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Abstract— Vision feedback control techniques are desirable
for a wide range of robotics applications due to their robustness
to image noise and modeling errors. However in the case of
a robot-mounted camera, they encounter difficulties when the
camera traverses large displacements. This scenario necessitates
continuous visual target feedback during the robot motion,
while simultaneously considering the robot’s self- and external-
constraints. Herein, we propose to combine workspace (Carte-
sian space) path-planning with robot teach-by-demonstration
to address the visibility constraint, joint limits and “whole
arm” collision avoidance for vision-based control of a robot
manipulator. User demonstration data generates safe regions
for robot motion with respect to joint limits and potential
“whole arm” collisions. Our algorithm uses these safe regions to
generate new feasible trajectories under a visibility constraint
that achieves the desired view of the target (e.g., a pre-grasping
location) in new, undemonstrated locations. Experiments with
a 7-DOF articulated arm validate the proposed method.

I. INTRODUCTION

Eye-in-hand visual servoing (VS) systems incorporate a

vision sensor mounted directly on the robot end-effector for

the task of steering the end-effector from an initial location

to a desired one identified by image features provided in

advance. Established VS methods include position-based

visual servoing (PBVS) [1] and image-based visual servoing

(IBVS) [2]. Combinations of IBVS and PBVS have also been

explored, for example, 2 1/2-D visual servoing [3], partition

of the degrees of freedom [4] and switching controllers [5].

Other approaches include: navigation functions [6], path-

planning techniques [7], etc. Surveys of the work in this

area can be found in [8]–[10].

IBVS approaches have been popular due to their robust-

ness to image noise and modeling errors. In these approaches,

the visibility constraint is an essential requirement to avoid

servo failure, while robot’s joint limits and “whole-arm”

collisions must also be avoided. Most motion planning meth-

ods (e.g, [11], [12]) manage constraints in joint space and

Cartesian space without taking into account visual feedback.

Mezouar and Chaumette [7] developed a potential field based

path-planning strategy for robust image-based control in

the sense of fulfilling on-line FOV constraints and joint

limits. In [13], polynomial parameterization of the workspace

model facilitated avoidance of joint, FOV and end-effector

collision constraints; however, “whole arm” collisions were
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not considered and a detailed knowledge of the environment

including the obstacles was required a priori. To avoid

exhaustive modeling and consider “whole arm” collisions,

a teach-by-demonstration approach was presented in [14]

for constrained manipulator visual servoing (CMVS). This

approach servos the robot end-effector to an untaught target

location, considering “whole-arm” collisions, robot’s joint

limits and self-occlusion; however, the visibility constraint

could be violated and result in failure of VS task, upon which

the controller fell back to “blind” joint space control.

This paper proposes a constrained VS scheme to achieve

the convergence of the image trajectory to a desired view

of a repositioned target (i.e., a pre-grasping location). These

constraints, which encompass “whole arm” collisions, joint

limits and visibility constraint, are simultaneously realized by

combining robot teach-by-demonstration samples and path-

planning techniques in the robot’s workspace. Robot teach-

by-demonstration helps to define safe regions for the robot

motion without the need of expensive mapping (especially

in case of having a single eye-in-hand vision sensor). This

approach is very appealing in cluttered environments, where

the chance of collision and occlusion is high. A trained

user guides the robot through a few motion demonstra-

tions towards a general target location while avoiding joint

limits and obstacles (without strictly considering visibility

constraints at this stage). These demonstrations define safe

regions via an average trajectory and its time-dependent

covariance matrices in joint space and later in workspace.

The final camera pose that achieves the reference view is

first estimated. Between the initial and the estimated final

camera poses, a set of control points that meet all of the

constraints are selected in safe regions where the largest

covariance values are detected. These control points are con-

nected by a complete camera trajectory that is modeled and

optimized under visibility constraint by polynomials with C2

continuity. We validate this approach by steering a redundant

manipulator along the corresponding joint trajectories that

are obtained through a weighted transition from the planned

camera trajectory.

The paper is organized as follows. Section II describes

the robot teach-by-demonstration method and Section III

presents an optimization method to plan feasible trajectories.

We present experimental and robustness results for our

algorithm in Section IV, and then conclude in Section V.

II. ROBOT TEACH-BY-DEMONSTRATION

A reference image of the target is taken as a prerequisite

for robot teach-by-demonstration. Next, the user moves the
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robot arm towards different target locations several times, so

that we can extract statistical information about the demon-

strated joint trajectories. Variations among the demonstrated

joint trajectories approximate how closely the robot should

track a given trajectory. Specifically, when the robot is in

close proximity to obstacles, we expect this set of joint

trajectories to have little variation. When the workspace

is relatively free of obstacles, we expect the demonstrated

trajectories to result in larger variations. Further details are

reported in [14].

A. Canonical Time Warping (CTW)

We assume that the trajectory variations follow a Gaussian

distribution in time and space. We wish to extract a robust

trajectory from a set of demonstrations. In addition, we wish

to quantify any variation that may exist between the trajec-

tories. To remove the effect of temporal variations, we use

CTW to solve for the best temporal alignment between two

trajectories (via dynamic programming [14]) while adhering

to temporal precedence and continuity constraints.

B. Gaussian Mixture Model (GMM)

We represent the robot’s workspace using a multivariate

GMM of M-components with dimensionality N + 1 (for a

robot with N-degrees of freedom and the time index t):

P(q(t)) = ∑M
m=1 πmN (q(t); µm,Σm) where πm is the prior

probability on the Gaussian component m, N (q(t),µm,Σm)
is the (N+1)-dimensional Gaussian density of component m,

and µm and Σm are the mean and covariance matrix, respec-

tively. These parameters are estimated using the Expectation

Maximization (EM) algorithm. We separate µm and Σm into

their spatial and temporal constituents:

µm = [µ t
m,µ

q
m], Σm =

[

Σt
m Σ

tq
m

Σ
qt
m Σ

q
m

]

. (1)

C. Gaussian Mixture Regression (GMR)

We perform GMR along the time index to reconstruct

the average joint trajectory q̄(t) and its time-dependent

covariance matrix Σq(t):

q̄(t) =
M

∑
m=1

βm(t)q̄m(t), Σq(t) =
M

∑
m=1

βm(t)Σ
q
m (2)

where

βm(t) =
πmN (t,µ t

m,Σ
t
m)

∑M
j=1 π jN (t,µ t

j,Σ
t
j)
, (3)

q̄m(t) = µq
m +Σqt

m (Σt
m)

−1(t −µ t
m). (4)

The average joint trajectory and its time-dependent weight-

ing matrix W(t) = (Σq(t))−1, which gives a measure of the

relative importance of each joint, are sampled p times and

denoted as q̄i and Wi, i = 1, . . . , p. The cost function,

(qi − q̄i)
⊤

Wi (qi − q̄i) , (5)

evaluates the covariance-weighted distance between the av-

erage joint trajectory q̄i and its candidate trajectory qi.

III. POLYNOMIAL OPTIMIZATION

A feasible conservative domain for the camera translation

is found according to the cost function (5) defined in joint

space. We first estimate the new untaught target location, and

then the final camera pose that gives the desired view of the

target. Subsequently, we plan a feasible trajectory between

the initial and final camera poses with the help of a set of

control points in the feasible domain.

A. Feasible Domain in Workspace

An average camera trajectory is obtained by applying for-

ward kinematics [15] to the average joint trajectories yielding

a camera trajectory, c̄i = [d̄⊤
i , ā

⊤
i ]

⊤, where d̄i ∈R3 (R is the

real number set) is camera translation and āi ∈R4 is quater-

nions of camera rotation. We rewrite the cost function in joint

space (5) as: (qi − q̄i)
⊤

J⊤J†⊤WiJ
†J(qi − q̄i), where J† is

the pseudoinverse of the manipulator Jacobian J. When the

distance between qi and q̄i is very small, the cost function is

transformed into (ci − c̄i)
⊤

Mi (ci − c̄i), where ci is candidate

servoing trajectory of c̄i and Mi = J†⊤WiJ
†, according to

velocity kinematics. Here we focus on the camera translation

(mainly dependant on the first three robot joints) in order

to avoid collisions; therefore we use the weighting matrix

Mdi = Jv
†⊤WiJv

†, where Jv ∈ R3×n is the upper part of

the manipulator Jacobian, to measure the relative importance

of the x, y and z-coordinates in camera translation. The

minimum eigenvalue of Mdi, denoted as σi, serves as a

conservative covariance for these three coordinates:

d̄i −σi13 < di < d̄i +σi13. (6)

Here, 1n is an n× 1 vector with all unity elements. The

above inequality provides a feasible conservative domain

over which to adjust the camera location, di, while maintain-

ing collision avoidance between the robot arm and obstacles

as specified by equations (1)-(4).

B. New Target Position and Final Camera Pose

The initial view of the target in a new untaught location is

taken at the beginning of the servoing task. We estimate the

target position and relative camera pose [16] based on the

initial and desired views of the target. Estimation results are

denoted as R (relative rotation), d (relative translation) and

h j, j = 1, ...,n (target coordinates in the robot base frame, n

is the number of points combined as a target). The result of

h j, j = 1, ...,n helps to obtain the final camera pose g∗:

g∗ = min
c

n

∑
j=1

‖m j(c)−K−1p∗
j‖

2,

s.t. d̄p −σp13 < d < d̄p +σp13.

(7)

The above optimization minimizes the 2D reprojection

error on the normalized image plane, where the variable c is

initialized as the last sampled data, c̄p, on the average camera

trajectory, m j(c) is the projection of h j at camera pose c, p∗
j

is the reference pixel coordinates of h j, and K ∈R3×3 is the

camera intrinsic parameters matrix.
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C. Control points

A number of control points are selected at locations with

large covariance within the feasible domain to facilitate path-

planning between the initial and final camera poses. We use

gl = [d⊤
l ,a

⊤
l ]

⊤, l = 1, ...,k to represent these control points,

where the image projection of h j is formed as:

[X j(gl),Yj(gl)]
⊤ = [I2×2,02]

KPl j

e⊤3 Pl j

,

Pl j = [I3×3,03]

(

R(al),dl

0⊤3 ,1

)−1

h j.

(8)

Here, In×n is the n×n identity matrix, 0n is the n×1 null

vector, ei is the i-th column of 3× 3 identity matrix. The

pixel coordinates [X j(gl),Yj(gl)]
⊤ are in the camera FOV if

{

ε < X j(gl)< Xmax − ε,

ε < Yj(gl)< Ymax − ε,
(9)

where ε is a positive tolerance in pixels, Xmax and Ymax are

the image size in pixels. Initial values of these control points,

ḡl = [d̄⊤
l , ā

⊤
l ]

⊤, l = 1, ...,k, are assigned to be the sampling

data that correspond to the largest covariance values along

the average camera trajectory. From ḡl , we obtain gl as

follows:

i f f (ḡl)> 0, gl = ḡl ;

otherwise, gl = argmin
g̃l

(− f (g̃l))

s.t. d̄l −σl13 < d̃l < d̄l +σl13

and ‖ãl‖= 1,

(10)

where

f (g̃l) = min
j=1,...,n















min









X j(g̃l)− ε
Yj(g̃l)− ε

Xmax − ε −X j(g̃l)
Ymin − ε −Yj(g̃l)























. (11)

The updated camera poses in gl , l = 1, ...,k lie in the

safe domain defined by d̄l and σl , and satisfy the cam-

era FOV limits. In the following section, we use general

polynomials with C2 continuity to connect the initial and

final camera poses, g◦ and g∗ with these control points as:

G = {g◦,g1, ...gl , ...gk,g
∗}.

D. General Polynomial

For every segment between two successive camera poses

in G, the camera trajectory, c, is modeled by a multi-

dimensional polynomial parameterized by w ∈ [0,1]:

c =

{

d(w) = U · [wδu , . . . ,w,1]⊤,

a(w) = V · [wδv , . . . ,w,1]⊤.
(12)

Here, U ∈ R3×(δu+1) and V ∈ R4×(δv+1) are polynomial

coefficients where δu and δv denote degrees that are not less

than five. The parametrization in (12) maintains C2 continuity

by setting the following constraints:

U =
[

Ũ, áu, v́u, ṕu

]

, (13)

V =
[

Ṽ, áv, v́v, ṕv

]

, (14)

Ũ ·1(δu−2) = p̀u − ṕu − v́u − áu, (15)

Ũ · [δu,δu −1, . . . ,3]⊤ = v̀u − v́u −2áu, (16)

Ũ · [δu(δu −1), . . . ,3×2]⊤ = àu −2áu, (17)

Ṽ ·1(δv−2) = p̀v − ṕv − v́v − áv, (18)

Ṽ · [δv,δv −1, . . . ,3]⊤ = v̀v − v́v −2áv, (19)

Ṽ · [δv(δv −1), . . . ,3×2]⊤ = àv −2áv, (20)

where {ṕu, v́u, áu} are the camera position, velocity and

acceleration values (PVA) at the beginning of a segment, and

{p̀u, v̀u, àu} are those at the end of the segment. Similarly,

{ṕv, v́v, áv} and {p̀v, v̀v, àv} are PVAs of rotation quaternion

at the beginning and the end of a segment, respectively. Po-

sition values are extracted from camera poses at the control

points G. Velocities at these control points are computed

from the average camera trajectory. For example, the velocity

in x-direction at gl is computed by:

vx = α(dxl/dt), (21)

where α is a positive scalar and dxl/dt is computed from two

sample points that are adjacent to ḡl on the average camera

trajectory. All control point accelerations are set to zero

to preserve continuity. Under the restrictions in (13)-(20),

the variables Ũ ∈ R3×(δu−2) and Ṽ ∈ R4×(δv−2) are first

initialized as follows:

ŨI = min
Ũ

a−1

∑
i=1

‖d(wi)−d(wi+1)‖
2,

s.t. (13)-(20) and (d(wi)− d̄i)
⊤Mdi(d(wi)− d̄i)< η ,

(22)

ṼI = min
Ṽ

a−1

∑
i=1

‖a(wi)−a(wi+1)‖
2, s.t. (13)-(20), (23)

where a is the number of sample points in a segment includ-

ing the beginning and end points, and 0≤wi <wi+1 ≤ 1. Due

to the parametrization in (12), the target coordinates in the

current camera frame can also be represented by polynomials

in w ∈ [0,1] and their polynomial coefficients are functions

of the variables Ũ and Ṽ. Specifically,

[x j(w),y j(w),z j(w)]
⊤ = [px,py,pz]

⊤ · [w2δv+δu , . . . ,w,1]⊤,

where px, py and pz are computed as:

px =o2 ∗ [2(v2 ∗v3 +v4 ∗v1)+o3 ∗ [2(v3 ∗v1 +v4 ∗v2)]

+o1 ∗ (v1 ∗v1 +v2 ∗v2 −v3 ∗v3 −v4 ∗v4),

py =o1 ∗ [2(v2 ∗v3 −v4 ∗v1)+o3 ∗ [2(v3 ∗v4 +v2 ∗v1)]

+o2 ∗ (v1 ∗v1 −v2 ∗v2 +v3 ∗v3 −v4 ∗v4),

pz =o1 ∗ [2(v3 ∗v1 +v4 ∗v2)+o2 ∗ [2(v3 ∗v4 −v2 ∗v1)]

+o3 ∗ (v1 ∗v1 −v2 ∗v2 −v3 ∗v3 +v4 ∗v4),

where vi is the i-th row in V and oi is the i-th row of O =
[03×δu

,h j]−U with 03×δu
to be an 3× δu zero matrix. The

580



image projections of points are required to remain in the

camera FOV:


























z j(w)> 0,

ε < f
x j(w)

z j(w)
+

Xmax

2
< Xmax − ε,

ε < f
y j(w)

z j(w)
+

Ymax

2
< Ymax − ε .

(24)

Here, z j(w) is the depth of the j-th point, f is the camera

focal length. The constraints in (24) are transformed into the

inequalities sl( j,w)> 0, l = 1, ...5, w ∈ (0,1), where,






























s1( j,w) = z j(w),

s2( j,w) = [(Xmax/2)− ε]z j(w)− f x j(w),

s3( j,w) = [(Xmax/2)− ε]z j(w)+ f x j(w),

s4( j,w) = [(Ymax/2)− ε]z j(w)− f y j(w),

s5( j,w) = [(Ymax/2)− ε]z j(w)+ f y j(w).

(25)

All of the above functions are also polynomials in w. From

sl( j,w) we define:

s = min
l=1,...,5

{

min
j=1,...,n

(

min
w∈(0,1)

[s1( j,w)]

)}

. (26)

The value of s is expected to be positive. When the initial

values of Ũ and Ṽ result in non positive values of s, we

update values of Ũ and Ṽ by the following optimization:

if s ≤ 0, {Ũ∗, Ṽ∗}= argmin
Ũ,Ṽ

(−s) s.t. (13)-(20),

otherwise, Ũ∗ = ŨI , Ṽ∗ = ṼI .
(27)

It is notable that the constraint in (19) is relaxed here

allowing the quaternion velocities to vary at the end of a

segment. These velocities are computed with the updated

value of Ṽ as constraint for the next segment. The values

of Ũ∗ and Ṽ∗ for all of the segments constitute the feasible

camera trajectory.

E. Weighted Transition

For highly articulated (redundant) robotic arms, it is nec-

essary to ensure that the joint space trajectory satisfies the

“whole arm” collision constraints since inverse kinematics

can provide infinite solutions. This is achieved through

transforming the planned camera trajectory into joint space

by the minimization:

min
qi

(

‖ci(Ũ
∗, Ṽ∗)− c(qi)‖

2 +(qi − q̄i)
⊤

Q⊤WiQ(qi − q̄i)
)

,

(28)

where

Q =

(

I3×3 03×4

04×3 04×4

)

. (29)

Here, ci(Ũ
∗, Ṽ∗) represents sample points on the planned

camera trajectory, c(qi) is the camera pose associated with

joint configuration qi. In the objective function in (28),

the Cartesian space term deals with the end effector pose

planning (satisfying the FOV constraint), while the joint

space term provides elbow configuration planning (satisfying

“whole arm” collision constraint). The initial value of qi is

assigned to be q̄i that represents the average joint trajectory.

IV. RESULTS

A. Experimental Set-up

We implement our proposed algorithm on a 7-DoF ar-

ticulated arm (Barrett Technology WAM). A CCD camera

is mounted on the arm to servo to a target composed of 12

points. A rectangular plate is placed in the robot’s workspace

representing an obstacle/potential occlusion.

B. Experimental Procedure

The experimental procedure for a specific scenario is as

follows: 1) the robotic arm is taught feasible trajectories by

the user to achieve a desired view of the target that varies

in every demonstration. 2) An average joint trajectory and

related covariance matrices are extracted from the recorded

joint trajectories (as stated in Section II). 3) The average joint

trajectory and related covariance matrices are transformed

into workspace coordinates (Section III-A). 4) The target is

placed in a new location and an initial view of the target

is captured to estimate the target position and final camera

pose (Section III-B). 5) A number of control points are

inserted in between the initial and final camera poses (Section

III-C). 6) A camera trajectory is modeled and planned

(applying method stated in Section III-D) with the help

of information acquired from demonstrations and control

points. Planned image trajectories are restricted within an

image size of 1024×768 pixels. 7) Finally, joint trajectories

are obtained by weighted transformation from the planned

camera trajectory for this specific redundant manipulator.

C. Experimental Results

In the experimental scenario, the robot initial configuration

is far from any joint limit, and the relative target location

seems tractable. As a result, the user finds it trivial to

demonstrate a servoing task. In this example, the user teaches

the robot seven times to achieve a reference image of the

target at different locations each time, as shown in Fig. 1. The

Fig. 1. Initial views of the target at various locations. The red rectangle
demonstrates the moving region of the target center.
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Fig. 2. User-demonstrated joint-space trajectories. (a) Original. (b) After
temporal alignment with CTW.

Fig. 3. Joint-space average trajectory and its time-dependent variance
obtained from GMR.

training data (joint trajectories) of all of the demonstrations

are provided in Fig. 2 (a)-(b), before and after their temporal

alignment. Fig. 3 shows the average joint space trajectories

and their time-dependent variance over the training data

obtained from GMR. Initial and desired target views at its

new/untaught location are presented in Fig. 4 (a). Apart

from the initial and final points, seven control points are

considered and the tolerance value for the FOV limits in

(11) is selected as ε = 10 pixels. Fig. 5 (a) shows these initial

control points along the average trajectory (ḡl in Section III-

C). The optimized control points obtained by (10), gl are

also shown as new control points. Velocities at these control

points are computed using (21) with α = 2. We used δu = 5

and δv = 6 polynomial parametrization of camera translation

and rotation quaternion in (12) and (13). Initialization of

polynomial coefficients in (22) is constrained by parameter

η = 10−3. Fig. 5 (a) shows the planned path.

Fig. 4. The initial (left) and desired (right) target views at its new/untaught
position.
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Fig. 5. (a) Planned camera trajectories expressed in the robot base frame.
(b) Corresponding joint trajectories obtained by weighted transformation.

For this redundant manipulator, a weighted transformation

is used to obtain seven joint trajectories. In Fig. 5 (b),

the average joint trajectories are represented by dots and

planned joint trajectories by lines. If the robot follows the

average camera trajectory, the image trajectory of the target

crosses the image boundary (FOV violation), as shown by

in Fig 6 (a). Image trajectories extracted from the real-time

video stream of the mounted camera following the planned

polynomial path are displayed in Fig. 6 (b). As captured, the

target image trajectories stay within the FOV boundaries.

Fig. 6 (c) shows the initial robot configuration, while Fig. 6

(d) shows the final robot configuration after completion of

visual servoing task.

To evaluate the robustness of the proposed approach,

10000 new target locations were randomly generated in

simulation with their centres bounded by a rectangle (see

Fig. 1). This rectangle encompasses the centres of all of

the target locations used during teach-by-demonstration with

approximate dimensions l ×h ≈ 17×13cm, see Fig. 7. The

proposed algorithm was run for each of the 10000 target

locations, and failures were reported in any of the following

circumstances: 1) the initial view of the re-located target is
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Fig. 6. (a) Image trajectory of the target when the robot follows the
average joint trajectory. (b) Extracted image trajectory from experimental
video stream following polynomial path. (c) Initial robot configuration. (d)
Final robot configuration after completion of visual servoing task.

x

y
z

Fig. 7. Assumed rectangle in which target locations are randomly generated
in simulation. Dimensions l × h ≈ 17 × 13cm are determined by target
locations used for teach-by-demonstration. (Fi and Ff refer to the initial
and final camera frames)

unavailable with f (g◦)≤ 0 in (11); 2) target view is lost at

the estimated final camera pose with f (g∗) ≤ 0 in (11); 3)

target is out of camera FOV at any inserted control point

with f (gl) ≤ 0 in (10); 4) FOV violation happens between

any two successive camera poses in G with s ≤ 0 in (27).

Next, we varied the dimensions of the bounding rectangle

(about the centre of the target area) to embrace different

sets 10000 randomly generated target locations. The results

are presented in Table I. The algorithm can successfully

find a collision free visually unimpaired path in over 97%

of the trials when the bounding rectangle is the original

(demonstration) target area and over 91% of trials even when

the target area is extended well beyond the taught area.

V. CONCLUSIONS

This paper provides a complementary approach that com-

bines robot teach-by-demonstration and path-planning tech-

niques to ensure the convergence of image trajectories to a

desired view of a relocated target. This method allows the

TABLE I

PERCENTAGE OF ALGORITHM FAILURES FOR RANDOMLY GENERATED

TARGETS OVER VARIOUS BOUNDED RANGES

robot to travel in safe regions defined in joint space, while

keeping a relocated target in the camera FOV. Future work

will focus on on-line servoing and improved formulation of

the feasible domain in workspace.
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