
  

  

Abstract— A major challenge for robot localization and 

mapping systems is maintaining reliable operation in a 

changing environment.  Vision-based systems in particular are 

susceptible to changes in illumination and weather, and the 

same location at another time of day may appear radically 

different to a system using a feature-based visual localization 

system.  One approach for mapping changing environments is 

to create and maintain maps that contain multiple 

representations of each physical location in a topological 

framework or manifold. However, this requires the system to 

be able to correctly link two or more appearance 

representations to the same spatial location, even though the 

representations may appear quite dissimilar. This paper 

proposes a method of linking visual representations from the 

same location without requiring a visual match, thereby 

allowing vision-based localization systems to create multiple 

appearance representations of physical locations. The most 

likely position on the robot path is determined using particle 

filter methods based on dead reckoning data and recent visual 

loop closures.  In order to avoid erroneous loop closures, the 

odometry-based inferences are only accepted when the inferred 

path’s end point is confirmed as correct by the visual matching 

system. Algorithm performance is demonstrated using an 

indoor robot dataset and a large outdoor camera dataset.   

 

I. INTRODUCTION 

A key issue facing vision-based Simultaneous 
Localization And Mapping (SLAM) systems operating in 
real-world environments is the management of  appearance 
change. Any localization and mapping system used for 
navigation will have to update stored location appearance 
data in order to remain relevant and continue providing both 
high precision and sufficient recall over extended periods of 
time. Furthermore, since many environments exhibit cyclic 
change (for example, between day and night; or winter and 
summer) a map could usefully contain more than a single 
representation of each location.   

A number of vision-based localization methods have been 
proposed that allow multiple visual representations of the 
same location.  These systems assume that change is gradual 
and thus localization is always possible [1] or simply do not 
attempt to link dissimilar appearances together spatially or 
topologically, instead performing localization in appearance 
space [2].  The question remains of how to match dissimilar 
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environmental configuration in the face of imperfect 
localization. 

In this paper we demonstrate a method of linking 
dissimilar appearance representations together, by using 
available visual loop closure information (when available) in 
combination with knowledge of robot odometry. Our system 
uses a two-step process: a prediction step where a 
probabilistic particle filter method is applied to robot 
odometry to infer possible location matches, and a validation 
step in which the inferred links are confirmed by the visual 
localization system when it is able to successfully localize. 
This allows the system to create complex representations of a 
location over time and has the potential to improve graph 
connectivity (see Fig. 1) and enable more effective map 
pruning. 

 

Figure 1.   (a) Example path segment where visual matching succeeds at 

either end but fails due to appearance change in between. (b) Our system 

exploits the visual matches and dead reckoning information to link the 

intervening locations despite the visual changes. 

 

The performance of the method is demonstrated in two 
studies. The first study uses an indoor dataset where parts of 
the environment experience visual change and demonstrates 
the system both correctly linking locations based on dead 
reckoning even when there is no visual similarity and not 
erroneously linking locations when a new path is traversed.  
The second study uses a larger outdoor dataset where over a 
14km run our system increases the number of linked 
locations by an order of magnitude whilst the average linking 
error only increases by 15%. 
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The paper proceeds as follows. In Section 2, we provide 
an overview of current approaches to managing map 
information in changing environments and performing 
localization under drastic appearance change. Section 3 
describes the odometry-driven inference method. Section 4 
describes the experimental setup used to test the algorithm, 
and Section 5 presents results showing odometry-driven 
inference on a large outdoor dataset. Section 6 discusses 
these results and directions for future work. 

II. BACKGROUND 

Management of changing environments is a crucial part 
of any real-world persistent navigation system.  One method 
of managing changing environments used by laser-based 
mapping systems is to create multiple maps of the 
environment and use a selection process to choose the best 
one at a given time.  In [3], an environment is represented by 
multiple maps that are updated on different timescales, 
allowing transient changes to be filtered out whilst static 
elements remain.  The optimal number of configurations for 
each local submap [4] can be determined using fuzzy k-
means clustering.  If a map of the static part of the 
environment is available, semi-static maps [5] can be used for 
localization.  These temporary maps are deleted when they no 
longer match the current observation sufficiently well.  

A number of vision-based SLAM systems provide map 
updating capabilities to manage changing environments.  
Map updates can be achieved via node pruning in a 
topological grid [6] or using biologically inspired models of 
memory to decide what information gets remembered and 
what gets forgotten [1].  The map update assumes the robot is 
correctly localized and thus any new sensor information is 
due to environmental change rather than pose error.  Another 
vision-based approach avoids the localization problem 
entirely by not attempting to match dissimilar appearances of 
the same location [2]; instead the system creates and localizes 
within plastic maps of visual experiences.  Similarly to [7] 
this can be considered a form of localization and mapping in 
appearance space. 

When an environment has changed so much that existing 
image matching techniques fail, it is possible to use 
topological or sequential data to infer information about 
locations regardless of appearance.  Sequences of images 
have been used to match locations despite drastic changes in 
lighting and weather [8].  Topological information can also 
be used to correct data association errors caused by faulty 
loop closures [9, 10].   

The system presented in this paper follows the final 
approach of using topological information to infer 
information about locations.  This system (denoted CAT-
Graph+) matches dead reckoning along a robot path and uses 
occasional visual loop closures to determine whether to 
accept or reject the odometry-based inferences thereby 
providing a mechanism to generate multiple representations 
of locations within the environment. CAT-Graph+ does not 
perform SLAM, but is intended to work alongside an existing 
SLAM system, enhancing its capability to build persistent, 
coherent maps. 

III. CAT-GRAPH+ 

In this section we introduce the method for linking visual 
representations of location via odometry-driven inferences 
and demonstrate its use with the existing topological SLAM 
system CAT-Graph [11, 12]. Although CAT-Graph+ was 
developed to work closely with CAT-Graph and many of its 
key elements are similar, it is capable of being decoupled and 
used with other SLAM systems: the only requirements are 
access to odometry and to the reported loop closures of the 
underlying SLAM system. The system can either be run as a 
parallel process to the underlying SLAM or during an offline 
update phase. 

CAT-Graph+ is designed to operate in environments 
where successful visual loop closures are rare due to 
significant appearance change to the environment. Using an 
odometry-only particle update scheme, CAT-Graph+ can 
propagate information from an assured visual loop closure 
along a known path.  The knowledge of current location 
combined with a dead reckoning sensor allows the system to 
continue to predict its location along routes that are visually 
unrecognizable due to environmental change.  If these 
predictions are validated by a later visual loop closure, the 
system map is then updated with the inferred links. 

A.  Initialization 

CAT-Graph+ uses a particle filter to predict the current robot 
location when visual information is unavailable. The particles 
are initialized whenever a visual loop closure is reported by 
the underlying SLAM system (see Fig. 2(a)). These particles 
represent the localization probability and are distributed 
according to the reported loop closure position with added 
Gaussian noise. Each particle pi is assigned to a particular 
spatial location xi and has an associated weight wi.    

B.  Particle Propagation and Weight Updates 

The position xi
k
 of each particle pi at time step k is sampled 

from the motion model distribution with probability: 
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C.  Odometry Hypothesis and Location Prediction 

At each time step, the odometry particle filter performs a 
hypothesis calculation that represents the best guess of the 
inference system as to the current location. Each particle pi is 
assigned a location hypothesis value determined by the sum 
of all the particle weights within a user-defined radius d

odo
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The particle pi with the largest P
k
 is considered to be the most 

likely match, and represents the “best guess” of the location 
at the current time: 
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The maximum hypothesis value P
k
 is tested to see if it 

exceeds a user-defined threshold T
odo

, that is, to see if: 

                                   
odo

k TP >  (5)  

If Equation 5 holds we have a potential candidate for an 
odometry-inferred match (see Fig. 2(c)). However, this 
candidate will not be confirmed as a true match until the 
inferred odometry path has been validated by the visual 
localization system. 

D. Path Validation 

Since unrestricted odometry propagation will inevitably 
lead to inaccurate linking, the odometry particle filter can 
only form links when the odometry hypotheses are proven to 
be valid by the visual system.  The validation step happens at 
each visual loop closure, and all the odometry hypotheses 
since the previous loop closure are assessed for inclusion in 
the map (see Fig. 2(d)).   

The path validation process is as follows. Suppose LC is 
the spatial location of the visual loop closure. The hypothesis 
calculation from Section C is repeated, but comparing the 
odometry particles against the successful loop closure: 
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Once again we test to see if P
path

 is greater than a certain 
user-defined threshold value: 

                                 
pathpath

TP >  (7)  

If Equation 7 holds, then we consider that CAT-Graph+ 
has correctly predicted the robot’s path. The inferences that 
successfully passed the validation step described in Section C 
above are accepted as true map links.  If P

path
 does not exceed 

T
path

, all the odometry inferences from the path section are 
discarded. Regardless of the outcome of the path validation 
step, the odometry filter will also be re-initialized as 
described in Section A above.   

An assumption implicit in CAT-Graph+ is that at least 
some loop closures can be achieved in parts of the 
environment.  These loop closures are then used to validate 
the intervening odometry-driven inferences.  This is a weaker 
requirement than in other systems where confirmed loop 
closures are generally required at a specific location before 
the visual representations at that location will be linked.  

CAT-Graph+ is not susceptible to false positives 
generated by incorrect visual loop closures, as the reported 
visual loop closure needs to match the location predicted by 
the odometry. If it does not, no odometry linking will occur. 

It is not sufficient to assume that two path segments that 
start and end at the same place traverse the same locations in 
between (see Fig. 6(a) for a simple counter-example).  
However, CAT-Graph+ also requires that Equation 5 holds at 
each time step. This requirement is to ensure that the robot 
actually is traversing the same path.   

 

Figure 2.  CAT-Graph+ schematic.  (a) Initialization: when a visual loop 

closure occurs, particles are selected from the location distribution. (b) 

Propagation: particle positions are updated according to the odometry 

input. (c) Prediction: the current location is predicted from the particle 

distribution.  (d) Validation: when a loop closure occurs, if the prediction 

location matches the actual (visually confirmed) location, the predicted path 

between loop closures is validated.  The particles are then re-initialized (as 

in (a)) and the process repeats. 

IV. EXPERIMENTAL SETUP 

In this section we describe the two datasets used, ground 
truth measures, image pre-processing and parameter values.  
In these experiments CAT-Graph provided the underlying 
visual loop closure system, and both datasets had been tested 
using CAT-Graph or its predecessor CAT-SLAM [13]. 
Baseline operation capabilities under visually stable 
environmental conditions were known: CAT-Graph/CAT-
SLAM achieved recall of over 70% at 100% precision on the 
indoor environment (Dataset 1)[12] and over 20% at 100% 
precision on the outdoor environment (Dataset 2) [13] . These 
results are considered “state of the art” in visual SLAM 
systems and so form an excellent baseline for comparison 
with CAT-Graph+ results. 

A. Dataset 1: Pioneer dataset 

The first dataset was an indoor dataset in which the 
environment was changed in a controlled manner. The 
experiment was designed to answer three specific questions, 
namely:   

• Does CAT-Graph+ correctly link locations via 
odometry when visual matching fails?  

• Does CAT-Graph+ erroneously link locations on 
different paths even when the paths start and end at 
the same place?   

• What is the effect of parameter variation?   

1) Testing Environment 
The selected testing area was an indoor office 

environment (see Fig. 4(b)). A sample test path is shown on 
the floor plan in Fig. 3. On the first traversal, the environment 
surrounding the robot path was kept clear, whilst on the third 
traversal part of the environment (shaded blue in Fig. 3) was 
manually changed by adding and removing large amounts of 
furniture (see Fig. 4(c)). The second traversal started and 
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ended at the same points as the first and thi
took a different path in between.   

Figure 3.  Sample test paths. Runs 1 & 3 follow the s

different visual conditions. Run 2 follows a different 

start and end points. 

Figure 4.  The Pioneer 3DX data capture platform (a), 

section of the test environment (b), test environment w

layout (c). 

2) Robot Platform and Image Processin

The experimental data was collected 
Pioneer 3DX robot (see Fig. 4(a)) driven by
The Pioneer's wheel odometry was logged a
were captured at 7.5fps using a Basler A310
panoramic mirror, and were unwrapped 
panoramic view. This camera system wa
identical to that used in an earlier experimen
maintain equivalent baseline operation, 
sufficient appearance change occurred, 
restricted to a forward-facing patch of 26
representing a field of  view comparable to m
cameras of approximately 100° × 45°. This 
tested to ensure that operation in the sta
environment was not significantly affected w
in the altered parts of the environment 
difficult. Features were extracted from the im
SURF [14]. 

3) Ground Truth 

Metric ground truth was provided usi
Hokuyo URG04LX laser scanner logged at
this data was processed using AMCL [1
framework [16]. A previously generated occ
was used.  This occupancy grid map was g
SICK LMS-291 laser scanner, and proc
Gmapping algorithm [17] to 5cm resolution. 

third traversals, but 

 

e same path but under 

nt path with identical 

 

a), panoramic view of a 

t with changed furniture 

sing  

d using an Adept 
 by remote control.  
d at 10 Hz. Images 
310fc camera and a 
ed to 960 × 240 
was chosen to be 
ent [12] in order to 

n, but to ensure 
, the image was 
261 × 101 pixels, 

to many perspective 
is image patch was 
static parts of the 

d whilst localization 
nt was sufficiently 
e image patch using 

using data from a 
 at 10 Hz. Offline, 
[15] via the ROS 
ccupancy grid map 

s generated using a 
ocessed using the 
n.   

B. Dataset 2: St Lucia dataset 

A larger, outdoor dataset was
applicability of CAT-Graph+ 
environments.  

1) Testing Environment 

The outdoor dataset was first 
provides visual and GPS data from
suburban streets in St Lucia, Quee
period. Due to the varying times
traversed, there is significant appea
parts, making it an ideal test datase
paper used a section of this datase
visually different but spatially con
approximately 3.6km route (see Fig. 

Figure 5.  Outdoor test environment consist

suburban road network.  (Imagery ©2012 Cn

GeoEye, Sinclair Knight Me

2) Image Processing 
The camera data was captured

Logitech QuickCam Pro 9000 web
pixel resolution and at an average o
sample images). Features were ex
patch using SURF [14]. 

3) Ground Truth 
GPS was logged at 1Hz and us

simulated odometry input was ge
interpolation of GPS data as in [18]. 

C. System Parameters 

The key visual algorithm paramet
Graph were selected to mirror publis
on the same environments. An exc
outdoor dataset, where due to the c
dataset the visual hypothesis thresho
to increase the number of loop clos
lists the additional parameters r
inference – namely the thresholds 
odometry validation. These four 
threshold values and two distance va
and dh in CAT-Graph. Aside from th
was chosen to be 10.0m in both cas
were simply matched to their visual a

TABLE I.  CAT-GRAPH+ 

Parameter Indoor dataset

Todo 0.8 

dodo 1.0 m 

Tpath 0.8 

dpath 10.0 m 

 

as used to evaluate the 
 to varied types of 

st presented in [18], and 
from a car driven around 
ueensland over a 3 week 
es of day the loop was 
earance change in certain 
set for CAT-Graph+. This 

aset that consisted of four 
onsistent loops around an 
g. 5).   

 

isting of a 3.6km loop around a 

 Cnes/Spot Image, DigitalGlobe, 

Merz & Fugro). 

ed from a forward-facing 
eb camera, at 640 × 480 
e of 15 fps (see Fig. 1 for 
extracted from the image 

 used for ground truth. A 
generated using a linear 
 

eters and values for CAT-
lished results [12] and [13] 
xception was made in the 
 challenging nature of the 
hold Th was lowered to 0.6 
losure candidates. Table I 
 required for odometry 
s and distance values for 

ur new parameters (two 
 values) have analogues Th 
 the parameter d

path
, which 

cases, the other parameters 
al analogue. 

 PARAMETER LIST 

set Outdoor dataset 

0.6 

5.0 m 

0.6 

10.0 m 
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V. RESULTS 

In this section we present results for the indoor and outdoor 
datasets. As CAT-Graph+ is a tool for linking locations based 
on localization information from an independent source, the 
focus here is on the connectivity of the graph created instead 
of conventional measures such as precision-recall curves. For 
this reason we measure our results in terms of the number of 
“possible” matches; that is, using the associated ground truth 
we define all map nodes within dh of each other as “possible” 
matches, and then see what proportion of possible links are 
matched by either the visual SLAM system or the odometry-
driven inference system. 

A. Dataset 1: Indoor Pioneer dataset 

1) Linking of visually changed locations 

The results of running CAT-Graph+ along the same path 
through a visually changed environment are displayed in Fig. 
6 (b) (this illustration omits Run 2 for clarity). Of the 499 
possible links in this environment, the vision system matched 
44 (or 9% of the total) with a maximum error of 0.35m and 
CAT-Graph+ matched 370 (75% of the total) with a 
maximum error of 0.53m. 

 

Figure 6. Visual (red diamond) and odometry-driven (black circle) matches 

imposed on ground truth for the 3 runs. (a) No incorrect odometry links are 

created when the system takes different paths between two locations. (b) 

Odometry links form when the environment has changed and visual 

matching fails. 

2) Different paths, same end points 

The results of running CAT-Graph+ along two different 
paths that start and end at the same points is displayed in Fig. 
6(a) (this illustration omits Run 3 for clarity). It can be seen 
that CAT-Graph+ correctly identifies that these two paths 
take different routes between the start and end points and thus 
does not link them.  This scenario demonstrates why a global 
validation check (using only T

path
 and d

path
) is not sufficient 

and a probabilistic path prediction technique is also required. 

3) Parameter Variation 

A parameter variation test was performed for the indoor 
dataset. Each parameter was varied whilst keeping the other 
parameters at the baseline values listed in Table I to test the 
effect of parameter selection on the system. Table II lists the 
range tested for each parameter.  

TABLE II.  RANGE OF PARAMETER VALUES 

Parameter Indoor dataset 

Todo 0.1 – 0.9 

dodo 0.5 m – 20 m 

Tpath 0.1 – 0.9  

dpath 0.5 m – 50 m 

 

The experiment was run 4 times with each parameter 
combination to account for the randomness inherent in the 
particle filter. Over all such experiments, visual matching 
successfully linked (on average) 3.68% of all possible 
matches with an average error of 0.2 m (max error of 0.96m). 
The results across all the parameter combinations account for 
(on average) 28.14% with an average error of 0.21m (max 
error of 0.82m). The results showed a clear increase in map 
connectedness using odometry and visual matches over using 
odometry matches alone, regardless of the parameter 
combination. Obviously, good odometry matching would be 
impossible without good visual matching to provide 
initialization and validation checks; the usefulness of the 
odometry-only inference is to take good visual matching and 
apply it more broadly across an environment. 

B. Dataset 2: St Lucia dataset 

In this section we present results from the outdoor St Lucia 
dataset to demonstrate the system behavior in a larger, 
outdoor environment. Fig. 7(a) displays the number of visual 
loop closures and odometry links as a percentage of the total 
possible number of graph links. The odometry links 
substantially increase the connectivity of the resulting graph. 

 Of particular note is the effectiveness of CAT-Graph+ over 
repeated traverses of the same loop, as the proportion of 
odometry-driven loop closures does not decrease with the 
number of traverses. 

 

Figure 7.  St Lucia experiment:  (a) percentage of all possible links matched 

by visual (red stripes) and odometry (black solid) matching; (b) error (in m) 

of visual (red diamond) and odometry (black circle) matches 

Fig. 7(b) displays the error distribution for both visual links 
and odometry links for the St Lucia datasets (average and 
maximum errors are displayed).  In each case, the average 
error in the odometry matches is similar to the visual loop 
closure error, but due to the dependence of odometry links on 
visual loop closures, the maximum odometry match error 
consistently exceeds the maximum visual loop closure error.  

  Fig. 8 displays an example of a location correctly linked by 
CAT-Graph+ that was not matched using the visual loop 
closer.  The CAT-Graph+ links provide the ability to perform 
later processing such as increasing graph connectivity or 
building up representations of each physical location using 
multiple image representations. Furthermore, later processing 
on the images could be performed as an additional 
confirmation of correctness. 
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Figure 8.  Sample of location matching by CAT-Graph+.  Changed lighting 

conditions and parked cars parked make visual recognition challenging. 

VI. DISCUSSION AND FUTURE WORK 

The work presented here provides a method for generating 

links between representations of a given physical location, 

even when the appearance of the location has changed 

significantly. This method complements existing SLAM 

systems as it makes different assumptions and offers a 

different capability, namely the ability to link dissimilar 

appearance representations. One application is the ability to 

develop more complex models of how location appearances 

change over time, using a method such as [1]. Another use 

for an odometry-driven inference model is to maintain the 

performance of the underlying vision recognition system by 

providing feedback about the new appearance of the world.  

The updated information can be integrated into the visual 

system’s maps to minimize system degradation over time. 

The increased graph connectivity that CAT-Graph+ 

provides also has the potential to improve optimal path 

planning in a topological mapping system such as CAT-

Graph. For example, in the case of the St Lucia dataset a 

system that only linked the visual loop closures might plan 

and follow a path several hundred meters in length greater 

than one created by CAT-Graph+. 

Future work with CAT-Graph+ seeks to test two key 

assumptions. As noted previously, the first assumption is 

that there are at least some visual loop closures within the 

environment. In challenging environments this may not be 

the case. One option to resolve this issue is to use a matching 

technique that is more robust to variation in the environment 

and we are currently investigating this possibility. The 

second key assumption is the dependence on a reliable 

odometry input. We note that, whilst poor odometry will 

lead to fewer inferred matches, it will not lead to false 

positive matches due to the required validation step, which 

discards the inaccurate predictions. Further investigations 

are underway to test performance in more challenging real 

world conditions with noisy odometry.  
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