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Abstract— An evolutionary computational approach for a
gait generation of a quadruped robot autonomously generates
a gait that adapts in an environment. In this approach, a fitness
function that measures a performance of the gait is defined and
parameters are optimized by maximizing or minimizing the
function with evolutionary computation algorithms. However
the previous research only has considered the optimization on
an environment. In this paper, we suggest a gait adaptation
method for a quadruped robot using a terrain classification
and a gait optimization for an adaptation on various surfaces.
The surfaces for the adaptation are learnt with a classification
algorithm and a gait parameter on each surface is optimized
with Particle Swarm Optimization (PSO). After the learning
and the optimization, the classifier is used for classifying a
surface that a robot is located and an optimized gait parameter
is selected based on the classification result for the adaptation.
The adaptation framework, a feature design and a filtering
method for a classifier and a gait design for a quadruped robot
are proposed in this paper. The proposed method was verified
in a realistic 3D simulator and it successfully classified surfaces
and selected optimized gaits for adaptations.

I. INTRODUCTION

Most mammals live on land have four legs and this kind
of structure has high mobility. In robotics, a quadruped robot
was developed inspired from it. It has much higher mobility
than a wheel-type robot and produces a faster and more stable
gait than a biped robot. It has been conducted many research
related to a generation of a gait for a quadruped robot due
to these advantages. The research about the gait adaptation
can be divided into three categories, planning a foot hold on
a rough terrain, a momentary adaptation of gait shape on a
surface with small obstacles, and an optimization of a gait
on a flat surface.

Recently DARPA (Defense Advanced Research Projects
Agency) supported several research groups for the first
approach and it has been shown a significant improvement
[1]–[4]. The approach hierarchically divides the control ar-
chitecture and designs each level for safely crossing a terrain.
However it has limitations that it needs many sensors such as
a laser sensor, a stereo camera and a tracking system to plan
gait on the terrain and it does not produce optimized gait on a
flat surface. The [13]–[15] conducted research for the second
approach. It generates a gait with Central Pattern Generator
(CPG) and a gait is changed immediately by using the sensor
information such as an accelerometer and a gyro sensor for
the adaptation. The approach can modify the gait when an
obstacle on a surface is small and the surface is similar to
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the pre-designed one. However, the adaption of the gait on
a surface where it is different from the pre-designed one is
tough.

The third approach generates an optimized gait on a pre-
defined surface [5]–[10]. In this approach, a fitness function
that measures a performance of a gait is defined and pa-
rameters are optimized for maximizing or minimizing the
function with evolutionary computation algorithms such as
genetic algorithms (GAs) and particle swarm optimization
(PSO). The advantage of the approach is that it optimizes
parameters without any mathematical model of the robot and
the environment. However, the approach has considered only
one environment or surface for the optimization. It limits the
autonomous gait adaptation of the quadruped robot in various
surfaces.

In this paper, a gait adaptation method for a quadruped
robot using a surface classification and a gait optimization
is suggested. The proposed approach is an extension of
the previous research [5]–[10] for a gait optimization on a
surface to gait adaptations on various surfaces. The surfaces
for the adaptations are classified with a machine learning
algorithm and a gait on each surface is optimized with PSO.
In detail, a feature vector and a filtering method for the
classification and the gait design for the optimization are
suggested. The feature vector is generated with a relative
position, velocity, and acceleration of the robot and the
filtering method eliminates a fluctuation of the classification
result for improving the classification accuracy. The designed
gait is simple but produces various gaits for adaptations on
surfaces.

The paper is organized as follows. The gait adaptation
with a surface classification and an optimization are shown
in Section II. Conditions and results for simulations are
presented in Section III. Finally, the conclusions and the
future works are given in Section IV.

II. GAIT ADAPTATION WITH SURFACE
CLASSIFICATION AND OPTIMIZATION

The proposed gait adaptation method consists of two
stages. In the first stage, a surface classifier is trained using
a machine learning algorithm and gaits are optimized on
surfaces using Particle Swarm Optimization (PSO). And in
the second stage, the trained classifier detects the surfaces
and the optimized gait parameter is selected for adapting on
a surface.
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procedure DETECTSURFACE(LS) . LS is an array of classification labels from t-N×TS to t
label count[i]← 0, i = 1, ..., C . C is a number of classes
n← 0
for n = 1, ..., N do . Cumulate the number of labels for each class during N×TS

L← LS[n]
label count[L]← label count[L] + 1

end for
FLt ← argmax

ı
(label count[i])

return FLt . Return final class label that has maximum label count
end procedure

Fig. 1. Surface detection algorithm with filtering. It eliminates the sudden change of classification label and returns stable class label.

A. Surface Classification for Quadruped Robot

We suggest a method that classifies surfaces by using a
machine learning algorithm for a quadruped gait. A machine
learning algorithm builds a classifier from data. A surface
classification for wheel-type robot using a machine learning
algorithm was proposed in [20], [21]. In this paper, we
follow the similar procedure in the previous study but a
feature vector for a quadruped robot is suggested. We assume
that a robot can measure its acceleration and speed. A
surface change is reflected to the robot’s movement and it is
measured by an internal sensor of the robot or an external
sensor. After walking a robot with a user-designed gait on
surfaces for adaptations, the sensor values are used as an
input of a classifier. The sensor value on a quadruped robot
fluctuates than wheel-type robot because of a counteraction
from a ground and a leg change for the gait. Series of sensor
data should be considered to capture the property. However
when we consider the series, number of the input for an
algorithm is large and needs many data to train an algorithm.
Seven features from the series are selected to reduce the size
of the input and classify surfaces effectively. The features are
speed of the robot, mean of the acceleration and standard
deviation of the acceleration in x, y and z axis during N
sampling time, where N is a number of sampling time. A
speed of the robot robotspeed is estimated by

robotspeed(t) =
||robotpos(t)− robotpos(t−N × TS)||

N × TS
(1)

where robotpos(t) and robotpos(t−N ×TS) are position of
the robot at time t and t − N × TS and TS is a sampling
period. Mean value of the acceleration in x, y and z axis are
estimated by

accmeanx,y,z
(t) =

∑t

i=t−N×T
accx,y,z(i)

N
(2)

where accx(t), accy(t) and accz(t) are acceleration at time t
in axis x, y and z respectively. The standard deviation value
of the acceleration in x, y and z axis are estimated by

accstdx,y,z
(t) =

∑t

i=t−N×T
(acc,y,zx(i)−accmeanx,y,z (t))2

N−1
(3)

The features are scaled range from −1.0 to 1.0 before they
are used as the input of the classification algorithm. Final

features for a classification algorithm are

xt = (robotspeed(t),
accmeanx(t), accmeany (t), accmeanz (t),
accstdx(t), accstdy (t), accstdz (t)).

(4)

To classify surfaces with the feature vector, Support Vector
Machine (SVM) is used as machine learning algorithm. The
SVM is one of the popular method for a pattern classification
that uses a concept maximum margin [22]. The trained SVM
produces the surface label Lt at each sampling time by using
the feature vector defined at (4). Even though the continuous
characteristic of the sensor data is considered in the feature
vector, the classifier occasionally produces mismatched a
label because of the movement of a robot. To reduce the
effect, a filtering algorithm is suggested and it is shown in
Fig. 1. The algorithm considers instant classification results
between t−N × TS and t sampling time and produces the
final label FLt that has a maximum count number of instant
result label during the period. The final label FLt indicates
the surface and a gait is selected based on the label for an
adaptation.

B. Gait Design for Quadruped Robot with Cubic Splines

The cubic spline generates a smooth trajectory between
an initial position and a final position, when an initial
position p0, an initial velocity ṗ0, a final position pf , a
final velocity ṗf and a total time tf are specified [19].
A continuous trajectory is generated with the cubic spline
in Cartesian coordinate and the position is converted into
target joint angles of each leg by inverse kinematics at
each sampling time. A total trajectory of each leg for a
period is composed with three points and those are connected
with two cubic splines as shown in Fig. 2. It starts from
~ps = (xs, ys) to ~pv = (xv, yv) to ~pf = (xf , yf ) and
goes back to the ps. The backward trajectory is generated
by setting start position as ~pf and final position as ~ps. The
forward trajectory is composed of two splines. By setting a
continuous acceleration at the via point, two-segment spline
is connected and produces a smooth trajectory that goes
through the via point. The equations for the first segment

717



Fig. 2. Trajectory generation with cubic spline. A total trajectory of each
leg for a period is composed with three points and those are connected with
two cubic splines. Each leg follows the same trajectory, but has a phase to
generate a gait of quadruped robot.

and the second segment are

a10 = p0

a11 = 0

a12 =
12pv−3pf−9p0

4t2
f

a13 =
−8pv+3pf+5p0

4t3
f

p1(t) = a10 + a11t+ a12t
2 + a13t

3

a20 = pv
a21 =

3pf−3p0

4tf

a22 =
−12pv+6pf+6p0

4t2
f

a23 =
8pv−5pf−3p0

4t3
f

p2(t) = a20 + a21t+ a22t
2 + a23t

3.

(5)

The time duration for the total trajectory is T , for the forward
trajectory is tf and the backward trajectory is T−tf . The gait
of the robot is realized by assigning the four total trajectories
to legs and coordinating them. By changing the start time of
each leg trajectory, various gaits can be generated. The crawl
gait is considered in the paper. In the case of the gait, each
leg has the same parameters, ~ps, ~pv , ~pf , T and tf , and left
hind leg, left front leg, right hind leg, and right front leg start
to move at 0T , 0.25T , 0.5T , and 0.75T , respectively. We use
fixed value for the phases and optimize the parameters ~ps, ~pv ,
~pf , T and tf with PSO for generating a gait of a quadruped
robot. The proposed gait design is simple but can produce
various gaits that adapt on surfaces.

C. Gait Optimization of Quadruped Robot by PSO

PSO is a population based stochastic optimization method
and is inspired by a social behavior of populations that
move to a goal by observing movements of neighborhood
individuals in the nature [16], [17]. Gaussian Swarm [18]
is used for optimizing the parameter of the gait at each
surface. Each parameter for the gait is sent to a simulator or
a physical robot and the parameters that satisfies constraints
are optimized. The constraints are

TABLE I
THE PARAMETERS FOR QUADRUPED GAIT

Parameters Range
T 0.1 ∼ 2 s
tf 0.1 ∼ 2 s
xs −(l1 + l2) ∼ (l1 + l2) m
ys −(l1 + l2) ∼ 0 m
xv −(l1 + l2) ∼ (l1 + l2) m
yv −(l1 + l2) ∼ 0 m
xf −(l1 + l2) ∼ (l1 + l2) m
yf ys

tf < T ,
xs < xv < xf ,
ys < yv ,
yf < yv .

The constraints prevent an abnormal movement of the robot.
The fitness evaluation is conducted for a predefined duration
with the parameter encoded in each particle and it returns
the fitness value to the overall PSO procedure. The fitness is
absolute distance from the origin position Rs to final position
Rf of the robot during the predefined time and the high
fitness value represents that the parameter generates a gait
that can produce a fast movement. The function is defined
as

f = |Rf −Rs|. (6)

When an unreachable gait is generated, the fitness evaluation
terminates and returns a distance of the robot at that time.
The parameters and their range for optimizing the gait are
summarized in Table I. The dimension of the parameters
for the optimization is only seven. The low dimension is
important for an application of the evolutionary algorithms
to robotics because usually lower dimensions require less
iteration for the optimization. The procedure is repeated as
the number of surfaces for the adaptations. The optimized
parameter is selected based on the classification labels of a
surface for adaptation.

III. SIMULATION

A model of the quadruped robot used in simulations,
surface classifications, optimizations of the robot and the
gait adaptation results are shown in this section. The gait
adaptation of a quadruped robot was conducted in a simula-
tor implemented with Open Dynamics Engine (ODE) [24].
The sampling time for the simulator was set as 0.02s and
properties of surfaces were changed by varying the friction
parameter µ on the simulator. The proposed method for the
adaptation of gaits was applied on four surfaces.

A. Model of Quadruped Robot

The robot has 12 joints and 3 degrees of freedoms (DoFs)
were assigned to each leg. Only 2 DoFs for each leg were
used in the paper because we considered forward walking
movement. The model of the quadruped robot is shown in
Fig. 3 and the parameter values are summarized in Table II.
The parameters bodywidth, bodyheight, bodylength, l1, and l2
represent width of the body, and height of the body, length
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Fig. 3. Model of quadruped robot

TABLE II
THE PARAMETERS FOR EACH RIGID BODY

Parameters Value
bodywidth 0.225 m
bodyheight 0.01 m
bodylength 0.105 m

l1 0.1342 m
l2 0.102 m

mbody 0.1 kg
ml1 0.134 kg
ml2 0.11 kg

TABLE III
THE USER-DESIGNED PARAMETERS FOR QUADRUPED GAIT

Parameters Value
T 1.0 s
tf 0.5 s
xs -0.05 m
ys -0.15 m
xv 0 m
yv -0.12 m
xf 0.0.5 m
yf -0.15 m

of the body, length of the upper leg, length of the lower
leg, respectively. And the parameters mbody , ml1 , and ml2

represent the mass of the body, upper leg, and lower leg,
respectively.

B. Surface Classification Result

We used the libsvm [23] to implement the SVM that
classifies surfaces. A data set for training SVM was taken
after walking on four surfaces with a user-designed gait.
The parameters for the gait is shown in Table III. The robot
was walked on surfaces that has different friction parameter
µ = 0.25, µ = 0.5, µ = 0.75 and µ = 1.0 and each
classification result was labeled as label1, label2, label3 and
label4, respectively. The parameter N was set as 10. The
acceleration and velocity of the robot for the feature vector
were calculated by numerical differential from position of the
robot body. The number of data for each surface was 1000
and the SVM was trained with the data by 10 fold cross
validation for selecting the best parameters of the SVM. The
classification accuracy result with the setting was 98.88%
which shows the proposed classification feature vector is
suitable for classifying the surface changes. The trained SVM

TABLE IV
CLASSIFICATION ACCURACY

Accuracy
Friction parameter Instant classification Final classification

µ = 0.25 100% 100%
µ = 0.5 88.05% 98.41%
µ = 0.75 82.87% 98.01%
µ = 1.0 86.06% 97.21%

TABLE V
THE OPTIMIZED PARAMETERS OF QUADRUPED GAIT ON SURFACES

Optimized value
Parameters µ = 0.25 µ = 0.5 µ = 0.75 µ = 1.0

T 0.5499 s 0.6440 s 0.5148 s 0.8324 s
tf 0.2517 s 0.3364 s 0.2019 s 0.3928 s
xs -0.1477 m -0.1301 m -0.1341 m -0.1482 m
ys -0.094 m -0.0996 m -0.1096 m -0.0984 m
xv -0.020 m -0.0247 m 0.0603 m -0.0243 m
yv -0.087 m -0.0830 m -0.0801 m -0.0866 m
xf 0.1357 m 0.1305 m 0.07881 m 0.1310 m
yf -0.094 m -0.0996 m -0.1096 m -0.0984 m

was used for classifying the surface with the response of the
robot at every sampling time. The classification results on the
surfaces are shown in Fig. 4. First, second, and thirds rows
show the input vector for the classifier and fourth row shows
the instant classification result and the last row shows the
final classification result on the surface. Even though there
were frequent fluctuations at the instant classification results,
final class labels showed steady classification result. This
result represents that proposed classification filter method
effectively eliminates fluctuation on the instant classification
labels without degrading the accuracy. The result on the
instance classification accuracy and the final classification
accuracy for the classifier design is shown in Table IV. The
instant classification result shows over 80 % accuracy and
final classification result filtered by proposed method shows
over 97 % accuracy that both are enough to detect surfaces
for adaptations.

C. Gait Optimization Result

The gait was optimized on the each surface with PSO
algorithm. The swarm size was set as 50 and the maximum
generation was set as 50. Fitness evaluation for each particle
was conducted for during 5 seconds. The gait parameters
after the optimizations are summarized in Table V. The initial
fitness for each surface was 0 or 0.5, but it reached about
2.5 at the final generation. It represents that the optimization
process found the parameters that can move to a position
apart 2.5 meters away from the initial position during the
predefined 5 seconds on different surfaces. The optimization
process found the parameter that was suitable for each
surface and it is used for generating a gait for an adaptation.

D. Gait Adaptation Result

With the trained classifier and the optimized gait parameter
from the previous sections, the gait adaption simulation was
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(a) µ = 0.25 (b) µ = 0.5

(c) µ = 0.75 (d) µ = 1.0

Fig. 4. The classification result on surfaces
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(a) µ = 0.25 (b) µ = 0.5

(c) µ = 0.75 (d) µ = 1.0

Fig. 5. Adaptation result on the surfaces

TABLE VI
THE AVERAGE VELOCITY

Average velocity
Friction parameter Before adaptation After adaptation

µ = 0.25 0.1582 m/s 0.4655 m/s
µ = 0.5 0.2484 m/s 0.4562 m/s
µ = 0.75 0.1909 m/s 0.4566 m/s
µ = 1.0 0.1466 m/s 0.4326 m/s

conducted. The robot was walked on each surface with the
user-designed gait parameter, the surface was classified at
1.2 seconds and the gait parameter was changed to the
optimized parameter based on the classification result for the
adaptation. The simulation results are shown in Fig. 5. The
parameters of the gait were adapted on each surface after
1.2 seconds. To see the performance improvement after the
adaptation, the average velocity of the robot was considered.
The average velocity before the adaption was calculated by
dividing the distance from the initial position of the robot to
its position at 1.2 second by the 1.2. The average velocity
after the adaption was calculated by dividing the distance
from the position of the robot at 1.2 second to its position at
5 second by 3.8. The average velocity comparisons between
before adaptation and after adaptation are summarized in
Table. VI. The average velocity of the robot after adaptation
shows around 0.45 m/s which is two or three times faster
than before adaptation. The result tells us that the proposed
method using the classification and the gait optimization is
suitable for adaptation for the surfaces.

IV. CONCLUSIONS

In this paper, we suggested the gait adaptation method
for a quadruped robot using a surface classification and a
gait optimization with PSO. The surfaces for the adaptation
were classified with a machine learning algorithm and a gait
on each surface was optimized with PSO. The method was
tested with gait adaptations on four different surfaces and it

produced the gaits that were suitable for walking on each
surface. We are planning to improve the proposed system
to an incrementally learning adaptation system for unseen
surfaces.
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