently.

In this work, we focus on an energy-efficient search
problem in which a robot with limited battery life is charged
with finding a random-walker in a 1D, discrete, circular
environment. The searcher is subject to an energy budget
which is used for either moving or station keeping. These
actions incur different costs. Typically station keeping is
less costly but a random-walker can be found much more
quickly by moving. Therefore, the crucial trade-off for an
optimal strategy is between spending energy to explore the
environment and remaining stationary to exploit the diffusive
properties of the random walker. Moreover, in our model we
assume the searcher is able to capture the target only if they
are at the same site at the same time. This means that the
searcher could cross the target in the segment between two
adjacent nodes without capturing it. As a result, even with
enough energy to explore the whole environment, the capture
is not guaranteed and an optimal strategy has to take the
crossing phenomenon into account.

In our previous work, we studied this search problem when
crossing is not allowed. In this case, the optimal strategy has
a simple structure: sweep of the environment up to a certain
location followed by station-keeping at that location [9].
Crossing makes the problem much more challenging. In
fact, when crossing is allowed, for any deterministic search
strategy, one can find a target strategy which avoids detection
even if the searcher can sweep the entire environment. This
aspect also makes the design and analysis of a search strategy
for a random walking target challenging.

In this paper, we study a class of natural randomized
strategies in which the pursuer flips a biased coin at each
step to decide whether to move or not. Such strategies
are appealing for field applications because they do not
require any state or history information and therefore can be
implemented very easily. We study fundamental properties
of one-dimensional random walks in bounded environments
(such as expected capture time and survival probability) and
show how an optimal solution for this class of strategies can
be obtained.

In a parallel submission [10], we study a special case of
this problem where the searcher is subject to a time budget
(which is also equivalent to the case where station-keeping
and moving has the same cost). For this special case, the
problem can be formulated and solved using a partially ob-
servable Markov decision process which is globally optimal
for a given resolution. In contrast, the present work studies
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a more general version and presents analytical solutions for
a restricted class of strategies.

The rest of the paper is organized as follows: an overview
of related work is presented in the next section. Section III
formalizes the problem. In Section IV, some preliminary
results which are in later sections are presented. In Section V,
we propose a class of randomized strategies and show
how to find the optimal one which maximizes the capture
probability. Finally, in Section VI, simulation results are
provided and analyzed to evaluate the proposed strategy.

II. RELATED WORK

Random motions, both as discrete random walks and
continuous diffusive motions, have been extensively studied
as models of unknown animals motions or complex physical
processes [3]. In particular they are widely used in the lit-
erature to simplify pursuit-evasion games and absorption (or
search) processes. A large number of interesting properties
closely related to searching missions including: first passage
probability (the probability for the random walker of visiting
for the first time a given point at a given time), survival
probability (the probability that the random walk has not
been found at a given time) and mean capture time (the
expected time to be found) are collected in [12]. Various
characteristics of random walks in general graphs have been
studied in [8]. Examples are hitting time, which is the
expected number of steps before a node is visited, and cover
time, which is the expected number of steps to visit every
node at least once.

Although one-dimensional random walks might seem to be
simple processes, they present several interesting behaviors
and properties and are still source of open problems. The
survival probability of a particle that performs a random walk
on a chain when traps are uniformly distributed with known
concentration is studied in [2] and an asymptotically exact
solution is provided. In [13] the authors study the survival
probability of a prey chased by N diffusive predators on a
line. In this case the capture dynamics is exactly solvable
by probabilistic techniques when the number of predators is
very small. For three or more predators the exact solution
is still not known. The same problem but in a semi-infinite
line where the boundary represents a haven for the prey is
presented in [5]. Krapivsky and Redner studied the behavior
of a random walk in a one dimensional bounded environment
when absorption occurs whenever the random walk hits
a boundary of the system [6]. In particular, the authors
considered the case of an expanding cage and a receding
cliff, i.e. with boundaries moving with a known motion law.
Contrary to our paper, none of these works include any kind
of constraint neither on the energy of the system, limiting
the predator’s autonomy, nor a maximum time for the chase.

In [11], the authors use random walks to tackle the coales-
cence problem, where the robots do not have any knowledge
about the environment or positions of other robots. Each
robot performs an independent random search and when two
robots meet, they coalesce into a cluster which then moves
as a single random walk.

Sensing Range

1D Searcher Path

(a)

(b)

Fig. 1. (a) The target moves randomly in a region of width less than the
sensing range. This allows the searcher to restrict its searching domain to
a 1D path, where the points are the sensing locations. In (b) it is shown a
typical scenario in a lake where such path is next to the boundary.

The considered problem can also be included in the
more general class of pursuit-evasion, where the pursuer’s
objective is to catch an evader whose motion might be also
adversarial. An overview of recent results on pursuit evasion
games can be found in [4].

Finally, in [10] we tackle a problem very similar to the one
treated in this paper. In that version, the searcher is subject to
a time (rather than energy) constraint. That work focuses on
finding globally optimal strategies using Partially Observable
Markov Decision Process (POMDP) models. Here, we study
a more general problem and present an analytical solution
for choosing the best randomized strategy among a class of
memoryless strategies.

III. MOTIVATION AND PROBLEM FORMULATION

Our general goal is to find radio-tagged invasive fish
in lakes by using an Autonomous Surface Vehicle (ASV)
equipped with a tracking system. Since they are almost
always found very close to the boundary of the lake, we can
assume that their motion is bounded in a corridor of width
comparable to the sensing range. This allows us to limit the
searching process along a 1D discrete path (see Fig. 1). The
real fish position, which is moving in 2D, can be projected
at every time on the closest node.

Thus, the problem considered in this paper can be formally
described as follows. Let us consider a searcher and a target
moving on a circular discrete environment with the same
maximum speed, which for simplicity we assume unitary.
The environment Q is composed of N equally-spaced nodes
i=0,...,N—1. The target motion, which is assumed to be
a simple random walk, can be expressed by the following
Master equation:

P(i,t+1) = pP(i+1,1) +qP(i—1,1) (1)
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Fig. 2. Random walk moving on a chain with N =5 nodes and absorbing
boundary condition. This process is equivalent to a random walk moving
on a circular environment composed of 4 nodes and a searcher located at
i =0, where the absorption represents the capture.

where P(i,t) is the probability of finding the target at node
i at time ¢, p and ¢ are the probabilities of the target
to move to the left and right node respectively, P(N,7) =
P(0,¢) and P(—1,¢) = P(N — 1,¢). For simplicity, we consider
only symmetric random walk, i.e. ¢ = p. This assumption
corresponds to neglecting the possibility of a preferential
direction for the fish, which provides a starting point in the
absence of additional information. A crucial point of our
problem is that the searcher, which moves simultaneously
and with the same speed, can sense the presence of the
target only when it reaches a node, i.e. not while moving
from one node to another. The practical motivation for this
assumption comes from our fish searching problem: we ob-
served that the reliability of detection decreases considerably
when the boat is in motion. This is due to the sensitiv-
ity of the antenna to radio interference from the motors
of the boat. The searcher motion can then be described
by a sequence of action . = {aj,as,...,a;r} where q; €
{go left, go right, remain stationary}. Such set of actions is
constrained by the searcher’s limited initial energy budget Ej.
Moving and stay actions have costs ¢, and ¢, respectively,
which are assumed to be constant along the path. The search
can continue until the energy of the system E remains greater
than zero. Our intent is to optimize the probability P, of
eventually capturing the target, given the dimension of the
circular environment, the initial energy budget and the action
costs.

Formally, the optimization problem we would like to solve
is:

m;i}xPc(y ={ai,a,...,ar}) s.t. )
k
Zcost(ai) < Ey. 3)
i=1

In this framework, the target’s motion can be seen as a
Markov chain on €, where the searcher position represents
an absorption point (see Fig. 2). The distance between two
adjacent nodes d(i,i+ 1), which in our model corresponds
to the distance between two successive measurements, plays
a crucial role in the problem. In particular, we can identify
two different cases.

1) The first case corresponds to the condition:
d(i,i+1) <Ry, (G))

where R is the sensing range. In other words, from
any node the searcher is able to sense also its two

neighbors. This condition prevents the searcher from
passing over the target while moving from a node to
an adjacent node without sensing the target (we refer
to this problem as the crossing problem).

2) In the second case, described by the condition

d(ii+1)> Ry, 5)

the searcher cannot sense its neighbors. As a result, it
can find the target only if they simultaneously occupy
the same node. This can occur in cases when the
distance between two measurement spots cannot be
controlled by the searcher or when the environment
is too large compared to sensing range and imposing
condition (4) is unfeasible.

In this paper, we focus on the second case, i.e. when
crossing is allowed. In the succeeding sections, we show how
this phenomenon forces the searcher to significantly change
its strategy.

IV. PRELIMINARY RESULTS AND INSIGHTS

Before describing the proposed strategy, we present some
preliminary results which shed light onto the structure of the
problem.

A. The No-crossing Case

We start by analyzing the problem considering the no-
crossing case, i.e. when condition (4) holds. For details on
this case, with searcher and target moving on a segment with
reflecting boundaries, see [9]. The starting point to obtain an
optimal strategy is the following proposition:

Proposition 1: Let %, be two different searcher
strategies and x (¢),x,(¢) the location of the searcher at time
t when executing .| and .%> respectively. Then it holds:

x1(t) >x() Ve = P(A)>P(S), (6

where P.(.#;) is the capture probability executing the strategy
523

This proposition is justified by observing that, imposing
condition (4), any target captured by the strategy .7 is
captured also by the strategy .77 with probability 1. On the
other hand, the opposite is not always true. The consequence
of this proposition was that the stay action is useful only to
increase the searching time (assuming that c¢; < ¢;,). Further,
for a searcher starting from i = 0, an optimal strategy has
to have the structure R/S*, i.e. the searcher moves for j
consecutive steps to the right and then keeps the position
for k steps. See [9] for more details.

The case treated in this paper is significantly different
because Proposition 1 does not hold due to the crossing phe-
nomenon and the different assumption on the environment.
This implies that simply sweeping the entire environment
does not assure the target detection. Indeed, let us consider
the following scenario: the target is moving in a 1D circular
environment composed by 2N nodes and its initial position
n is on an even node, i.e. n =2s with s € [1,N]. At the same
time, the searcher starts the sweeping clockwise from i =1
without any stop, i.e. its strategy is composed only of right
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actions. It is easy to see that at each time step, the searcher
will be on a node with opposite parity with respect to the
target. This means that, even though they will cross each
other infinitely times, the searcher will never sense the target.
In other words, considering the probability of the target’s
initial location uniformly distributed among the nodes, with
probability 1/2 the searcher will never catch the target.

As a result, a strategy of the form R/S* is no longer
suitable and a more complex structure is needed so as to
take into account energy and to minimize crossing along
the path. To achieve this, a certain number of S actions
have to be distributed between the R actions. It is easy
to see that increasing the number of S, the probability of
crossing decreases. As a limit, if the searcher does not move
at all from its initial position, the crossing phenomenon
cannot occur. Further, thanks to the recurrence property of
a random walk in 1D, it will eventually be captured with
probability 1. For these reasons, a stationary strategy might
be a trivial solution for the considered problem. However,
as we are going to show, in this case the expected capture
time is quadratic in the initial distance n between searcher
and target. Due to energy constraints, this might not be a
feasible strategy and a better approach is needed.

B. Stationary Searcher

In this section, we briefly present the analysis of the
stationary strategy mentioned in the previous section. Even
though this is a well-known result (e.g. see [12]), the
technique will be useful for the analysis of the randomized
strategy introduced in the next section.

The expected capture time t,, where n is the random
walker starting location, obeys to the following recursive
equation [12]:

th=pltp—1 + 1) +qtpr1 +1), n=12,..,N-1, (7)

where the time-step is 1 and the boundary conditions which
correspond to absorption in i =0 and in i =N are 7y =
0,zy = 0. For a symmetric random walk p = ¢ = 1/2 and
the previous equation becomes:

2tn:tn71+tn+l+27 3

with n=1,2,...,N — 1. The solution of the previous recursive
relation is:
th=A+Bn—n*, 9)

where A and B are constants to fix imposing the boundary
conditions. In our case the solution becomes:

th=n(N—n). (10)

This result proves that the expected capture time for a
stationary searcher is quadratic in the initial distance from
the target. The consequence is that, for very large environ-
ment the searcher could wait for the target only if taking
measurements without moving has a zero cost, which is an
unrealistic assumption. This strategy is then almost always
unfeasible.

V. RANDOMIZED STRATEGY

To find a better solution, we restrict our attention to the
following class of stochastic strategies: at each time step the
searcher keeps the position with probability w and moves
one step clockwise with probability 1 —w, with w € (0,1).
Hereafter we refer to these strategies as w-strategies. Note
that we do not include the possibility of left actions in the
strategy. This is because a left action does not produce any
benefit to prevent crossing and at the same time reduces the
energy that can be employed in exploring the environment,
reducing so the probability of capture.

The optimization problem (2) and the constraint (3) can
now be expressed as follows:

(1)
(12)

max P.(w) s.f.
cmM + ¢S < Ep,

where M is the total number of searcher movements and
S the time steps it spends on the same position. In order to
solve the problem (11), we firstly need to express the capture
probability P. as a function of w. Instead of computing P,
directly, we consider the survival probability Py of a random
walk moving in a bounded environment with an absorbing
bound in x = x{¥)(r), where x*)(¢) is the searcher position
at time ¢. Then, P, is simply P. = 1 — F,. Even if the exact
analytical expression is very complicated (see [12] for the
result of a symmetric simple random walk in a circular
environment with absorption in x = 0), it can be shown that
the leading term of such probability decays exponentially in
time, i.e. it assumes the form: Py(r) = e~ /T, Moreover, the
characteristic time of decay 7 can be identified with the mean
capture time ([12], Chapter 2).

We start by computing this last quantity, the expected
capture time, for a target starting from the node n. To do
that we express the target’s motion in the moving frame of
reference in which the searcher location is x(*) (r) = 1,V and
the N nodes are i = 1,...,N. In such frame the target’s Master
equation becomes:

1—
Plit+1) = TWP(i+2,t) + %P(H— 1,1)
1—
+ TWP(zyt) + gP(i— L0, (13)
The recursive equation for the expected capture time ¢, is:
l—w w
, = T(tn—Z + 1) + E(Z‘n—l + 1)
1—w w
+ )+ S 1), (14)
So we have
Wipt1 — (L4 w)tg +wip—1 + (1 —w)ty_p = —2. (15)

We firstly solve the homogeneous equation associated to
(15). The characteristic polynomial is:

wAS —(14+wA2+wA +(1—w) =0, (16)
whose roots are:
1+V1+4w —4w?
=1, hip= 17

2w
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Fig. 3. Comparison between the approximations of the capture probabilities
for a w = 0.4 strategy (in blue) with the behaviors obtained in simulation
(in red). The environment is composed of N = 50 nodes.

and a particular solution of non-homogeneous equation (15)
is n/(1 —w). Thus, the solution of (15) is:

ty = A+BA!+CA} +

n, (18)
1—w
where A,B and C are constants which can be fixed by
imposing the boundary conditions. In our case the boundary
conditions to impose are: 11 = 0,ty+1 = 0,1y = ty, where the
first one represents the absorption on the searcher position
and the other two express the periodic conditions. Then,
since the initial target position is unknown, we compute the
expected value (#,) over n, assuming a uniform probability
distribution:

1 N
() =5 Lin (19)

The other quantity we need to compute in the survival
probability expression for a given strategy is the duration
T of the mission. Since our strategy is stochastic, we can
compute the expected time (T') = (M) + (S), where (M) and
(S) are given by:

cm{M) +¢5(S) = Ey
M) _>ﬂ (20)
8 = w
whose solution gives
E
(T) 0 1)

- cm(l—w)+ew’

Note that the inequality in (12) has been substituted by an
equality in (20) because there is no reason to use less energy
than the maximum available.

The final result for the capture probability by employing
a w-strategy and with the energy constraint (12) is:

) 1

em(1—w)+csw (n)
P.(w;Ep,cm,c5) =1 —e ATBADTCON TG | (22)

In Fig. 3 a comparison between the previous theoretical
result and the capture probability obtained in simulation, as
an average over 10 trials, is shown.
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Fig. 4.  Comparison between the approximations of the total capture
probabilities (blue dots) with the behaviors obtained in simulation (red stars)
in function of the staying probability w. The values considered are: N = 50,
Ey=50,c,, =1 and ¢; =0.1,0.5, and 0.9 for (a), (b) and (c) respectively.

VI. RESULTS

In the previous section we obtained, as a main result, an
approximation for the probability of finding the target using
a w-strategy (eq. (22)). Since such expression is a function
of the only variable w € (0,1), it can be easily maximized
finding the optimal w*. In this section we provide the results
for some selected scenarios. In particular, we show how, for
a given scenario, a small variation of the cost ¢; changes
significantly the optimal strategy. Furthermore, since our
result is an approximation, we also compare the probabilities
provided by eq. (22) with the averaged values obtained by
simulating the process.

The results shown in Fig. 4 correspond to an environment
with N = 50 nodes. The searcher has an initial energy budget
Ey =50 and the costs for moving and staying are respectively
cm =1 and ¢; =0.1,0.5,0.9.

It is possible to see that, in terms of optimal strategy, as
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Strategy Capture probability
w-OPT 0.775
Stationary 0.504
Go-Right 0.484
Random Walk 0.228
Derandomized 0.789
(A)
Strategy Capture probability
w-OPT 0.633
Stationary 0.254
Go-Right 0.484
Random Walk 0.223
Derandomized 0.695
B)
TABLE I

COMPARISON BETWEEN DIFFERENT POSSIBLE STRATEGIES IN TERMS OF
CAPTURE PROBABILITY. THE LENGTH OF THE ENVIRONMENT IS

N = 100, THE ENERGY BUDGET Ej = 100 AND THE ACTIONS COSTS ARE
cm=1AND ¢; =0.1,cs = 0.4 FOR (A) AND (B) RESPECTIVELY.

for the no-crossing model, increasing the ratio c;/c,, implies
a faster strategy, i.e. lower w*. However, it is interesting to
note that even when the cost of staying is very high and
this ratio tends to 1, as in case (c), the optimal strategy still
includes several stops and it does not simply keep moving
in one direction (as in the no-crossing version). Indeed, in
this case the optimal value of w is w* =0.2.

For a given scenario we compare our strategy with other
possible strategies such as: stationary searcher (limit case
w = 1), searcher always moving in the same direction (limit
case w = 0) and random walk searcher. We consider also
a deterministic strategy constructed by derandomizing the
optimal w-strategy. To do that we uniformly distribute the
stop actions such that their density among the path is equal
to w. The results, shown in Table I, correspond to an
environment of length N = 100, an initial energy budget
Ep =100, a cost for moving ¢,, = 1 and a cost for staying
of ¢g =0.1,¢, = 0.4 for (A) and (B) respectively. The
optimal randomized strategies (w-OPT) for these two cases
are defined by the values w* = 0.65 (A) and w* = 0.35 (B).
The corresponding derandomized strategies are: RSSRSS...
and SSRSSR... respectively. Also in this case the results
are obtained in simulations averaging 10 trials and with
a uniform distribution for the initial target position. A first
interesting aspect is that for such similar scenarios, where
only the cost to remain stationary is slightly different, the
two resulting strategies are very different. It is also worth
noting that the capture probability obtained by using the
derandomized w-OPT strategy is the highest achieved. This
result is not very surprising, since in every w-OPT strategy
there is always a non-zero probability to find a sequence of
actions where the density of stop actions is very far from the
optimal w*.

VII. CONCLUSIONS

In this paper, we studied a search problem where the target
is a random walk confined on a one-dimensional circular

chain. In our model, searcher and target move simultane-
ously, with the same speed, and the capture happens only if
they occupy the same node at the same time. Furthermore,
we considered a limited energy budget available for the
searching process and a different cost for stay and moving
actions. The problem is then to construct a strategy to
maximize the probability of capturing the target. To do so we
considered a class of randomized strategies and we proposed
a solution for the constrained optimization problem from
this class. The result is finally compared with other possible
strategies to evaluate the performance.

As a next step, we will implement the proposed algorithm
on our experimental platform, an Autonomous Surface Ve-
hicle (ASV) carrying radio tracking equipment for detecting
the target [14]. From a theoretical point of view we aim to
better analyze the derandomization of the proposed strategy
in order be able to construct a global optimal strategy
and to better compare the obtained results with the MDP
formulation presented in [10]. Finally, this paper should be
seen as a first step toward developing an optimal search
strategy in 2D environments.

REFERENCES

[1] N. Agmon, S. Kraus, and G. A. Kaminka. Multi-robot perimeter patrol
in adversarial settings. In IEEE International Conference on Robotics
and Automation (ICRA), pages 2339-2345, 2008.

[2] J. Anlauf. Asymptotically exact solution of the one-dimensional
trapping problem. Physical review letters, 52(21):1845-1848, 1984.

[3] F. Bartumeus, M. G. E. da Luz, G. Viswanathan, and J. Catalan. An-
imal search strategies: a quantitative random-walk analysis. Ecology,
86(11):3078-3087, 2005.

[4] T. Chung, G. Hollinger, and V. Isler. Search and pursuit-evasion in
mobile robotics. Autonomous Robots, 31(4):299-316, 2011.

[5]1 A. Gabel, S. Majumdar, N. Panduranga, and S. Redner. Can a
lamb reach a haven before being eaten by diffusing lions? Journal
of Statistical Mechanics: Theory and Experiment, 2012(05):P05011,
2012.

[6] P. Krapivsky and S. Redner. Life and death in an expanding cage
and at the edge of a receding cliff. American Journal of Physics,
64(5):546-551, 1996.

[7]1 N. E. Leonard and A. Olshevsky. Nonuniform coverage control on the
line. In 50th IEEE Conference on Decision and Control and European
Control Conference (CDC-ECC), pages 753-758, 2011.

[8] L. Lovdsz. Random walks on graphs: A survey. Combinatorics, Paul
erdos is eighty, 2(1):1-46, 1993.

[9] N. Noori, P. Plonski, A. Renzaglia, P. Tokekar, J. Vander Hook,

and V. Isler. Long-term search through energy efficiency
and harvesting. Technical Report 13-001, Department of
Computer Science & Engineering, University of Minnesota,

http://www.cs.umn.edu/research/technical_reports/view/13-001, 2013.

[10] N. Noori, A. Renzaglia, and V. Isler. Searching for a one-dimensional
random walk: Deterministic strategies with a time budget when cross-
ing is allowed. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2013.

[11] S. Poduri and G. S. Sukhatme. Achieving connectivity through
coalescence in mobile robot networks. In Proceedings of the Ist
international conference on Robot communication and coordination,
page 4. IEEE Press, 2007.

[12] S. Redner. A Guide to First-Passage Processes.
Cambridge, st edition, 2001.

[13] S. Redner and P. Krapivsky. Capture of the lamb: Diffusing predators
seeking a diffusing prey. American Journal of Physics, 67:1277-1283,
1999.

[14] P. Tokekar, D. Bhadauria, A. Studenski, and V. Isler. A robotic system
for monitoring carp in Minnesota lakes. Journal of Field Robotics,
27(6):779-789, 2010.

University Press,

6024



