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Abstract— In this paper, we explore the challenging 1-to-N
map matching problem, which exploits a compact description
of map data, to improve the scalability of map matching
techniques used by various robot vision tasks. We propose a first
method explicitly aimed at fast succinct map matching, which
consists only of map-matching subtasks. These tasks include
offline map matching attempts to find a compact part-based
scene model that effectively explains each map using fewer
larger parts. The tasks also include an online map matching
attempt to efficiently find correspondence between the part-
based maps. Our part-based scene modeling approach is unsu-
pervised and uses common pattern discovery (CPD) between the
input and known reference maps. This enables a robot to learn
a compact map model without human intervention. We also
present a practical implementation that uses the state-of-the-
art CPD technique of randomized visual phrases (RVP) with
a compact bounding box (BB) based part descriptor, which
consists of keypoint and descriptor BBs. The results of our
challenging map-matching experiments, which use a publicly
available radish dataset, show that the proposed approach
achieves successful map matching with significant speedup and
a compact description of map data that is tens of times more
compact. Although this paper focuses on the standard 2D point-
set map and the BB-based part representation, we believe our
approach is sufficiently general to be applicable to a broad
range of map formats, such as the 3D point cloud map, as
well as to general bounding volumes and other compact part
representations.

I. INTRODUCTION

Map matching is a technique in which a robot vision

system creates a map of its local surroundings and compares

that local map to N global maps previously constructed

from prior sensor data. This technique is the foundation

for a wide spectrum of robot vision applications, including

viewpoint localization, change detection, alignment, merg-

ing, map segmentation, and multi-robot mapping [1]–[3].

These applications are built on a common pipeline consisting

of stages for extracting features from maps (e.g., SIFT,

shape context, and GIST), performing visual indexing and

map database searches to find correspondences (e.g., kd-

trees, LSH), and map matching to find correspondence sets

(points, lines, primitives, and so on) that are inliers to an

affine, homography, or geometric transformation, such as by

RANSAC matching [4]–[6]. Another key challenge relates

to the recent explosion in global efforts to develop scalable

map-building systems. To deal with map matching of such

large-scale maps, it is necessary to exploit the compact
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Fig. 1. Compared to existing direct map matching (“dMM”) methods,
our method indirectly matches between the local map and each of the
global maps, while using a known reference map as the intermediary. In
offline work, a common pattern discovery (“CPD”) process translates an
input local/global map to a compact part-based map descriptor (“MD”),
by extracting representative parts (colored bounding boxes) that effectively
explain an input map from a known reference map. In online work, a
descriptor matcher (“DM”) rapidly matches between the compact part-based
maps.

description of data [3]. To this end, most of previous efforts

have focused on compact description of feature data (that is,

the first and second stages) relying on PCA or other advanced

dimension-reduction techniques. Thus far, few studies have

focused on the third stage, the map-matching stage using the

compact description of map data, which we address in this

paper (Fig. 1).
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Our research in this paper is motivated by two independent

techniques derived from the field of computer vision: part

model [7]–[9] and common pattern discovery [10]–[12].

First, our basic observation is that a part model is a powerful

discriminative model, in which a scene is explained by its

parts and their configuration, and a part model can also

be compact if a scene is explained by fewer larger parts.

Second, we are inspired by the recent progress in common

pattern discovery (CPD), which is the mining of common

patterns among different scenes. Our key approach is to

use the CPD techniques as a method for mining fewer

larger parts that effectively explain an input scene from a

known reference map. In contrast to existing supervised part

models that rely on pre-trained part detectors, our CPD-based

approach learns a compact part model with fewer larger parts

in an unsupervised manner, which enables a robot to learn a

compact map model without human intervention.

To develop the above map-matching framework, we must

address the following questions.

1) How to efficiently mine the parts?

2) How to compactly describe each part?

3) How to efficiently match between part-based maps?

To efficiently mine the parts, randomized visual phrase

(RVP) [11], which is a recently developed CPD technique, is

adapted for the map data. From our unsupervised modeling

standpoint, RVP has advantages over existing CPD tech-

niques in that RVP does not rely on a good segmentation

technique, and it does not require a priori knowledge of

how many common patterns exist in the scene. To com-

pactly describe each part, we exploit traditional bounding

box (BB) based object annotation and knowledge transfer

and compactly represent a part as a BB. To efficiently

match part-based maps, we can make online matching fast

and succinct (descriptor matcher (DM) in Fig.1) because

the map matching becomes a low dimensional problem of

matching between bounding boxes, and because the CPD

can be done in offline as a map-building task. The results

of our challenging map-matching experiments, which uses a

publicly available radish dataset [13], show that the proposed

approach achieves successful map matching with significant

speedup and a compact description of map data that is tens

of times more compact.

A. Overview of proposed method

The major undertaking of this work can be summarized

as follows. (a) We propose a first method explicitly aimed at

fast succinct map matching, which purely consists of map-

matching subtasks. These tasks include offline map matching

(“CPD”), which attempts to explain an input map by fewer

larger parts, and online map matching (“DM”), which effi-

ciently finds correspondence between the part-based maps.

(b) Our part-based scene modeling is unsupervised and uses

CPD between the input and a known reference maps, which

enables a robot to learn a compact map model without human

intervention. (c) We present a practical implementation that

exploits randomized visual phrase (RVP), a state-of-the-art

CPD technique, and employs compact bounding box (BB)

-based object annotation. Although this paper focuses on the

standard 2D point-set map and the BB-based part represen-

tation, we believe our approach is sufficiently general to be

applicable to a broad range of map formats, such as the 3D

point cloud map, as well as to general bounding volumes

and other compact part representations.

B. Relation to Other Work

In the field of computer vision, various types of part

models, part detectors, and part appearance models with

rigid/deformable templates have been studied with and with-

out learning [7], [8], [14]. In [7], a computational part-

based model is introduced as a descriptive model of pic-

torial structures in an object matching task. In this model,

templates of object’s parts (such as hair, eyes, mouth for

face model) and their configuration are used to determine

whether or not the target object is present in the scene. In

the above context, template matching techniques have been

studied in vision applications using a part-based model, such

as object detection/recognition, object comparison, object

scaling, and so on. In [8], a framework is presented for

joint categorization and segmentation of object images. In

this framework, a number of interest points are extracted

and compared against the codebook of patches of local

appearances: probabilistic voting and refinement are then

done to segment the object from the background. In [14], an

object detection system based on a mixture of multiscale de-

formable part models is presented. This system, which relies

on discriminative training of classifiers, achieves state-of-the-

art results in object recognition tasks. In [15], a framework is

presented for weakly supervised discovery of common visual

structure in highly variable cluttered images by introducing

deformable part-based models. In [16], a method is presented

for specifying which region model is assigned to each part

by introducing a latent variable. However, existing part-based

methods primarily deal with a supervised setting in which a

scene category label is explicitly given for training the part

detectors. Those supervised approaches are not well suited

for our autonomous robot scenarios in which no category or

class label is available as training data; rather, a part model

with fewer larger parts must be learned from raw map data

in an unsupervised manner.

Principal component analysis (PCA) and other advanced

dimension reduction techniques have been widely used for

the compact description of feature data for the feature extrac-

tion and the visual search stages to accelerate map-matching

systems. In [6], for example, a method for appearance-guided

monocular structure-from-motion for initial motion estima-

tion is presented. In this method, a place recognition scheme

and loop closing are employed for loop detection, which

works with a visual word-based approach. Earlier works have

also presented dimension reduction techniques, specifically

locality sensitive hashing [17] and compact projection [18],

within RANSAC map matching for large-scale applications

[19]. For map matching stage, however, the compact descrip-

tion of feature data is of minor importance, and improving

visual search performance is not our objective.
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The mining of common patterns among scenes, or CPD

[10], remains a challenging task because of huge search

scales and problem domains. Several different solutions

that address the common problem of rotation, translation,

occlusion and segmentation have been studied by employing

various techniques, including the earth mover’s distance, co-

segmentation, and correspondence growing. In [12], a robust

CPD technique was also developed based on the correspon-

dence growing framework in the form of a probabilistic

Markov Chain Monte Carlo (MCMC) algorithm. However,

most of existing frameworks focus on segmentation and dis-

covery of repetitive objects or object parts [20]. In contrast,

the current study focuses on use of the CPD technique as an

unsupervised method for compact part-based scene modeling

(see Fig.1).

II. PROBLEM

The map-matching problem addressed in this study is

a general 1-to-N matching problem. In it, a local map is

given as a query, and the system retrieves a size N global

map database to find the relevant global map in terms of

the similarity score, under affine, homography, or geometric

transformation. In our experiments, we focus on the simple

scenario of map matching of 2D point-set maps under rigid

transformation. In this scenario, each point x ∈ X in a map

X is represented by a 2D coordinate. The similarity score v

between a pair of pointset maps (X ,Y ) is obtained by search-

ing for the optimal similarity transform parameters T = (t,o)
where (t,o) denote the transformation (i.e. translation and

orientation) parameters:

v = max
T

∑
x∈X

PY (T (x)); PY (x) =

{

1 x is an inlier of Y

0 otherwise
.

(1)

A. Performance Metrics

In this study, we develop several different implementations

of the 1-to-N map-matching system, and we compare and

evaluate them using a standard performance measure of

averaged normalized rank (ANR) [21]. To determine ANR,

a number of independent map-matching tasks with different

queries and databases are conducted. For each task, the rank

assigned to the ground-truth global map by a map matcher of

interest is investigated and normalized by the database size

N. ANR is then obtained as the average of the normalized

ranks over all the map-matching tasks.

III. APPROACH

A. Map Matching Schemes

Three types of map-matching schemes are considered in

this paper (Fig.2). The first one is the well-studied direct

map-matching (dMM) scheme, which takes a pair of maps

as input and aims to find correspondences that are inliers

to a geometric transformation within a hypothesize-and-test

framework. We implement a standard map-matching method

based on a RANSAC matching algorithm and use it as a

Fig. 2. Three types of map matching schemes considered in this study:
direct map matching (dMM), indirect map matching (iMM) and hybrid map
matching (hMM). The dMM scheme directly matches between a given
map pair, while the iMM and the hMM schemes match in an indirect
manner using a given dictionary map as intermediate. While iMM deals
with a situation where only the compact map descriptors are available, hMM
addresses a situation where the original local map data is available.

baseline method. In the 2D map-matching scenario, the dMM

method iteratively

1) hypothesizes a rigid transformation with rotation and

translation

2) tests the hypothesis by counting inlier points under the

hypothesized transformation

for a number of times, and, after the iteration, the hypotheses

are ranked in descending order of the inlier count.

The second map-matching scheme we consider is indirect

map matching (iMM). This scheme is based on a compact

description of map data, and it matches a given map pair in

an indirect manner using the dictionary map as intermediatry.

The iMM scheme consists of three steps:

1) the common pattern discovery (CPD) mines similar

common patterns (i.e., parts) between each input lo-

cal/global map and the dictionary map;

2) the map descriptor (MD) selects the best parts that

effectively explain an input query/database map;

3) the descriptor matcher (DM) evaluates the likelihood

that a given query map and a database map are a match

pair;

then it ranks the global maps in terms of the likelihood score.

Fig.1 illustrates the relationship among CPD, MD and DM.

The third one is hybrid map matching (hMM), which is a

hybrid of the above direct and indirect map matching. This

scheme is motivated by an asymmetric relationship between
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the query and the database maps. For example, in a situation

where the map matching is conducted online while building

the local map, the original local map can be used as a query

map, while the original database maps are not available

because of memory limitations. The algorithm of hMM is

basically the same as that of iMM. A key difference between

iMM and hMM is the number of parts that are allowed per

map (Fig.2). In the latter case, we are allowed to extract a

large number (e.g., 100) of parts from the original local map

that is available online.

The following subsections explain the building blocks

of the proposed map-matching framework: common pattern

discovery, map descriptor, and descriptor matcher. Several

different combinations of strategies will be evaluated in the

experimental section.

B. Common Pattern Discovery (CPD)

Inspired by the randomized visual phrase (RVP) [11], a

recently developed CPD technique, we randomly partition

an input map into overlapping bounding boxes (BBs) and

view each BB as a potential candidate for the parts. The

CPD task is therefore formulated as the problem of finding

the best BB pairs to crop parts. In this problem,

• the keypoint BB crops the input query/database map to

indicate the location of a part to be explained out; and

• the descriptor BB crops the dictionary map to indicate

the appearance of the part.

We believe that good parts should meet the following

requirements:

• Maximality Criteria (MC),

• Appearance Similarity (AS), and

• Geometric Criteria (GC).

In MC, each part should explain a large portion of the input

map. In AS, the appearance of each part should be similar

between the input and the dictionary maps. And in GC, the

constellation of parts should be consistent between the maps.

To address the above requirements, we first retrieve BBs

that satisfy MC and GC; among the retrieved BBs, we

select the one that receives the highest AS. The MC criteria

judges whether or not the ratio of points within the cropped

part to all input map points exceeds a pre-defined threshold

T size = 0.9. The GC criteria judges whether or not each pair

of descriptor BBs overlaps. For each candidate part pair that

satisfies both MC and GC criteria, we construct a temporal

occupancy grid map R from the dictionary map with a fixed

resolution (in implementation, 0.1 m), and we evaluate the

AS between the descriptor BB pair (B, B̂):

f AS(B, B̂) = max
T

∑
x∈X

PR(T (x)), (2)

where the meanings of PR and T (·) are the same as in (1).

C. Map Descriptor (MD)

The map descriptor obtains a compact description of

an input query/database map. For example, given a given

number of parts output by the CPD (in implementation, 100

parts, as shown in Fig.4), each part is represented by a pair

of BBs (i.e., a keypoint and a descriptor BBs) as mentioned

earlier. Among them, the map descriptor selects a small

number of K parts that effectively and compactly explain

the input map. Currently, we use a simple selection scheme

in which the given parts are ranked in descending order of

the AS score; the K top-ranked parts are then output. In

our experiments, we test several different settings of K and

investigate their influence on the map-matching performance.

Our approach enables the user to make a trade-off between

accuracy and compactness by adjusting the number of parts

K per input map. A part is compactly represented by the pose

and the shape of a BB. Currently, each x,y coordinate of the

pose is represented in spatial resolution 0.1 m and memory

space consumed per part is 42 bit. For instance, when an

input map is represented by 3 parts, the space required per

input map is 3 × 42 bit=126 bit < 16 byte, which is an

extremely compact map descriptor.

D. Descriptor Matcher (DM)

We now describe how to efficiently evaluate similarity

between map descriptors. Recall that a local map and global

maps are described by collections of descriptor BBs, {Bi
l}

and {B
j
g}. Intuitively, a pair of descriptor BBs with larger

overlap indicates that it is likely that the regions on the global

and local maps cropped by the BB pair are similar to each

other, and vice versa. To evaluate similarity between a pair

of such local and global maps, we introduce a measure of

pair-wise similarity between a BB pair

f RS(Bi
l ,B

j
g) =

1
(

Size(Bi
l)Size(B j

g)
)1/2

Size(Overlap(Bi
l ,B

j
g)),

(3)

where Size(·) is the area of a given BB on the 2D map, and

Overlap(·, ·) is the overlap between a given BB pair. Based

on the terminology, we design three types of evaluation

measures,

Max-max:

FMM = max
i

max
j

f RS(Bi
l ,B

j
g) (4)

Sum-max:

FSM = ∑
i

max
j

f RS(Bi
l ,B

j
g) (5)

Sum-max-weighted:

FSMW = ∑
i

max
j

f RS(Bi
l ,B

j
g)
(

f AS(Bi
l , B̂

i
l)
)

(6)

The intuition behind the third measure in (6) is that we

weight the pair-wise similarity between elements in a BB pair

according to the approximation accuracy, which is measured

by reusing the appearance similarity f AS described in (2).

IV. EXPERIMENTS

We conduct challenging map-matching experiments to val-

idate the benefits of the proposed approach. In the following,

we first describe the datasets and the map-matching tasks

used in the experiments, and we then present our results

on performance comparison among different map-matching

schemes and strategies, time and space efficiency.
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Fig. 3. Datasets used for experiments. “abuilding”, “albert”, “claxton”,
“fr079”, “run101”, and “kwing” from radish dataset [13] are used as the
dictionary maps. “Local/global maps” are several samples from local and
global maps.

A. Dataset

For map matching, we have created a large-scale map

collection from the publicly available radish dataset [13],

which consists of logs of odometry and laser data acquired by

a car-like mobile robot in indoor environments. We created

a collection of local/global maps using a scan matching

algorithm from each of 5 different datasets—named fr101,

albert, kwing, fr079 and abuilding—which respectively were

obtained by the mobile robot’s 79–295m travel correspond-

ing to 521-5299 scans. We also used fr079, run, claxton2,

albert and fr101, respectively, as the dictionary maps for each

dataset.

Fig.3 shows the original datasets and random samples from

local and global maps. The map collection consists in total of

more than 13,000 submaps. Using the entropy minimization

technique in [22], the xy-axes of each map were aligned with

the “Manhattan-like structure”. As shown in Fig.3, our map

collection contains many near duplicate maps, which makes

the map matching a challenging task.

B. Map Matching Tasks

Recall that the objective of map matching is giving a

local map as a query to find a relevant map from the global

map database. The relevant map is defined as a global map

that satisfies two conditions: 1) Its pose is near the query

map’s pose within a pre-defined range, where the pose of a

map is defined as the center of gravity of the map’s point

cloud, and 2) Its distance traveled along the robot’s trajectory

is distant from that of the local map, such as in a “loop-

closing” situation in which a robot, after traversing a loop-

like trajectory, returns to a previously explored location.

For each relevant map pair, a map-matching task is con-

ducted by using a local map and a size N global map

database, which consists of one relevant map and (N − 1)
random irrelevant maps. The spatial resolution of the tempo-

ral occupancy map used by the iMM and hMM is set to 0.1

m. The descriptor matcher uses “Sum-Max” and “Sum-Max-

Weighted” as the default strategies, respectively, for iMM

and hMM. We have implemented several combinations of

map-matching algorithms in C++, and successfully tested on

various maps.

Fig. 4. Results of part-based scene modeling. For each panel, the top
subpanel shows the input local map, while the middle and the bottom
subpanels respectively illustrate the representative parts discovered w.r.t.
the local and the global maps. In each figure, the white dots indicate point
cloud in the map, and the colored rectangles indicate bounding boxes that
crop the representative parts.

Shown in Fig.4 are the results of part-based scene model-

ing, in which an input local/global map is explained by a pool

of representative parts discovered by CPD. The CPD task was

mostly successful, and similar input maps were characterized

by similar descriptor BBs. Quantitative evaluations of our

CPD-based approach will also be provided in the following

subsections.

C. Comparison among dMM, iMM, and hMM

For performance comparison, we evaluated the averaged

normalized rank (ANR) introduced in Section II-A for all

the three basic map-matching methods: dMM, iMM and

hMM. All map-matching tasks were conducted using 13,592

different local and global map databases. Fig.5 shows the

normalized cumulative histograms of rank assigned to the

relevant map, and Table I summarizes the ANR performance.

The proposed hMM achieved results comparable result to

the dMM method when the number of parts per map K was

set to 3–5, despite the fact that the proposed hMM achieves
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TABLE I

SUMMARY OF ANR PERFORMANCE.

Data ID

Method #1 #2 #3 #4 #5

Max-Max hMM cpd:3 36.2 30.9 40.1 32.8 34.1

Sum-Max hMM cpd:3 35.3 27.6 36.5 30.2 33.4

rerank10 hMM cpd:3 34.0 26.8 36.4 27.5 32.5

rerank20 hMM cpd:3 33.4 26.5 34.3 27.4 32.0

dMM 32.9 26.1 34.3 27.1 31.6

iMM cpd:1 44.5 51.0 53.0 55.8 42.1

iMM cpd:2 38.4 36.1 41.1 38.6 37.0

iMM cpd:3 35.3 28.5 39.1 31.9 33.3

iMM cpd:4 33.8 25.2 36.9 30.4 30.3

iMM cpd:5 32.0 24.1 35.9 29.5 29.5

hMM cpd:1 33.3 30.2 40.6 30.5 30.2

hMM cpd:2 33.6 26.8 36.4 27.4 31.9

hMM cpd:3 32.0 26.3 35.7 28.1 30.0

hMM cpd:4 33.7 26.6 36.5 27.4 32.4

hMM cpd:5 32.8 26.0 37.0 27.4 31.4

The Data ID #1-#5 correspond to ANR for global map database from
“fr101”, “abuilding”, “albert”, “kwing” and “fr079”, where “fr079”, “fr101”,
“run”, “claxton2” and “albert” are respectively used as dictionary map.
The colored fonts and the bold-face fonts respectively represent the best
5 methods and the best method for each data.

tens of times more compact map representation than dMM,

as will be shown in Section IV-G. Much of the analysis

from the previous sections on map matching also holds for

the dataset considered here. By extracting a number of parts

from the query local map and comparing their attributes (i.e.,

BB pairs) against each map in the global map database, our

method is able to successfully perform the map matching.

On the other hand, the presented iMM method is satisfactory

when we set the number of parts per input map to a large

value, 5. This is because the input map tends to be well

explained by the larger set of common object patterns, which

is still a compact representation, as will be discussed in

Section IV-G.

D. Effect of Matching Strategies

We also compared three different implementations of

the descriptor matcher for the hMM method, which was

explained in Section III-D. However, the difference among

them is turned out to be subtle, as shown by “Max-Max

hMM”, “Sum-Max hMM”, and “hMM” in Fig. 5 and in

Table I.

E. Effect of Reranking

For precise map matching, we tested another “reranking”

strategy, which is in essentially a cascade of dMM and hMM.

The strategy is motivated by the observation that, according

to Fig. 5, the standard dMM method is good at ranking

top-ranked elements more precisely than the hMM method.

Using the cascaded method, the top R elements ranked by

the proposed hMM method were further input to the dMM

method, and their rankings were reordered according to the

match score assigned by the dMM method. We set the

number R of elements to be reranked as R = 10 and R = 20

and conducted the map-matching tasks. The result is similar

or better than the proposed hMM method, as shown in Fig.5.

On the other hand, a major drawback of this strategy is
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Fig. 5. Normalized rank for each strategy.

memory usage, as the dMM method that the strategy employs

requires the information from the original global maps.

F. Time Efficiency

Matching between a query of a local map and a database

map took less than 5 ms on a 2.4 Ghz Intel laptop. The time

complexity was linear in terms of the number of parts per

map and the database size. We tested different settings of the

number of parts per map, 1, 2, 3, 4 and 5, and got time cost

1.3, 2.3, 3.3, 4.2 and 5.0 msec. In contrast, the conventional

dMM algorithm took an average of 33 msec. Its complexity

was linear in the database size, and its time cost could be

quite high when using a large size database, e.g., with tens

of millions of landmarks. On the other hand, one of main

concerns of our method is the time cost for CPD. The cost in

principle depends on the size of the dictionary map, this can

be non-negligible when using a large-scale dictionary map.

However, because cost is not dependent on database size,

it therefore does not affect the scalability of our proposed

approach. It is beyond the scope of this paper to discuss

how to suppress the cost for CPD performed as part of the

map-building task, and it will have to be addressed in future

work.

G. Space Efficiency

Space cost for our map descriptor is linear to the number

of parts per map and the cost per part. In general, a part is

defined by a pair of BBs, i.e., a keypoint BB [xbegin,xend ] ×
[ybegin,yend ], and a descriptor BB [x̂begin, x̂end ] × [ŷbegin, ŷend ].
Because the shapes of both BBs are the same, our database

omits (x̂end , ŷend) as redundant information. In implementa-

tion, 7 bits are used for each of xbegin, xend , ybegin, yend .

(xbegin,ybegin) indicates a point on the dictionary map and

is represented in 14 bits. In total, 7× 4+ 14 = 42 bits are

used for each part. For instance, the proposed iMM method

consumes 42×3 bits = 126 bits when it uses 3 parts per map.

Compared with the dMM method, which costs (7+7)×500

= 7000 bits for typical size 500 point cloud map, our map-

matching method achieves compact description of map data

that is tens of times more compact.
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V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a first method explicitly aimed

at fast succinct map matching, which consisted only of

map-matching subtasks. These tasks included offline map

matching (CPD) attempts to explain an input map using

fewer larger parts, and online map matching (DM) to ef-

ficiently find correspondence between the part-based maps.

Our part-based scene modeling was unsupervised and used

CPD between the input and a known reference maps, which

enables a robot to learn a compact map model without

human intervention. We presented a practical implementation

that leverages the randomized visual phrase (RVP), a state-

of-the-art CPD technique, and a compact BB-based part

descriptor. We showed that the proposed approach achieves

successful map matching with significant speedup and a

compact description of map data that is tens of times more

compact.

In future work we plan to continue our exploration of

CPD, and consider how to achieve good tradeoff between

the compactness and the accuracy. We will also investigate

efficient methods for building the part-based maps. It would

be interesting to extend the methods to support a compressive

SLAM task [18], which aims at the incremental building of

the compact map model.

Another obvious improvement is to optimize the reference

maps. Because our approach is designed to represent an input

map by cropped reference maps, it would not be suitable

for general cases where whole regions of the input map are

dissimilar from the reference map. In the future we shall

study a way for automatically choosing the reference maps

adaptively for given global maps.

Finally, our approach could be extended to a broad range

of map formats, such as the 3D point cloud map, as well as to

other compact part representations, such as general bound-

ing volumes. In this direction, the approach was recently

extended to an alternative map format, view sequence map,

by introducing an unsupervised part-based scene modeling

technique, “bag-of-bounding-boxes (BoBB)” [23].
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