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Abstract— This paper describes about a method of clothing
classification using a single image. The method assumes to be
used for building autonomous systems, with the purpose of
recognizing day-to-day clothing thrown casually. A set of Gabor
filters is applied to an input image, and then several image
features that are invariant to translation, rotation and scale
are generated. In this paper, we propose the descriptions of the
features with focusing on clothing fabrics, wrinkles and cloth
overlaps. Experiments of state description and classification
using real clothing show the effectiveness of the proposed
method.

I. INTRODUCTION

In daily environments, people use various types of cloth-

ing. One of the effective contributions of robots will be to

have the ability of doing laundry because people have an

excess of tedious housework to accomplish. In this paper,

image feature descriptors for classifying clothing are intro-

duced. These methods are useful for building autonomous

systems, with the purpose of recognizing day-to-day clothing

thrown casually. Fig. 1 shows the problem that we address.

The purpose of this research is to correctly guess a class

of clothing from one grayscale image that captures a single

article of clothing.

Compared to the approaches used for the recognition of

solid objects, soft objects such as clothing pose significant

challenges because of their variable shape and appearance.

Although recently developed image features [8] [11] [13]

provide highly reliable results for the purpose of object

detection, these features cannot be used for clothing because

there is an assumption that the transformations are limited

only to solid objects.

However, some robotics researchers who build robots

to perform cloth manipulation have proposed the use of

various types of image features. Kakikura et al. [7] proposed

selecting a target clothing by using color information and

achieved success for an isolated task. Willimon et al. [24]

also proposed clothing classification. In their isolation phase,

graph-based segmentation algorithm was used for deciding

target clothing. Ono et al. [16] targeted square-shaped cloth

and proposed a description of the bending state based on its

contours. Cuén-Rochı́n et al. [4] proposed action selection for

manipulating deformable planar objects. By using physical

model, a real robot straightened a square-shaped cloth. Kita
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Fig. 1. Concept of our clothing classification. One grayscale image is
input, and proper fabric goods is selected from the list of clothing given in
advance.

et al. [9] utilized a 3D deformable model, and obtained a

correspondence between the model and an input pointcloud

that was captured by a trinocular stereo camera.

In this previous work, type of the clothing was given

in advance. Otherwise, knowledge that was useful for the

target identification was simple such as material color.

Thus, if there is a recognition module using more generic

information, it is useful for developing a general-purpose

autonomous system for applications such as daily assistance

and industrial laundry. From this viewpoint, other researchers

have succeeded in classifying clothing type. Osawa et al. [17]

achieved this type of classification while handling clothing.

The work by Abbeel et al. [14] demonstrated impressive

results and recognized clothing categories by using sensory

information while handling the clothing.

If there is a recognition module that enables a robot to

identify each clothing without touching, it will be possible

to plan an effective handling motion that responds to the

clothing. For this reason, we aim to distinguish each clothing

without performing any handling. In this paper, we propose

image feature descriptors focusing on clothing fabrics, wrin-

kles and cloth overlaps. Only an image that captures target

clothing for recognition is needed. Their distinctiveness is

proven by means of experiments that use real images.

The paper is organized as follows: Section II explains

how to extract the information of fabrics, wrinkles and cloth

overlaps. Section III introduces feature descriptors and their

organization. Section IV shows experimental results, and

Section V presents the conclusions of this paper.
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Fig. 2. Multi-scale & multi-orientation filtering. In the maximum magnitude image, the brighter pixel indicates a pixel which reacts in the larger scale
parameters. In the maximum orientation image, the difference of pixel color indicates that of the direction of each wrinkle region.

II. FILTERING FOR DESCRIBING CLOTHING FABRICS,

WRINKLES AND CLOTH OVERLAPS

Our previous paper [21] explains a method for understand-

ing the state of clothing. Multi-scale and multi-orientation

filtering are applied to an input image that captures a place

of clothing, and these features are extracted and analyzed.

In this section, an updated method is described because the

filtering process is essential for the generation of feature

descriptors, which is the main contribution of this research.

The leftmost figure in Fig.2 shows clothing that is placed

on the floor. This image shows a shirt with long sleeves,

which is made out of cotton. We can divide this clothing

image into several parts: (i) cuffs or other specific parts,

(ii) wrinkles and (iii) cloth overlaps. The information in (i)

tells us what type of clothing it is, but the result depends

on the placement of the clothing. In contrast, (ii) and (iii)

are always observable, and could provide us with useful

information. Moreover, the type of wrinkle depends on the

clothing fabrics. From this reason, we extract and analyze

them.

A. Outline

We focus on the fact that the contrast in the image region

with respect to the clothing shows gradual changes in the

frequency domain. In other words, some parts of the clothing

can have stripe-shaped states due to soft material.

To analyze this property, a set of Gabor filters is applied

to an input image. This approach is similar to a filter bank

[6] [19], the most frequent application of which is texture

classification [12]. In our case, because we assume that

wrinkles and cloth overlaps in images are derived from a

combination of waves that have directionality and gradual

frequency, Gabor filters are suitable to describe them. In the

filtering, the parameters of the wave profile change, and then,

helpful information is extracted from the convolution results.

For example, high frequency coefficients often highlight con-

tours and cloth overlaps, whereas low frequency coefficients

persistently respond to wrinkles.

Fig.2 shows the concept of the filtering. Various kernel

functions of Gabor filters are prepared, and the filtering

results are used for generating two proposed images. One in-

termediate image is called the “maximum magnitude image”

for the remainder of this paper. Each pixel in this image has a

value that is related to a Gaussian variance, which provides

a maximum magnitude during the scale space. Another is

called the “maximum orientation image”. Each pixel in this

image has a value that is related to an angle that indicates,

on a scale, the maximum reaction among the Gabor filter.

Especially, maximum magnitude image is an original point

of this research. The generation process is similar to the MR8

filter bank [23] halfway, but we produce an image with 8

shades of gray, each picture cell has a frequency coefficient.

This image is powerful to describe the difference of clothing

fabrics and the type of wrinkles that depend on fabrics and

textile form.

B. Gabor Filter

A 2-dimensional Gabor filter [25] is a filter in which

the direction and frequency can be arbitrarily changed. The

filter has often been applied to scale space analysis. The

corresponding equation is as follows:

g(x, θ, σx, σy) =
1

√
2πσxσy

ea cos(2πfxθ + p), (1)

where

a = −
1

2

(

x2

θ

σ2
x

+
y2

θ

σ2
y

)

,

xθ = (x − ux) cos θ + (y − uy) sin θ,
yθ = −(x − ux) sin θ + (y − uy) cos θ.

(2)

The f is frequency domain, which depends on the variance

value σ. The variables x and y are the coordinates of the

present pixel, and ux and uy are the center coordinates of

the Gaussian distribution. The variables σ2

x and σ2

y are the

variances; both of them are represented as σ in the rest of
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this paper. Thus, f(x, θ, σx, σy) is represented as f(x, θ, σ).
The variable p is a variable of the phase, and we substitute

π/2 into it because the edge detector should be generated in

our case.

C. Multi-scale and multi-orientation filtering

As pre-processing to generate a maximum magnitude

image and a maximum orientation image, Gabor filters are

applied with a constant σ and a variable θ in eq. (1). Because

a Gabor filter has directionality, the resulting images contain

various edges that rely on the θ setting.

A maximum orientation image Iori(x) is generated from

these results. The pixel information is written as follows:

Iori(x) = argmaxF1(x, θ), (3)

where x denotes the pixel coordinates and θ denotes the in-

clination angle of a kernel function in equation (2). The F1(·)
is a continuous function concerning θ and the neighboring

pixels.

F1(x, θ) =

∫

w

f(x)g(x + x0, θ)dx0, (4)

where f(x) indicates an input image and w denotes the

window size of the convolution.

In practice, Iori(·) is calculated from the discrete values

(θ1, θ2, · · · , θK). After pre-processing with varying θ, an

image is generated by collecting the highest radiance value

at the same pixel coordinates in the set of filtered images. In

the case of clothing, ellipse-like regions are extracted along

wrinkle directions.

In contrast, for generating a maximum magnitude image,

the following procedure is needed. First, the multi-orientation

filtering mentioned above is performed, and then, we obtain

an image whose pixels are the sum of the result of the Gabor

filtering with varying θ. (In Fig.2, ’Sum of Gabor’ indicates

it.) We call the image ’temporal image’ in the rest of this

section.

By varying σ, a set of temporal images is generated. The

maximum magnitude image consists of pixels that indicate

the maximum radiance in the temporal images. We define a

pixel of the maximum magnitude image Imag(x), which can

be written as the following:

Imag(x) = argmaxF2(x, σ), (5)

where

F2(x, σ) =

∫

θ

∫

w

f(x)g(x + x0, θ, σ)dx0dθ. (6)

The window width w and the frequency are decided from

the σ value automatically.

To provide the same emphasis to different frequency

octaves, some techniques have been proposed. For example,

Rubner and Tomasi [18] applied log-Gabor filters [1] because

the centers of these filters in the frequency domain are

equally spaced in a log polar representation of the spectrum

of an image. We do not use this representation; instead, our

frequency intervals are determined by reference to Rubner’s

results.

Fig. 3. Examples of the pre-processing. Image (A) shows position and
orientation distribution. Wrinkles are divided into a group of ellipses, and are
colored depending on the orientation. Image (B) shows density of wrinkles
and reaction to fabrics. Pixel radiance shows the difference of maximum
frequency in the pixel. Image (C) shows extracted cloth-overlaps. Red pixels
is belonging to upside, and blue pixels are of downside.

Fig. 4. Feature description

III. FEATURE DESCRIPTION

In this section, we propose three types of features. All of

them are invariant to translation, rotation and scale.

A. Pre-processing

First, the clothing region is extracted from the input image.

In the present form, we apply the mean shift-based image

segmentation [2], and remove the pixels that belong to the

background. After that, as shown in the upper left figure

in Fig.3 and 4, a circle that sufficiently includes the target

clothing is defined. The radius RC and its center coordinates

CC are used in the process for making features, as described

next.

B. Position and orientation distribution of wrinkles (DST-W)

One of the most important and specific piece of infor-

mation that describes the state of clothing is the wrinkles.

Because this research mainly targets crumpled clothing, as
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Fig. 5. Histogram calculation from parameter distribution

shown in Fig.2 ’original image’, we obtain the distribution

of wrinkles in a maximum orientation image, which we are

able to use to describe the wrinkle distribution.

First, all of the wrinkle regions are divided and approx-

imated into a group of ellipses. Then, to define a wrinkle-

based descriptor, the following three criteria are used (see

also Fig.4(A)):

1) Proportion of RC to the long axis of a wrinkly ellipse.

2) Proportion of RC to LE , where LE is a line segment

connecting CC with the center of the ellipse CE .

3) Relative angle θE between line segment LE and the

long axis of the ellipse.

All of the wrinkles that were extracted from an image are

parameterized according to the above three criteria, and then

the results are projected into the 3D parameter space. After

that, as shown in Fig.5, the space is regarded as divided

into small voxels, and number of points in each voxel are

counted. As a result, we can obtain a frequency histogram

to describe the clothing in the image.

C. Clothing fabric and wrinkle density (CF-WD)

Clothing used in daily living is made of various material

such as cotton, polyester, acrylic. In addition, there are many

types of clothing fabric, such as pile and shirring. Extracting

these characteristics from the visible surface of clothing is

a great help in classifying them. Moreover, when analyzing

the organization of wrinkles, clothing fabric is dominant to

the organization. A maximum magnitude image makes it

possible to describe these elements distinctively.

A feature descriptor derived from clothing fabric and

wrinkle density is generated from all of the pixels that form

the clothing region in a maximum magnitude image. There

are three criteria as follows (see Fig.4(B)):

1) The proportion of RC to LD, where LD is the distance

between CC and an arbitrary pixel D that is in the

clothing region with coordinates (x, y).
2) Pixel brightness FD(x, y).
3) The sum of the difference between D and its

surrounding 8 neighbors, in other word, DD =
∑

i,j∈W (FD(x, y) − FD(x + i, y + j)).

These results are translated into a frequency histogram by

the same procedure as described in the above subsection.

Fig. 6. A set of cloth images with simple variation in the form

D. Existence of cloth-overlaps (OVLP)

For making a feature out of the state of cloth overlaps, a

pre-processing that estimates the up and down relationship

of clothing edges and boundaries is performed.

The procedure is as follows: Pick up a certain temporary

image (Sum of Gabor in Fig.2) which is filtered by a

relatively high frequency σ, and an edge line is detected

from the image. The edge lines become candidates for the

boundaries of the cloth overlaps. After that, a narrow band is

set around the edge lines, and then the brightness difference

between the regions divided by the line is calculated at an

original image. In our implementation, which is described in

the next section, we selected an image that is filtered by a

σ = 4.0 Gaussian, and we set the band-width to 5 pixels.

An example of the extraction result is shown in Fig.3(C).

From these results, we obtain the following three types of

features (see Fig.4(C)):

1) The proportion of RC to LO, where LO is the distance

between CC and an arbitrary pixel O, which is in the

clothing region with coordinates (x, y).
2) The value EO, which is the level of overlapping and

its side (up or down).

3) The relative angle θO between the boundary edge and

LO.

These results are also translated into frequency histograms

by the same procedure as described in the above subsection.

IV. PROOF WITH EXPERIMENTS ON CLOTHING

CLASSIFICATION

A. Basic evaluation of the proposed feature descriptions

Fundamental experiment was performed to investigate the

function of feature descriptions against to clothing image. For

each clothing shown in Fig. 10, three patterns of configura-

tions were used: (1) an article of clothing that was folded into

a square, (2) one corner of the clothing was turned down and
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Fig. 7. Similarity values of clothes with different shape

(3) three rectilinear wrinkles were added. For each patterns,

four series of placements that rotated the clothing at intervals

of 90 degrees were captured. Fig. 6 shows an example that

is of an article of clothing as shown in Fig. 10, (11). Images

in the middle row shows clothing images with turning down

one corner, and images in the lowest row shows wrinkled

clothing with rotational changes.

Image pairs were generated according to the following

three rules: (A) Same type of clothing but one is folded into

a square and another has a turnback, (B) Different type of

clothing but they have turnback in the same position and

(C) Same type of clothing and they have turnback. How-

ever, their placements (rotation angle) are different. Feature

descriptions were generated from between two images, and

cosine similarity between them were calculated. Fig. 7, 8 and

9 show a part of results. Three descriptions CF-WD, DST-

W and OVLP were indicated in these graphs. Horizontal

axis presents serial number of the pairs, and vertical axis

is similarity value. Fig. 7 shows the result of (A), which

shows that highly similar values were presented on CF-

WD regardless of whether turnback exists. Fig. 8 shows the

result of (B), which compared different type of clothing. It

could expect to show low similarity. Although there were

inter-individual variability, CF-WD and DST-W indicated

strong tendency of it comparing with OVLP. Fig.9 shows

the result of (C). CF-WD had high similar values and OVLP

was second. Meanwhile, DST-W indicated basically low

similarity value because it was influenced the difference of

placement.

These results conducted the following discussion. CF-WD

is suitable for clothing classification under the condition that

an article of clothing was thrown casually. This is because

all of similarity values were over 0.95 in Fig. 7 while values

were lower than 0.9 in Fig. 9 that compared different type

of clothing. CF-WD focuses on the difference of fabric

patterns and wrinkles instead of a shape of clothing. In the

meanwhile, because DST-W involves the information of the

shape of clothing, it may suit better for judgement of the

shape classification. This is our future work.

B. Settings for the experiment of clothing classification

An image database that included 21 types of clothing was

prepared, so that experiments could be performed on clothing

classification. Fig.10 shows the clothing. In regard to the top
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Fig. 8. Similarity values of the different type of clothes
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Fig. 9. Similarity values of clothes with different placement

rank of the figures, the list of clothing is as follows: (1)

turtleneck (100% cotton), (2) parka (100% polyester), (3)

sweater (100% cotton), (4) cardigan (100% acrylic fablic),

(5) one-piece suit (100% cotton), (6) T-shirt ( 100% cotton),

(7) hand-towel ( 100% cotton). Both (7) and (8) are pile

fabric but their spreading size was different.

About 200 to 300 images the size of which was VGA

(640×480 pixels) were captured from each piece of clothing

by throwing it randomly, so that the total number of images

in the database was over 6200. The distance between a

camera and a cloth was about 900 [mm]. Fig.11 shows some

images in the dataset. There were various state of clothing

that were scrumpled or smoothed.

The color information was not used in the following

experiments.

C. Additional feature descriptor

Besides the feature descriptors that were presented in

section III, we attempted to implement some other repre-

sentations.

Scale space extrema (SSEX): The well-known image

feature descriptor SIFT [13] uses a scale space extrema

for generating features with scale invariance. Based on the

success of previous research that copes with object recogni-

tion, we also uses scale space extrema observed at clothing

region. The procedure is as follows: First, pyramid images

are generated from an input image. Next, a set of DoG

(Difference of Gaussian) filters are applied to the images,

and then a minimum or maximum value at 3×3 pixels from

3 consecutive pyramid images is extracted.

After that, a feature descriptor is generated from all of the

extrema with three criteria listed next:
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Fig. 10. The list of clothing used for generating image database

Fig. 11. Examples of image in database

1) Scale value of the extrema.

2) Proportion of RC to a distance between CC and the

position of the extrema.

3) Proportion of RC to a distance from the present

extrema position to the nearest extrema position.

These results are translated into a frequency histogram by

the same procedure as other descriptors described in Section

III.

Contour (CNTR): Using the pre-processing of feature

descriptions that are mentioned above, we finish a regional

extraction of the clothing. Thus, contour information can be

used as one feature.

First, a two-valued image that divides a clothing region

and a background region is prepared. Next, a log polar

transformation is applied to the image for generating the

θ − r graph with centering at CC . A distance histogram is

calculated by discretizing the θ axis, and a feature description

is achieved by registering the values of the histogram bins.

TABLE I

CLUSTERING RESULT ( CF-WD DESCRIPTOR, 10 CLUSTERS)

Cluster No 1 2 3 4 5 6 7 8 9 10

(6) T shirt 0 64 5 0 0 0 0 47 112 1

(7) Towel 58 0 2 3 82 85 12 47 1 9

(8) Towel 2 0 0 0 28 24 95 1 11 72

(9) Shirt 0 1 119 124 0 0 0 2 0 0

TABLE II

CLUSTERING RESULT ( SSEX DESCRIPTOR, 10 CLUSTERS)

Cluster No 1 2 3 4 5 6 7 8 9 10

(6) T shirt 40 68 1 71 5 28 1 30 0 2

(7) Towel 3 10 34 2 23 11 102 28 53 33

(8) Towel 10 3 12 2 23 6 14 52 14 64

(9) Shirt 3 30 41 15 10 92 16 5 16 1

D. Feature analysis based on unsupervised clustering

Five types of features (DST-W, CF-WD, OVLP, SSEX,

and CNTR) were generated from respective images in the

database. That is, one clothing image was translated into five

different features. For investigating the capability of clothing

classification, clustering by means of repeated bisection [22]

was applied to these features. If the features are suitable for

clothing classification, then this clustering will make well-

divided clusters.

In this trial, the dimensions of the feature descriptor were

set at 64, 512 and 4096. Each dimension was derived from a

resolution of voxels in 3D feature space; in other words,

if each axis is divided by n, then the feature dimension

becomes n×n×n. We attempted an application with n = 4,

n = 8 and n = 16, respectively.

Table I and Table II shows certain clustering results

by using about 1000 features from 4 classes of clothing.

The clustering results of the CF-WD and SSEX descriptor,

when setting the number of clusters to 10, are represented.

Obviously, the CF-WD descriptor shows specific clusters
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Fig. 12. Clustering results (n = 4)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100  120  140  160  180  200

s
c
o

re

the number of cluster

DST-W
CF-WD

OVLP
SSEX
CNTR

DST-W CF-WD
CF-WD OVLP

Fig. 13. Clustering results (n = 8)

that rely on the pre-defined clothing class, which is notable

because the CF-WD descriptor tends to make a similar

feature when it is applied to the same type of fabric. Clusters

5 and 6 both contained towels that are made of pile fabric.

The clustering result is evaluated by using the following

equation:

score =
1

m

m
∑

i=1

Nmax

Nc

, (7)

where m is the number of clusters. Nc is the number of the

features that are contained in each cluster, and Nmax is the

number of features that make up the greatest potion of the

cluster. If most of features in one cluster are derived from one

type of clothing, Nmax approaches Nc, and score becomes

high. As another case, the score becomes the highest when

the number of clusters is set to that of the input features.

Fig.12 and 13 show the score transition depending on

the number of clusters. Not only single features, but also

some combinations of features were applied by simply

concatenating them. The highest score was found in the case

of CF-WD at n = 8. We also tested an n = 16 division, but

the result was almost the same as 8.

Fig.14 shows some images, the maximum orientation

images and their enlarged views. According to the difference

in the materials and the types of fabric, various tendencies not

only about the pixel radiance but also about the composition

of wrinkles were found.

Fig. 14. Examples of maximum magnitude image

E. Classification using supervised learning

Using all of the 21 classes shown in Fig.10, the discrim-

inative function for clothing classification was generated by

means of a multi-class SVM (Support Vector Machine). We

used LIBSVM [26], and the type of classifier and kernel

function were C-SVC and RBF, respectively. Because every

description method represented in this paper makes one

feature from one image, classifying features is synonymous

with the classifying clothing images in dataset.

For evaluating the learning result, N -fold cross validation

was applied. Fig.15 shows the accuracy rate of validation

when changing N from 2 to 10. As mentioned in section

IV.B, about 200 to 300 images were prepared for one class.

After they were divided into N groups, one group was

used as test data, and the rest of them were training data.

CF-WD was the best feature, and the next in line was

OVLP. A combination of these descriptors was also tried,

and the best accuracy was achieved when CF-WD, OVLP

and SSEX were used simultaneously. The best accuracy rate

was 99.07%.

As another comparison, we also implemented a popular

method of generic object recognition proposed by Csurka et

al. [3]. It is based on “Bag of Keypoints” approach whose

keypoint is provided by SIFT descriptor. In our experiments,

the number of visual words was determined by means of

grid search, and the best number was 1000 that resulted 79%
accuracy rate. This was by no means a bad rate, but there

was about 20% difference from the proposed method.

F. Robustness to illumination changes

The original dataset introduced in the top of this section

was captured in the illumination level of 760[lx]. To in-

vestigate the robustness to illumination changes, additional

datasets were prepared. Two datasets that included about 100
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images in each of 21 types of clothing were captured under

the illumination conditions of 1060[lx] and 1400[lx].
First, the two datasets were examined by using a dis-

tinctive function trained by the original dataset. SVM was

used for the training with the same setting described in

the previous subsection. The accuracy rate according to 10-

fold cross validation was 85% in 1060[lx] case, and 84% in

1400[lx] case. From these results, illumination change gives

a certain level of influence to the result of feature calculation.

On the other hand, when all of three datasets were used

for generating a distinctive function, the accuracy rate was

97.2%. This result tells us that we can perform high-accuracy

classification by using a distinctive function trained from

images that are captured with various degrees of illuminance.

V. CONCLUSIONS

In this paper, we proposed a state description method for

clothing that are randomly placed in a daily environment.

A set of Gabor filters are applied to an input image with a

range of frequencies and directions, and useful information

such as wrinkles and cloth overlaps are detected based on the

maximum magnitudes and orientations. Using these results,

several feature descriptors are generated. In the experiments

on clothing classification that used real images, we achieved

more than a 99% success rate.

Future work would include more feasible information

about the state of the clothing, which would be added to the

classification method. After that addition, we will attempt

to develop a method that enables a daily assistive robot

to handle daily laundry. Collaboration this research with

clothing detection method [20] would have a important role

for such application.
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