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Abstract—In this paper, a new enhanced CRF for discrim-
inating between different materials in natural scenes using
terrestrial multi spectral imaging is established. Most of the
existing formulations of the CRF often suffer from over
smoothing and loss of small detail, thereby deteriorating the
information from the underlying unary classifier in areas with
a high spatial frequency. This work specifically addresses this
issue by incorporating a new pairwise potential that is better
at taking local context into account. Certain materials are very
unlikely to appear next to each other in the scene and such
configurations are penalised by employing the confusion matrix
of the unary classifier. Similarly, horizontal as well as vertical
configurations, which may be more or less likely for certain
combinations of materials, are regarded in this formulation.
Furthermore, the proposed pairwise potential also considers
the length of boundaries between regions to account for the
segmentation granularity issues and also uses class probabilities
of the neighbouring regions to make up for the uncertainty of
the unary classifier results. Seven band terrestrial multi spectral
imaging were used due to its potential in distinguishing between
different materials and objects. The proposed approach was
evaluated using cross-validation, resulting in an average accu-
racy of 88.9% which is about 17% more than the accuracy
of a standard CRF, which demonstrates the superiority of our
approach in preserving local details.

Index Terms—Multi Spectral, Classification, Fuzzy SVM,
CREF, Pairwise Potential, Confusion Matrix

I. INTRODUCTION

With the advent of multi/hyper spectral imaging in the
past decades, a vast number of applications have benefited
from the potential of this powerful imaging modality. A multi
spectral image can reveal some of the properties of objects
and materials, which can not otherwise be observed using
conventional cameras, thanks to more frequency bands in the
visible and invisible parts of the spectrum. Such an ability
makes this type of data a great asset for object and material
classification tasks.

In this paper, a new approach for preserving fine detail in
the detection and classification of roadside materials using
multi spectral imaging is devised. The resulting system has
many applications in road and roadside objects assessment
and robotics.

*NICTA is funded by the Australian Government as represented by the
Department of Broadband, Communications and the Digital Economy and
the Australian Research Council through the ICT Centre of Excellence
program.
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Multi spectral imaging has been widely used in land cover
and environment classification using aerial surveying [1],
[2], but there are also a limited number of works on terrain
classification, in which, terrestrial multi spectral images have
been employed. In [3], [4] NDVI (Normalised Difference
Vegetation Index) feature was used to detect vegetation in
the environment. Terrain classification was investigated in
more detail by Taghavi et al. in [5], where the road side
objects and materials were classified to 10 categories, using
7 band terrestrial multi spectral images. They utilised pixel-
wise texture features such as GLCM and Fourier spectrum to
make the system more robust to varying lighting conditions.
Although they came up with some satisfactory results, the
pixel-wise nature of their work has made their system
vulnerable to noise and also somewhat slow and inefficient,
especially for working with high resolution images. These
issues can be addressed by combining similar pixels into re-
gions and also benefiting from the neighbouring information.

One approach for exploiting this kind of information is
CRF (Conditional Random Field), which is a probabilistic
framework [6] and has been widely used in a number of
multi spectral and RGB image classification systems [7]—
[13]. CRF was applied to aerial spectral images in [7]
and [8], but as it was stated by the authors, the undesired
smoothing property of CRF is a challenging problem and
it is even worse for the terrestrial images, which embody
much more details. Other groups have tried to enrich the
CRF framework with some discriminative terms to make it
more “intelligent” in dealing with complex circumstances
of neighbourhoods. Yang and Forstner in [9], worked on
a region-wise building facade classification task for detec-
tion and recognition of different categories such as road,
vegetation, sky, pavement, etc. They embedded the image
location information into the their proposed system and
then further improved it by proposing a hierarchical CRF
framework [10]. However, there are a considerable number
of misclassifications in their results which probably indicates
that more information is required in order to handle the
small details in the image and high similarities between the
objects. Wojek and Schiele [11] incorporated the temporal
information of the scenes into a dynamic CRF model to
address the problem of over smoothing in classification of
large scale categories such as road, grass, car, trees, etc,
though this dynamic approach requires successively captured

3704



Fig. 1. A sample 7 band multi spectral image. a) Three band RGB image.
b) Three band shifted RGB image in the visible part of the spectrum. c)
NIR image in the invisible part of the spectrum.

images. Another issue of conventional CRF algorithms is
that the pairwise function often depends on the absolute
labels of the neighbours, which may lead to some incorrect
context inference [12], [13].

In this paper, we propose an enhanced CRF framework
which addresses existing problems in region-wise terrain
classification using CREF, in particular that of preserving fine
detail by preventing over smoothing.

Our main contributions are:

e Proposing a novel pairwise function that outperforms
the standard CRF pairwise functions in terms of clas-
sification accuracy and preserving details.

« Introducing an efficient way to present the neighbour-
hood graph of the CRF in a region-based image classi-
fication problem.

The approach is tested on terrestrial multi spectral images
of road and road side scenes, captured in seven frequency
bands including six visible bands and one NIR band, which
is the same setup as in [5]. The imaging system is composed
of a FluxData™ camera along with a panoramic mirror
(GoPano+) which provides a full 360 degree view. The
resulting panoramic images are then dewarped using a post-
processing software which is included in the GoPano+
package. The outputs of this step are multi spectral images
of 1241x4176 pixels in size (Fig. 1). The whole dataset
consists of 1497 multi spectral images.

In this work, instead of working on image pixels, we par-
tition each image into superpixels to reduce the computation
time of the algorithm and also get more meaningful context
information. Then we extract the features of each superpixel
and classify them into different material categories using a
fuzzy SVM classifier [14]. Finally we use the SVM results as
input to our proposed CRF which takes the local context into
account, thereby further improving the classification system.

II. CONDITIONAL RANDOM FIELD

A Conditional Random Field is used to express a proba-
bilistic model which attempts to predict the label of a region,
given information about that region as well as its neighbours.
A complete description of CRF can be found in [6]. A

CRF with unary and pairwise terms is expressed with the
following standard equation [13]:

P(Y|X,¢,%) =
eXP(Z?; [é(Xinv (rb) + ZjEN,i ‘I’(Xi,Xj,Yi,y‘hw)})
Z(¢,9,X)

)

in which Y is the set of data labels to be predicted, X
is the set of features extracted from the data and Z is the
partition function. In this equation, M is the number of data
items, NN; is the neighbourhood space of data and ® and ¥
are the unary and pairwise potentials with ¢ and ¢ as their
parameters, respectively.

The unary term which is sometimes called local potential,
associates the data features with the labeling set. In other
words, it indicates the chance of selecting a label for a data
item, solely based on the features of that item. In contrast, the
pairwise potential determines how the neighbouring labels
can influence each other.

The ultimate goal is to find the best compromise between
these two terms to maximise the classification results. In
order to achieve this, the CRF should be trained to maximise
the probability in Eq. (1) for the true labels. This problem
turns into an energy minimisation problem by taking the
negative logarithm of this probability:

E(Y|Xa¢,w) - 10g (Z(Qf%lb,X))*

M

Do [®Gayid) + D Wy i xi x5, ¢)]

i=1 JEN;

2

The above energy or cost will be minimised for the optimal
labeling of the data.

III. APPROACH

Our approach is comprised of the following main steps.
Initially, the images undergo a region segmentation pro-
cess. Then, the appropriate features are extracted from each
region. In the next step, the regions are classified into
some predefined labels using a probabilistic SVM classifier.
Subsequently, a new CRF formulation is devised and applied
to the system to gain the final classification results. At the
end, saturated and vague regions in the image are classified
into the most relevant categories. The steps of our approach
are depicted in Fig. 2.

A. Segmentation

In the first step, the images are segmented into regions
covering uniform areas, so called superpixels. The reason
for this is two fold; Firstly, contextual information is more
prominent considering larger regions of similar appearance
rather than just looking at individual pixels and their neigh-
bours only. Secondly, if the number of regions for which a
label needs to be estimated can be reduced significantly, it
also means that the overall computational need is similarly
shrunk.
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Fig. 2. The overall view of the proposed approach. After the segmentation
step, some discriminative features are extracted from the image regions.
Then, the regions are classified using a probabilistic SVM classifier. Next
the proposed CRF is applied to the classification results and finally,
appropriate class labels are assigned to the Saturated and Vague regions.

We firstly segment the whole image into two major parts
of vegetation and non-vegetation using NDVI feature [3] in
order to achieve more consistent regions. Afterwards, we
sub-segment the RGB images of each part into superpixels
using the Mean Shift algorithm [15]. In total, the algorithm
is tuned to produce around 2000 to 3000 regions for each
multi spectral image. A sample of a segmented image can
be seen in Fig. 7-a.

B. Feature Extraction

Three types of features that are incorporated into our
system, are explained in this section.

1) Mean and Standard Deviation: The first 14 feature
types are the Mean and Standard Deviation of the intensity
values of each region, computed for each band. It should be
noted that all the features undergo a normalisation process
to have a mean of zero and a standard deviation of one.

2) GLCM: There are different techniques for extracting
the texture of an image, among which, GLCM (Gray Level
Co-Occurrence Matrix) [16] has been one of the most
popular methods in the past decades. This algorithm is very
powerful and easy to implement. The advantage of this
matrix is that it is independent of gray-level scalings, which
makes it very useful in recognising similar textures under
different lighting conditions [5]. Each component of GLCM
stands for the number of occurrences of a specific adjacency
for a pair of gray levels. Here we consider vertical and
horizontal pixel adjacencies within each region and extract
three properties of Contrast, Energy and Homogeneity from
each of the two computed GLCMs. In total, 6 features from
each spectral band are obtained for each region, which results
in 42 GLCM features.

3) Histogram of Hough Orientations: Among the
roadside material categories that we consider, there are some
classes like Light Poles and Road Guards and also White
Lines which typically show up as parallel lines in the images.
This property can be exploited as a clue for detection and
recognition of these types of categories. For this purpose,
the Hough Transform is applied to the image region and
after setting a relative threshold (50%) on the intensity in

Hough space, the main orientations of the local edges inside
the region are identified. Then a 7-bin histogram of these
orientations ranging from 0O to 180 degrees is calculated for
the region. A uniform histogram indicates that there is no
major set of parallel edges in the region. Conversely, a sparse
histogram implies that the region contains an object or part
of an object with a significant set of parallel boundaries.

C. SVM Classification

An SVM can be used to categorise non-linearly separable
data points by using appropriate kernels. We use fuzzy SVM
with an RBF (Radial Basis Function) kernel [5]. The fuzzy
SVM constructs a probabilistic model using the training data,
which is later used to predict the class label of unknown
data. We employ the method presented in [14] to compute
the SVM probabilistic outputs. The LIBSVM toolbox [17] in
MATLAB™ is used for the training and evaluation of SVM.

D. Proposed CRF framework

In this section, we first describe our CRF neighbourhood
graph. Then we define each potential function and at the end,
explain the CRF training and inference processes.

1) Neighbourhood Graph: The CRF operates on a graph
describing the connectivity between neighbouring regions.
This connectivity graph is built using an approach based on
GLCM to find the neighbours. First, an identical and unique
intensity is given to all the pixels within each region. The
result will be an image with N gray levels, where N is the
number of regions. The GLCM of this image indicates the
number of occurrences of the adjacencies between each pair
of gray-level intensities. Since each region is represented
by a unique intensity, the neighbourhood relationships of
the regions can also be determined using the computed
GLCM. By performing this process for both horizontal
and vertical adjacencies using GLCM and comparing the
adjacency values for a pair of neighbouring regions in the
two resulting GLCMs, one can determine if the two regions
are largely horizontally or vertically adjacent. These two
different modes of adjacency are treated differently which
provides direction dependent context information. Fig. 3
demonstrates the process of finding the neighbourhood graph
for an example image with 9 regions. A sample GLCM for
horizontal neighbourhood is illustrated in this figure.

2) Unary Potential: The unary term computes the cost
of selecting a label for each region based on its features.
This cost should be higher for labels that have a lower
class probability. Here we take the negative logarithm of
the probabilistic output of the fuzzy SVM classification to
adapt it as the unary cost function:

P (y;, x;) = —log(P(yilxi) + €) 3)

The probability score is generated using the approach pre-
sented in [14]. An € is added to the equation to ensure a
non-zero value as the input of the logarithm.
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Fig. 3. The procedure of finding the horizontal neighbourhood graph
for the segmented regions. a) A sample image segmented into 9 regions.
A unique gray-level intensity is assigned to the pixels of each region. b)
The horizontal GLCM of the image reveals the number of occurrences of
horizontal adjacencies between each pair of gray-level intensities, which
in turn indicates the neighbourhood of the regions (Vertical GLCM is not
shown). ¢) The CRF graph for region 5. The adjacency direction between
each pair of regions (V or H) is computed by comparing the number
of adjacent pixels in each direction, or comparing their corresponding
horizontal GLCM and vertical GLCM value.

3) Pairwise Potential: In this work, we propose a
comprehensive pairwise potential,

¥ (yi, yj.Xi, Xj) =
(1= hi(ys)) <
2 (1= Pi(vy)

which takes into account several factors as described below.
This pairwise function is superior over a standard CRF in
terms of classification accuracy and also preserving image
details against the over smoothing property of the CRF.

i) Feature similarity: The term m considers the
feature difference between two regions. As a result, a higher
cost will be assigned if the regions with similar features
attain different labels.

ii) Smoothing term: 6(y; # y;) acts as a smoothing term
which prefers identical labeling for neighbouring regions.

o(yi #y;) = {

iii) Uncertainty of the neighbouring labels (Pj): The
major problem which is raised by the delta function is that
the algorithm favors a label similar to the adjacent regions,
regardless of how certain we are about the neighbours’
labels. In other words, it assumes that the neighbours are
correctly labeled, which may lead to over smoothing in some
regions. To tackle this problem, we insert (1 — P;(yj)) as a
function of unary probability of the neighbour in the pairwise
term to make it more knowledgeable about the surrounding

)5(Yi #Yi) (&)

1 yi#Yy;
0 ow )

Fig. 4. An example that illustrates the effect of neighbourhood length.
Region ¢ has more neighbouring regions from class B, but it has a longer
adjacency with class A, so class A should have a stronger influence on it.

regions. Therefore, the system gives more cost to identical
labeling with the adjacent regions that have a rather low class
probability.

iv) Neighbourhood length (h;): A problem in the stan-
dard region-based pairwise potentials is that each of the
surrounding regions are treated equally, irrespective of their
amount of neighbourhood. As indicated in Fig. 4, region @
has four neighbours of class B and one neighbour of class
A. In consequence, the effect of class B on region i is about
four times greater than the influence of class A on region
7. However, it does not seem like a fair decision, since the
length of neighbourhood between ¢ and A is much larger
than the neighbourhood length of ¢ and B.

We embed (1—h;(y;)) in the pairwise term to compensate
for this problem. The parameter h;(y;) stands for the pro-
portion of the boundary pixels from a neighbouring region
with the class label of y;, to all of the boundary pixels of the
region. For example, in Fig. 4, h;(A) is greater than h;(B),
where A and B are the class labels of the neighbouring
regions. Adding this term to the pairwise equation will
decrease the pairwise cost of selecting class A and increase
its effect on region 1.

v) Local context matrix (D): The image context provides
a rich source of information which can be utilised in the
pairwise potential to improve the classification accuracy. For
this purpose, a contextual cost matrix can be devised in order
to take the relationships between the neighbouring regions
with different class labels, into account. Such a matrix can
be designed by setting variable parameters and finding their
optimal values via a minimisation process. However, it might
lead to over-fitting due to the large number of parameters and
also the high level of complexity in our image dataset. These
parameters can also be assigned manually, but it requires a
deep knowledge of the application and also much trial and
error.

Here, we simplify this problem by using the confusion
matrix of the SVM classifier to build a contextual cost
matrix. The confusion matrix indicates the number of mis-
classifications for each pair of labels. A large value for a
non-diagonal component (y;,y;) shows that these two labels
have a significant conflict with each other. In order to dimin-
ish this misclassification error, a large cost, proportional to
the conflict rate, is needed for the interaction of these labels.
To this aim, we utilise the normalised confusion matrix to
build such a cost matrix as the local context matrix D.
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For instance, in our experiments, there might be some
regions on grass that are incorrectly classified into leaves
and should be turned into grass using CRF. A possible side
effect of this process is disappearing of, eg, a thin sign pole
beside the grass due to over smoothing. This problem can
be resolved by incorporating the matrix D into the CRF. If
the misclassification rate of grass and leaves is higher than
that of grass and the sign pole (which is in our experiments),
the smoothing effect of the CRF would be more significant
on leaves rather than on the sign pole and the pole is more
likely to be preserved.

vi) Horizontal and vertical pairwise potentials: In this
paper, we consider two types of horizontal and vertical
neighbourhoods for the regions. Hence, we have two pair-
wise potentials that consider the interactions of the region
with the horizontal and vertical neighbours, separately:

Z + > i)+ Y By(i,j)]

i=1 JENz jENiV
(6)

v1H, Y1v, You and Yoy These parameters determine the
degree of contribution of each term in the pairwise potential,
and will be trained in the next step.

The aggregate pairwise potential is very flexible and can
compromise very well between keeping correctly classified
details and smoothing out the wrongly classified regions.

4) CRF Training: In the training step, the aim is
to optimise the CRF parameters in a way that the true
labels become the most probable labels in the training data
(Eq. (1)). In other words, the energy in Eq. (2) should be
minimised for the training data.

One of the most notable approaches for this type of opti-
misation is Maximum Log-Likelihood. However, the problem
with this method is that the computation of global partition
function Z(¢, 11,9, X) is intractable in our case. In order
to resolve this issue, various approximations have been
proposed [18], among which, Maximum Pseudo-Likelihood
has been reported to be one of the most efficient approaches
with satisfactory results [18]. In this method, Eq. (7) which
represents the pseudo-likelihood objective function, is max-
imised during training and in the limit, it results in the same
values of parameters as maximum likelihood:

= log(Z

P(Y|X) ~ HP =

H exp Xl)Yi)"_ZjeNi ‘Il(yi7YjaXian)]
ZL eXp[‘I)(XiaYi) + Z]ENI \]:l(yi7Yj7Xian):|

)

The optimal parameters can be computed by taking the
negative logarithm of this probability function and then
performing an energy minimisation process on the training
data. We use the trust-region-reflective algorithm [19] in
MATLAB™ to find the optimal values for ¥, Y1y, Yor
and ’Qngv.

Fig. 5. a) An example of saturation in the image, where no information
about the material can be extracted from these regions (extracted from the
centre of Fig 7-a). b) Sample vague regions around the tree branches.

5) CRF Inference: This step uses the previously learnt
CRF model to predict the labels of unseen regions. Due
to the non-submodularity of the pairwise function, we use
the ICM (Iterated Conditional Modes) approach for the
inference. The following procedure (inspired by [20]) is
chosen due to its straightforward inference concept and also
its high convergence speed.

1. Set the probabilistic outputs of the SVM as the initial
probabilities of regions. Also set the SVM labeling outputs
as the initial labeling of the regions.

2. Update the probabilities P; from Eq. (7) for all regions
in the image and also update the region labels by finding
their maximum class probability.

3. Repeat step 2 until no change in the labels of the regions
is observed or the maximum number of iterations is reached.

E. Saturated and Vague Regions

We ultimately aim to classify the images into the first 10
prominent categories in Table I. However, as it is apparent in
Fig. 5-a, there are some saturated regions in the image (such
as the mid parts of the road) which does not convey any
useful information about the scene. This makes it very hard
for the classifier to recognise the real materials and objects
in those regions. In order to handle this issue, we define a
new class for these saturated regions to discriminate them
from other parts of the image.

In addition, there are some vague regions between differ-
ent adjacent materials in the images. This is due to the partial
averaging effect of the pixels in these areas, predominantly
found around leaves and tree branches. Fig. 5-b shows an
example of such obscure regions where it is uncertain if the
pixels belong to sky or tree branches. Labeling these regions
as belonging to one or the other class is often impossible,
even manually, so we assign a new label to be in charge of
these uncertain regions.

The above class labels do not represent any real world
object or material, so we may utilise the information from
their neighbourhood to identify them. Since the system
is optimised for a 12 class problem, CRF is unable to
dissolve all the regions from these two categories into the
10 real classes. A comparison of the accuracies of these two
categories in Tables II and III together with Fig. 7-c, shows
that CRF merges some of these saturated and vague regions
into one of the 10 main categories, but not completely.

To handle this problem, once the classification of all 12
classes is finished, the actual materials in the saturated and

3708



Fig. 6. A manually labelled image with colour codes for 12 classes as used in the classification system (Table I).

TABLE I
THE LIST OF THE TARGETS IN THE CLASSIFICATION SYSTEM

- Shadow on Road: Yellow
- Leaves: Green
- Sky: Light Blue

10 - Lake: Gray

11 - Saturated Regions: Purple

1 - Tree Trunks: Dark Brown

2 - Light Poles,Road Guards: Blue
3 - Shadow on Grass: Dark Blue
4 - Grass: Dark Green

5 - Road: Brown

6 - White Lines on Road: Red

- Vague Regions: Orange

vague regions are inferred using the information of their
surrounding regions that have real world class labels. This
is done by applying a majority voting rule to the labels of
adjacent pixels from the neighbouring regions.

IV. EXPERIMENTAL RESULTS

We classified the materials in the environment into 10
primary classes and also dedicated two extra classes to the
saturated and vague regions (Table I). Fig. 6 displays a
manual labeling for a sample image in which colours of the
classes are chosen according to Table I. Although texture
features are to some extent tolerant against different lighting
conditions, we introduced two classes for Shadow on Grass
and Shadow on Road to facilitate the classification [5].

For this experiment, 90 multi spectral images were ran-
domly selected and the performance of the proposed ap-
proach was investigated using a three-fold cross-validation.
The images were divided into 3 random partitions of 30
images and three validation runs were performed.

Initially, the images underwent a segmentation process
using the NDVI feature and Mean Shift algorithm, where
each image was segmented to 2500 regions on average. After
the segmentation process, manual labeling was performed
for some selected regions in all the images to constitute the
datasets. Then, 1041 regions from each class were randomly
selected for the classification process. Thereafter, a feature
extraction process was applied to these data items to obtain
70 features from each region as described in Section III-B.

In the next step, three-fold cross-validation using the fuzzy
SVM classifier (C' = 3, gamma = 0.0189) was performed
on the above data, which resulted in an average accuracy'

! Accuracy: The number of correctly classified data divided by the total
number of data

TABLE 11
THE CONFUSION MATRIX COMPUTED USING SVM APPLIED TO THE
VALIDATION DATA (RESULTS ARE IN PERCENT AND ROUNDED)

[ 1]2]3]4]5]6]7]8]910]11]12

179122201 ]2[7|0]0|1]4
208|741 ]0[1|5]4[]0]0|3]1]3
3 21217510006 110 |0]O0]4
41011719901 ]0]3[]0]0]0]|3
5 0130381 [2]0]1|5]1]1
6 119101 ]0|8|1]0]0|0]0]1
712125702080 ]0[0]0]1
8 110123000 [8]0[0]0]5
91 0[]0 J0]0]O|O0O]0[0]93]2]2]3
0f1[(4]0]0|4]1]0|1]4/[8]0]|2
11/ 1]70]0]0]0]0]0]2]0]9%]|2
n22|1(1{0]0[0]0]0|3]2]3|01]9%

of 84.2% for the ten primary classes. It should be noted
that in each fold, the same number of samples from each
class were taken into account.Table II presents the confusion
matrix which was computed by the SVM classification.

The approach was followed by applying the proposed
CRF to the SVM results. The confusion matrix that was
calculated during the SVM training was used to compute
matrix D in the pairwise potential. Then 10 new images were
randomly picked and were segmented and then the resulting
regions were manually labeled for the CRF training. The
achieved CRF model was applied to the results of SVM
classification through an inference process with a maximum
of 20 iterations. The maximum number of iterations was
already determined in a validation process on the training
data. The average accuracy of the CRF output was 88.9% for
the ten primary classes and the computed confusion matrix
can be seen in Table IIl. The rest of saturated and vague
regions were then investigated and classified into one of the
10 primary classes using the rules presented in III-E.

Furthermore, the system was reevaluated using a general
formulation of CRF by disregarding the 3 introduced terms
in the pairwise potential; neighbourhood length, neighbour
certainty and local context matrix. The average accuracy of
the system that featured a traditionally formulated CRF was
71.5% which is dramatically lower than the accuracy of our
system. It is noticeable that this result is worse than the
accuracy of a pure SVM classifier. The main reason behind
this outcome is the presence of some detailed objects such
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TABLE III
THE CONFUSION MATRIX COMPUTED USING CRF APPLIED TO THE
VALIDATION DATA (RESULTS ARE IN PERCENT AND ROUNDED)

J1]2]3]4]5]6]7|8]9]10]11]12
18 |3 |3 ]2{0|0]1[{8]0[0]0]3
216 (810224101 ]0]1
327181 ]0[0|3[3][]0]0|0]1
41701 1]94]0|0|1L[2]0[0]0]1
51021012 (92|1[1]0]0|1]0]1
6 1121016 |8]|5]0]0]0]0]0
71012 13]0]1]0(93]0]0|0]O0]1
8 1101 ]2{0|0]0[9]0[0]0]3
91 0[]0 J0]0[O0O|0]0[0]92|1]4]3
w2170 jo|2]1[02]2[8]|0]|1
1Imffr{rjfojof270[0|0|5]0]|8]3
Ryg2(1r(2]1{170[0 841179

as power poles and road guards in the images which have
been smoothed out by the ordinary CRF. Since the number
of samples from each category in the evaluation process
were equal, a low detection rate in such classes led to a
poor classification performance. This result illustrates the
potential of our proposed pairwise function, specially in the
classification of objects with fine details.

The proposed algorithm was applied to the entire set of
image regions to get a fully labeled classification result.
Fig. 7 demonstrates the results of subsequent steps of the
algorithm for a sample image. It can be seen that a sig-
nificant improvement has been made by applying our CRF
formulation to the SVM results. As evident in Fig. 7, the
degree of smoothness is controlled very well in most regions
and many fine details are still present in the final result.

V. CONCLUSION

We proposed a novel addition to a classic CRF for material
classification in the context of road and roadside objects
using multi spectral imaging. The addition addressed, in
particular, the issue of over smoothing and loss of fine detail.
A new CRF pairwise function was introduced which uses
different factors to reach a more purposeful and context
dependent smoothing. This function is shown to be very
adaptive to changes in the contextual relationships, the region
features, the amount of neighbourhood with the adjacent
regions, and also the certainty of the labels of the regions.

We utilised the confusion matrix of the unary classifier to
calculate matrix D and embedded it into our classification
system to represent a certain kind of contextual informa-
tion. This is an efficient method to take into account the
relationships between all the classes, as it removes the need
for training a large number of context parameters. Since no
knowledge of the dataset is needed to design this matrix, it
can be applied to a variety of applications.

In addition, the presence of several misclassified neigh-
bours might result in an erroneous decision in the CRF
Addressing this issue, we equipped the pairwise function
with the class probabilities of the neighbouring regions.
According to Eq. (4), we give more cost to the cases where
the neighbouring labels have a lower degree of certainty.

We also used a neighbourhood length parameter to make

up for the difference in the amount of neighbourhood with
the adjacent regions. As described in III-D-3 and Fig. 4,
this parameter acts as an equaliser between the number of
neighbouring regions and the number of neighbouring pixels.

Moreover, we specified two more classes for the saturated
parts and vague boundaries of the image. Due to the lack
of useful information in these regions, putting them in
one of the primary classes will degrade the classification
performance. The results demonstrate that these regions were
successfully identified using the probabilistic SVM (Fig. 7-
b) and then converted to the relevant classes (Fig. 7-d).

The primary advantage of region-wise processing is the
significant increase in the computation speed compared to a
pixel-wise algorithm with context awareness. The number of
regions for each image is around 2500 on average, which is
considerably less than the number of image pixels (more than
2 millions). This huge difference makes a pixel-wise clas-
sification much more demanding than our implementation.
Apart from the computation time, the regions present more
locally consistent information about the materials and objects
in the image, so they can provide more context information,
compared to individual pixels.

The proposed approach was evaluated using a large scale
dataset of road and roadside objects and led to an average
classification accuracy of 88.9% which was about 5% more
than the accuracy of SVM classifier. This experiment was
also carried out for a CRF framework with an ordinary
pairwise function (lacking the terms introduced in III-D-3).
The resulting classification accuracy of 71.5% demonstrates
the superiority of our proposed pairwise potential.

A major limitation of our work was in the segmentation
step. Although we attempted to improve the superpixels
using the information in the NIR band, there were still
some regions that expanded over two or more objects and
materials. Since the regions are the basic blocks of input to
our work, we intend to improve this step in the future and
also test our approach on some publicly available datasets.
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