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Abstract— A continuum manipulator, such as a multi-section
trunk/tentacle robot, is promising for deft manipulation of a
wide range of objects of different shapes and sizes. Given
an object, a continuum manipulator tries to grasp it by
wrapping tightly around it. Autonomous grasping requires real-
time determination of whether an object can be grasped after
it is identified, and if so, the feasible whole-arm wrapping
around configurations of the robot to grasp it, which we
call grasping configurations, as well as the path leading to a
grasping configuration. In this paper, we describe the process
for autonomous grasping from object detection to executing
the grasping motion and achieving force-closure grasps, with
a focus on a general analysis of all possible types of planar
grasping configurations of a three-section continuum manipu-
lator. We further provide conditions for existence of solutions
and describe how to find a valid grasping configuration and
the associated path automatically if one exists. Experimental
results with the OctArm manipulator validate our approach,
and shows that the entire process to determine an autonomous
grasping operation, which includes automatic detection of the
target object and determination of a grasping configuration
and a path to the grasping configuration that avoids obstacles,
can take just a small fraction of a second. Once a grasping
configuration is reached, the manipulator can lift the object
stably, i.e., a force-closure grasp can be achieved.

I. INTRODUCTION

Continuum manipulators [10] are usually defined to be

those featuring continuous backbone structures, inspired by

invertebrate structures found in nature, such as octopus arms

[6] and elephant trunks [1]. The OctArm manipulator [2]

is such a continuum manipulator. Unlike a conventional

manipulator in the form of an articulated arm with a gripper,

there is no divide between the “arm” and “hand/gripper” for

a continuum manipulator to manipulate objects, and thus,

finding a grasping configuration, where a continuum robot

wraps around an object, cannot be decomposed into two

separate problems of finding an end-effector location and

then solving the inverse kinematics, which is well studied.

Autonomous grasping with a continuum manipulator is less

studied. Recently some methods have been introduced for

finding grasping configurations [3], [4], [7], [12] for a

continuum manipulator, given the target object, but the whole

process of autonomous grasping from object identification to

force-closure grasps have not been conducted experimentally.

In this paper, we describe how autonomous grasping can

be achieved using an OctArm manipulator on a table top to

perform 2.5 dimensional movements. Target objects also sit

on the table top and are automatically detected. Based on

the detection results, all valid planar grasping configurations

and the associated paths are automatically generated for

Fig. 1. Experimental set up with a table top OctArm, overseen by an
overhead Microsoft Kinect

the robot to execute. Finally the robot lifts the object after

grasping to show force-closure grasps. Fig. 1 shows the

experimental set up with a table top OctArm, overseen

by an overhead Microsoft Kinect. In section II we first

introduce the manipulator model, the target object model

as the result of automatic detection, and the corresponding

planar grasping configurations. In sections III to V, we

classify planar grasping configurations for the table-top Oc-

tArm and describe conditions of existence of such grasping

configurations, as well as how to find the associated paths for

grasping. In section VI, we present the experimental results

of autonomous grasping, and in section VII, we conclude the

paper and discuss future research.

II. MANIPULATOR, OBJECTS, AND GRASPING

CONFIGURATIONS

We introduce the manipulator structure, parameters, target

object model based on automatic detection, and characteris-

tics of “grasping” configurations in the following.

A. OctArm manipulator

The OctArm robot is a concatenation of three constant-

curvature sections. A configuration of the OctArm

can be expressed by the controllable variables as

[κ1, s1, φ1, κ2, s2, φ2, κ3, s3, φ3]
T , which are degrees of free-

dom that can be directly changed by the OctArm actuators

[2]; κi and si, i=1, 2, 3, are the (constant) curvature and

length of section i respectively, and φi is the rotation angle

from the plane of section i-1 to that of section i. Note that

κi can be either negative, zero, or positive.
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With the above controllable variables, an OctArm manip-

ulator can change shape by bending, extending, contracting,

and twisting each (circular) section. For each section i, its

frame is set up as shown in Figure 2(a). Denote the two end

points of section i as the base point pi−1 and the tip point

pi. The base of section i is the tip of section i − 1. The

section i’s frame is formed at pi−1 with the zi axis tangent

to the section i’s curve at pi−1. Note that the circle center of

section i, pic, always lies on the xi axis, with ∓1/κi being

the x coordinate in the i-th frame. Note also that pic lies on

the positive xi axis if κi < 0 and on the negative xi axis if

κi > 0. When κi = 0, section i is a straight-line segment

starting from the origin pi−1 and along the zi axis. Given

the position of the base point pi−1, and the κi, si, and φi

values, the position of the tip point pi of section i can be

computed [2].

The base of the robot is set at p0 with z0 axis tangent

to section 1’s curve, see Figure 2(b). Note also that two

adjacent sections i-1 and i are connected tangentially at the

connection point pi−1, i.e., the two sections share the same

tangent at pi−1.

Fig. 2. An OctArm manipulator: (a) one section and its frame; (b) a planar
arm configuration

Note that because of its mechanical structure, section 1 of

the OctArm can bend either along the +z0 axis or the −z0

axis but not both. See Figure 3. If φi=0 for all the sections,

i.e., there is no twisting from one section to the next, the

OctArm is planar with all sections on the same plane – see

Figure 2(b).

Fig. 3. Section 1 of an OctArm manipulator (in black): (a) bending along
+z0 axis, where sections 2 and 3 are also shown in one case; (b) bending
along −z0 axis

B. Object model and grasping configurations

With an overhead camera (i.e., a Microsoft Kinect), an

object on a table top (along the x0z0-plane of the manip-

ulator) can be detected as a polygonal mesh region on the

image. Fig. 4 shows an example. A bounding circle with

center c and radius r can be obtained to indicate the location

and size of the object. The bounding circle is roughly the

minimum bounding circle, which can be found in linear

time [5]. To take advantage of the passive compliance of

the OctArm for force-closure grasps (see, for example, [9]

for a concise survey), the bounding circle can be made

smaller by slightly cutting into the object region. However,

nonprehensile manipulation tasks, such as dragging an object

on the table, may not require form or force closure grasps.

�

�

�

�

Fig. 4. An example object in the manipulator workspace (left) as detected
by the camera (right)

Either section 3 of the OctArm or both section 2 and

section 3 of the OctArm can be used to grasp an object

in a planar configuration (by wrapping around the bounding

circle of the object) with arm sections all on the x0z0-plane

of the manipulator.

If both section 2 and section 3 of the OcrArm are used

to “grasp” the object, either the two sections wrap around

the bounding circle of an object polygon together, or two

circles, one bounding and the other partially bounding, can be

used to provide a tighter wrap. Figure 5 shows an example,

where the OctArm, with its three sections colored in black,

red, and green respectively, wraps around a triangular object.

The triangular object is wrapped around based on either

one bounding circle (i.e., its circumcircle with three contact

points)– see Figure 5(a) and (b), or its minimum bounding

circle and a partial bounding circle that are internally tangent

(which result in four contact points between the arm sections

and the object) – see Figure 5(c) and (d). The case with two

bounding (and partially bounding) circles creates a tighter

wrap with smaller circles and more contact points. In the

Appendix, we show how to find such two circles to produce

a tighter grasp for a given (sensed) polygonal object region

in general.

For convenience, we name the bounding and partially

bounding circles of an object polygon found above the object

circles in the rest of the paper. We now define a grasping

configuration as an OctArm configuration such that either

section 3 or both sections 2 and 3 of the OctArm wrap around

the object circle(s) in a planar configuration.
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(a) arm wrapping object (b) one bounding circle

(c) arm wrapping object (d) two bounding circles

Fig. 5. A triangular object wrapped around by the OctArm with its three
sections colored in black, red, and green respectively. (a) and (b): based on
the circumcircle; (c) and (d) based on two tangent circles bounding (and
partially bounding) the object

III. CLASSIFICATION OF GRASPING CONFIGURATIONS

Since each OctArm section is part of a circle, we denote

the circle corresponding to section i as Ci. In the rest of this

paper, we draw C1 black, C2 red, and C3 green.

Since the sections are connected tangentially, the follow-

ing condition is necessary for the existence of a grasping

configuration for a planar OctArm, given either one object

circle cir or two (internally tangent) object circles cir1 and

cir2:

• C1 is tangent to C2, and one of the following holds:

– C2 is tangent to C3, and C3 coincides with cir (i.e.,

section 3 wraps around the object);

– C2 and C3 both coincide with cir (i.e., both sections

2 and 3 wrap around the object);

– C2 and C3 coincide with either cir1 and cir2

respectively or cir2 and cir1 respectively.

We further classify the relations among section circles and

object circles into ten cases as shown in Table I, satisfying

the above conditions.

In the next two sections, we describe how to find grasping

configurations in the ten cases in Table I in two steps:

1: find circle solutions, i.e., solve for OctArm section

circles for each case;

2: find feasible grasping configurations, i.e., for each circle

solution, check if the values of planar OctArm variables

κi and si satisfy the respective value ranges of the

OctArm.

IV. CIRCLE SOLUTIONS

We can further classify the ten cases in Table I into cases

with infinite circle solutions, which are cases (1)–(4), and

cases with finite circle solutions, which are cases (5)–(10).

We now describe how to find their solutions in turn.

TABLE I

TEN CASES OF ALL POSSIBLE RELATIONS AMONG CIRCLES OF ARM

SECTIONS AND THE OBJECT

Case #Obj. Cir. Circle Relations

(1) 1 C2 externally tangent to both C1 and C3

C3 coincides cir

(2) 1 C2 externally tangent to C1

C2 contains and internally tangent to C3

C3 coincides cir

(3) 1 C2 internally tangent to C1

C3 coincides cir and externally tangent to C2

(4) 1 C2 internally tangent to both C1 and C3

C3 is inside C2 and coincides cir

(5) 1 C1 externally tangent to C2

C2 and C3 coincides cir

(6) 1 C1 internally tangent to and contains C2

C2 and C3 coincides cir

(7) 2 C1 externally tangent to C2

C2, C3 coincide cir1, cir2 respectively

(8) 2 C1 externally tangent to C2

C2,C3 coincide cir2, cir1 respectively

(9) 2 C1 internally tangent to and contains C2

C2, C3 coincide cir1, cir2 respectively

(10) 2 C1 internally tangent to and contains C2

C2, C3 coincide cir2, cir1 respectively

A. Cases of infinite circle solutions

Given object circle cir with center (xc, zc) and radius r,

there are at most two possible solutions in each of cases

(1)–(4) for a given κ1 and κ2, if they satisfy:

1

|κ1|
+

2

|κ2|
+ r ≥

√

(xc +
1

κ1
)2 + zc

2 (1)

Condition 1 describes the requirement that the total length

of the OctArm is enough for section 3 to (partially) wrap

around cir.

Figure 6 shows two example solutions for each case for

κ1 < 0, corresponding to the center of C1 on the positive

x1 axis. Similarly, for a given κ1 > 0 (corresponding to the

center of C1 on the negative x1 axis), there are two possible

solutions, and Figure 7 shows the solutions for case (1). Note

that in both Figure 6 and Figure 7, C3 (or cir) is the same

green one at the same location.

Now we describe, for each of cases (1)–(4), given κ1 and

κ2 satisfying equation (1), how to find the centers of C2

corresponding to the two solutions respectively. Let r1 =
1/|κ1| and r2 = 1/|κ2|. Let

d12 =

{

r1 + r2 cases (1) and (2)

r1 − r2 cases (3) and (4)
(2)

d23 =

{

r2 + r cases (1) and (3)

r2 − r cases (2) and (4)
(3)

d13 =

√

(xc +
1

κ1
)2 + zc

2 (4)

d12, d23, and d13 are lengths of the three sides of the

triangle formed by the centers of C1, C2, and cir (which is

also C3).
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(a) case 1 (b) case 2

(c) case 3 (d) case 4

Fig. 6. Two possible types of circle solutions for cases (1)–(4), for κ1 < 0

Fig. 7. Two possible types of circle solutions for case (1), for κ1 > 0

Figure 8 shows an example, where pic is the center of Ci.

Let R be the radius of the circumcircle of the triangle, and

let:

D1 = d12 + d23 + d13

D2 = d23 + d13 − d12

D3 = d13 + d12 − d23

D4 = d12 + d23 − d13

then R satisfies:

R =
d12d23d13√
D1D2D3D4

(5)

Let α be the counterclockwise angle from the x1 axis to

the vector pc − p1c (see Figure 8). Thus,

α = atan2(zc, xc +
1

κ1
). (6)

Based on the Laws of Cosine and Sine, the angle β of the

triangle, as shown in Figure 8, can be uniquely determined,

satisfying

cosβ =
d2
12 + d2

13 − d2
23

2d12d13
(7)

and

sinβ =
d23

2R
(8)

Fig. 8. The triangle connecting three circle centers

With α and β known, the two solutions of p2c (the center

of C2) can be obtained:

x2c = − 1

κ1
+ d12cos(α ± β), z2c = d12sin(α ± β). (9)

When β = 0, i.e., the three circle centers are on the same

line, there is a unique solution for κ2 and p2c in each of

cases (1)–(4). Figure 9 illustrates those solutions for each

case, again for the same cir as in Figures 6 and 7.

(a) case 1 (b) case 2

(c) case 3 (d) case 4

Fig. 9. Circle solutions where the three centers are on the same line

Since the planar OctArm’s workspace is mostly the 1st and

2nd quadrants of its base xz frame, we assume cir can only

be in the 1st and 2nd quadrants. If cir crosses the positive z
axis, then case (4) is not possible so that its corresponding

solutions should be ruled out.

Although there are at most a pair of possible solutions

for specific κ1 and κ2 satisfying equation (1) for a given

cir, since κ1 and κ2 are variables for the OctArm robot and

can change values continuously in their respective intervals:

κi ∈ [κi,−max, κi,max], which includes κi = 0, i=1, 2, there

can be infinite pairs of solutions for each of the cases (1)–(4).

We now classify the possible infinite circle solutions into

8 types, determined by the two types of solutions for each
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of the four cases (1)–(4). The second part of the attached

movie clip shows possible circle solutions via animation.

There is one additional possible circle solution for each

case, when the three circle centers are on the same line

(Figure 9).

Note that for each case of Figure 6, because the section

1 of the OctArm can only bend along one direction of z0

axis (Figure 3), each circle solution corresponds to only

one possible configuration of section 1 and section 2 of

the OctArm (while section 3 can have different lengths, i.e.,

s3 values). Note also that among the two possible solutions

in each case of Figure 6, the solution on the right requires

longer lengths for section 1 and section 2.

B. Cases of finite solutions

Let us first consider cases (5) and (6). If cir is inside the

1st quadrant of the robot base x0z0 frame, in either case (5)

and case (6), the solution is unique as derived below. Since

C1 is tangent to cir, the following holds:

(r1 − xc)
2 + z2

c = (r1 ± r)2 (10)

which yields

r1 =
x2

c + z2
c − r2

2(xc ± r)
(11)

where “+” is for case (5) and “−” is for case (6). Thus

|κ1| = 1/r1 is solved. Because cir is in the first quadrant,

C1 has to be in the first quadrant, and thus its center is on the

positive x axis with coordinates (r1, 0), and κ1 = −1/r1.

If cir is inside the 2nd quadrant of the robot base x0z0

frame, i.e., xc < 0, in either case (5) and case (6), the

solution is also unique, and the derivation can be done

similarly, based on the following equation:

(−r1 − xc)
2 + z2

c = (r1 ± r)2 (12)

The result is:

r1 =
x2

c + z2
c − r2

2(−xc ± r)
(13)

where “+” is for case (5) and “−” is for case (6). Note that

r1 > 0, since xc < 0. C1 has to be in the 2nd quadrant, its

center is on the negative x axis with coordinates (−r1, 0),
and κ1 = 1/r1.

If cir crosses the z0 axis, i.e., in two quadrants, then

case (6) is not possible. There are two solutions for case

(5), corresponding to the center of C1 on the positive and

negative x axis respectively. The two solutions are expressed

in equation (11) and equation (13) with the “+” sign.

For cases (7)–(10), the solution(s) of C1 can be obtained

similarly as those for case (5) and case (6) above, where

the radius ro1 of cir1 will be used in equation (11) and

equation (13), with “+” for case (7) and “−” for case (9),

and the radius ro2 of cir2 will be used in equation (11) and

equation (13), with “+” for case (8) and “−” for case (10).

Figure 10 shows example solutions for cases (7)–(10).

Note that even though C1 cuts through the larger object

circle before touching C2 in cases (8) and (9), they still

represent possible cases since an arbitrary object does not

fill its bounding circle entirely.

(a) case 7 (b) case 8

(c) case 9 (d) case 10

Fig. 10. Circle solutions with two given object circles

C. Tangent points between circles

In the above, we described how to find the unknown

centers of section circles in tangent. The tangent point

between any two tangent circles can be easily found, given

the two circle centers. Let pi, i = 1, 2, be the tangent point

between Ci and Ci+1. pi is in fact the end point of section i
of the OctArm.

For cases (1)–(4) and cases (7)–(10), the position vector

of pi can be obtained as

pi =
ri

ri ± ri+1
(p(i+1)c − pic) + pic

where “+” and “−” signs are for externally and internally

tangent circles respectively. Note that r3, the radius for C3,

is the same as the radius of the object circle that C3 coincides,

and p3c is the same as the position of the center of the object

circle. In cases (7)–(10), r2 and p2c are also determined by

an object circle.

For cases (5) and (6), there is only one tangent point p1,

with the position vector:

p1 = (
r1

r1 ± r
)(pc − p1c) + p1c

where “+” and “−” signs are for case (5) and case (6)

respectively.

V. EXISTENCE OF GRASPING CONFIGURATIONS AND

ASSOCIATED PATHS

Since the OctArm parameters κi and si for each section i
have finite ranges of valid values: [κi,−max, κi,max], which

includes κi = 0, and [si,min, si,max], with si,min > 0, the

solutions of section circles described above will result in

valid grasping configurations if the corresponding parameter

values are within those valid ranges.

As noted above, pi is the end point of section i of the

OctArm. Let θi be the angle from the xi axis to the xi+1

axis (see Figure 2). Thus, the length si of section i satisfies

si = ri|θi|. Knowing the position of pi in the i-th frame, θi

can be obtained easily via inverse kinematics [8].

If κi is within its range [κi,−max, κi,max], the following

constraints must be satisfied so that at least one circle
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solution in each different case yields a valid grasping con-

figuration:

• The size of object polygon is appropriate:

If object is in the 1st quadrant of the base x0z0 frame,

0 <
1

r
≤















κ3,max cases (2), (3)

|κ3,−max| cases (1), (4)

min(κ2,max, κ3,max) case (5)

min(|κ2,−max|, |κ3,−max|) case (6)

0 <
1

ro1
≤















κ2,max case (7)

|κ2,−max| case (9)

κ3,max case (8)

|κ3,−max| case (10)

0 <
1

ro2
≤















κ3,max case (7)

|κ3,−max| case (9)

κ2,max case (8)

|κ2,−max| case (10)

If object is in the 2nd quadrant of the base x0z0 frame,

0 <
1

r
≤















|κ3,−max| cases (2), (3)

κ3,max cases (1), (4)

min(|κ2,−max|, |κ3,−max|) case (5)

min(κ2,max, κ3,max) case (6)

0 <
1

ro1
≤















|κ2,−max| case (7)

κ2,max case (9)

|κ3,−max| case (8)

κ3,max case (10)

0 <
1

ro2
≤















|κ3,−max| case (7)

κ3,max case (9)

|κ2,−max| case (8)

κ2,max case (10)

If object crosses the base +z0 axis,

0 <
1

r
≤







max(|κ3,−max|, κ3,max) cases (1)–(3)

max(min(|κ2,−max|, |κ3,−max|),
min(κ2,max, κ3,max)) case (5)

0 <
1

ro1
≤

{

max(|κ2,−max|, κ2,max) case (7)

max(|κ3,−max|, κ3,max) case (8)

0 <
1

ro2
≤

{

max(|κ3,−max|, κ3,max) cases (7)

max(|κ2,−max|, κ2,max) case (8)

The object polygon perimeter has to satisfy the following:

aπr ≤
{

s3,max cases (1)–(4)

s2,max + s3,max cases (5), (6)

aπro1 ≤
{

s2,max cases (7), (9)

s3,max cases (8), (10)

aπro2 ≤
{

s2,max cases (8), (10)

s3,max cases (7), (9)

where a ∈ (0, 2] is a coefficient determining how much the

object circle has to be wrapped. Its value depends on the

shape, size, and material characteristics of the target object,

as well as on the task of manipulation. For example, the task

of pulling an object could require a smaller a than that of

picking up the object.

• Object is reachable:

s1,min ≤ r1θ1 ≤ s1,max for all cases (14)

s2,min ≤ r2θ2 ≤ s2,max cases (1)–(4) (15)

Based on the above, all valid grasping configurations

can be found automatically given either (a) cir with center

position and radius, or (b) cir1 and cir2 with their centers

and radii.

For each valid grasping configuration, the next task is to

find a valid and preferrable optimized path for the manip-

ulator to reach the grasping configuration. This is the task

of path planning for the continuum manipulator, and we use

the real-time algorithm in [12] to find a near-optimal path

for the OctArm to reach the grasping configuration for the

target object while avoiding other objects.

VI. EXPERIMENTAL VALIDATIONS

We have tested our methods for achieving autonomous

grasping with the OctArm in the experimental set up (shown

in Fig. 1). The OctArm is pneumatically actuated with

pressure regulators connected to each part of the inflatable

base, middle, and tip sections. The pressure regulator signals

are computed based on a MATLAB/Simulink block diagram,

which is connected to the arm via a Quanser data acquisition

system.

The parameters of the OctArm have the following ranges:

• κ1 ∈ [−0.0189, 0.0228] (1/cm), s1 ∈ [28, 42] (cm),

• κ2 ∈ [0.0327, 0.0379] (1/cm), s2 ∈ [26.5, 44] (cm),

• κ3 ∈ [−0.045, 0.0808] (1/cm), s3 ∈ [32.5, 53.5] (cm).

It should be noted that the OctArm limits for section curva-

tures and section lengths are dependent on each other and a

minimum or maximum curvature cannot be achieved along

with minimum or maximum length, and vice versa.

Figure 11 shows the valid grasping configurations found

for four objects by our analytical approach and based on the

above OctArm parameter ranges: (a)–(c) have only unique

OctArm solutions respectively, and the types of solutions are

indicated; (d)–(f) show a cir that has three OctArm solutions

of different types. Clearly, given a cir, the types and number

of valid grasping configurations vary, but it is possible to

have any type of grasping configuration among cases (1)–

(6).

Similarly, for two object circles cir1 and cir2, the types

and number of valid grasping configurations vary, but a valid

one can be of any of the cases (7)–(10).

Figure 12 shows the autonomous execution of the OctArm

to reach a grasping configuration, grasp, and lift an object

while avoiding another object. The target object was a box

wrapped in a foam so that it has a large size and irregular

shape, which was difficult for a conventional gripper to pick

up. The objects were first detected automatically based on the

RGB-D data obtained from the overhead Kinect camera, next

the grasping configuration was automatically generated, and

finally the path connecting the initial configuration of the arm
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(a) unique case 2 sol. (b) unique case 5 sol.

(c) unique case 6 sol. (d) case 1 solution

(e) case 3 solution (f) case 4 solution

Fig. 11. Grasping configurations: (a)–(c) show the unique solutions
for three different object circles respectively, and (d)–(f) show the three
solutions for the one object circle specified in (d).

to the grasping configuration was automatically generated,

which also avoids the other object. The final lift of the object

(see Figure 13) shows that the grasp was a stable and force-

closure grasp. Figure 14 shows the OctArm automatically

avoiding two objects before getting ready to reach a grasping

configuration for one of the objects (i.e., the blue one).

(a) Avoiding an obstacle (b) Before grasping

(c) Grasping (d) Lifting

Fig. 12. Snapshots of the OctArm automatically grasping and lifting an
object while avoiding an obstacle

The attached video shows three operation cases. Case

(1) is the autonomous grasping and lifting operation of the

object in Figure 13, case (2) is the autonomous obstacle

avoidance operation as shown in Figure 14, and case (3) is

the autonomous operation of grasping and lifting an object

while avoiding another object, as shown in Figure 12. The

object In the grasping cases, it is interesting to note that the

target object moved after the initial contact with the arm. The

Fig. 13. Result of lifting the object after grasping

(a) Avoiding an obstacle (b) Between obstacles

(c) Avoiding the other obstacle (d) Wrapping

Fig. 14. Snapshots of the OctArm to avoid two objects before getting
ready to wrap one object

ability of the manipulator to deal with such moveable objects

shows a significant advantage over rigid-link manipulators

with grippers, which may not be able to properly grasp an

object that is not fully static. It should be noted that the

object was lifted about 2 inches off the surface, though this

ability varies depending on the shape, size, and weight of

the object being grasped.

The time costs for the three cases shown in the video are

presented in Table II. Clearly the combined time cost for

object detection, grasping configuration generation, and path

generation is very small, even with obstalce avoidance in

cases (2) and (3), comparing to the execution time of the

OctArm, which shows that our algorithms are suitable for

real-time operation. The time cost for generating a grasping

configuration is mainly the time for generating an object

circle from the detected object point cloud, and the time

cost to generate a grasping configuration based on the object

circle takes 1 ms or less since our presented approach is

analytical. The time cost for generating a path depends on

the complexity of the environment: in operation case (2),

there were two objects to avoid, which resulted in a higher

time cost. Note that the time delay was added before lifting

an object to ensure a complete grasp before lifting started.

It should be noted that the execution time of the OctArm

could be reduced with closed-loop control. However, with the

control of the OctArm being open loop, the slower arm speed

was able to ensure that inertia would not change the desired

pose of the arm with respect to the objects, especially when

the arm was in close proximity of an obstacle. Significantly

increasing the speed of the motion could lead to situations
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TABLE II

TIME COSTS OF THE THREE OPERATIONS SHOWN IN THE ATTACHED

VIDEO

Op. Obj. Detect. Grasp Gen. Path Gen. Execution Delay

(1) 180 ms 11 ms 5 ms 28 s 4 s

(2) 180 ms 5 ms 25 ms 60 s n/a

(3) 180 ms 11 ms 20 ms 136 s 4 s

when the inertia of the manipulator would create unintended

collisions and deviations from the planned paths and cause

failures of the operations.

VII. CONCLUSIONS

This paper presents the entire process of achieving au-

tonomous grasping of table-top objects by a table-top Oc-

tArm manipulator under overhead vision sensing in real time.

It provides a complete analysis to characterize all possible

planar grasping configurations for the table-top OctArm

manipulator with a fixed base for any given object in the

workspace. The experimental results confirm the effective-

ness of our real-time methods for autonomous grasping. Our

next step is to extend experimental testing to non-planar

grasping [3] to realize more flexible autonomous object

manipulation by a continuum manipulator. Adding closed-

loop control to the manipulator is also part of our future

work.

APPENDIX

In general, given an object represented as a polygonal

mesh, we can find two internally tangent bounding (and

partially bounding) circles cir1 and cir2 of a cross section

of the object, i.e., an object polygon, which are for a tighter

grasp/wrap (by the OctArm) of the object, in the following

way:

• Find the minimum bounding circle [5], cir1, with center

c1 and radius r1.

• Pick a vertex v1 of the object polygon on cir1 as the

internal tangent point between cir1 and a smaller circle

cir2 (to be found).

• Pick a vertex v2 of the object polygon that is not on

cir1, and find the point c2 on line segment v1c1 that is

equidistant to v1 and v2; c2 is then the center of cir2,

and the radius r2 of cir2 equals to the length of v1c2.

Figure 15 shows an example object polygon, and cir1 and

cir2. Clearly, the choice of cir2 is not generally unique.

However, there are only a finite number of possible cir2’s,

which can all be easily found by a program, repeating the

above steps. For each cir2 found, there are two possible

grasping configurations of the OctArm (that has a fixed

base), by having C2 coincide either cir1, the larger object

circle, or cir2, the smaller object circle. These two possible

configurations can then be checked for force- or form-closure

grasps. Figure 16 shows two possible grasping configurations

regarding two object circles.

(a)

Fig. 15. An object polygon and a pair of its bounding (and partially
bounding) circles for grasping

(a) (b)

Fig. 16. Two possible ways of grasping with respect to two object circles:
(a) C2 and C3 coincide the large cir1 and the small cir2 respectively; (b)
C2 and C3 coincide the small cir2 and the large cir1 respectively.
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