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Abstract— In the model of the constrained dynamic system
of a rigid robot contacting with rigid environment, constrained
forces can be expressed as an algebraic function of states
(instantaneous process) and a redundancy existing in constraint
dynamics (constraint redundancy). Using these results, a force
and position control law is proposed by taking the advantages of
the redundancy of input generalized forces to the constrained
forces and instantaneous process without involving any force
sensor, using dual nature of constraint motion stated in this
document. Then proof confirming by Lyapunov method that the
exerting force equals instantaneously and constantly to desired
one and that the motion of robot’s hand in a movable space
converges to desired hand’s position. The effectiveness has been
confirmed by a 2-link robot in simulations.

I. INTRODUCTION

It is well known that robots, particularly articulated types,

are very dexterous and have large operable space. Hence,

they will have a promising future to introduce such kinds

of robots more extensively into manufacturing. For example,

the tasks of the grinding or cutting of deeply located surfaces

within a cabinet might be too difficult to machine. Further-

more, for some auxiliary machining operations, it may cost

too much for an expensive machining center to do. Therefore,

employing robots in such areas will be a satisfactory alterna-

tive. On the other hand, comparing with a machine tool, the

characteristics of robots on stiffness, damping and vibration-

proofing are somewhat poor. In order to take the advantage

of the dexterity of robots, much sophisticated design and

control strategies have to be developed.

We think that a paper [1] had classified contacting tasks

of robots practically. The following classification is along

with the statements in [1]. Robot force control method

can be largely classified into impedance control and hybrid

control. In impedance control, a prescribed dynamic relation

is sought to be maintained between the robot end-effector’s

force exerting to an object constraining the end-effector and

position displacement toward the direction vertical to the

object’s surface [2]. In hybrid control, the end-effector’s force

is explicitly controlled in selected directions and the end-

effector’s position is controlled in the remaining (comple-

mentary) directions [3].

The hybrid control approaches can be further classified

into three main categories [1]: (A) explicit (model based)

hybrid control of rigid robots in elastic contact with a

compliant environment, e.g. [4]-[5], in which the end-effector

1Mamoru Minami, Fujia Yu, and Akira Yanou are with Grad-
uate School of Natural Science and Technology, Okayama Univer-
sity Tsushimanaka3-1-1 , Okayama, JAPAN. {minami, yufujia,
yanou}@sys.okayama-u.ac.jp.

force is controlled by directly commanding the joint torques

of the robot based on the sensed force error; (B) implicit

(position/velocity based) hybrid control of rigid robots in

elastic contact with a compliant environment, e.g. [6], in

which the end-effector force is controlled indirectly by

modifying the reference trajectory given into an inner loop

joint position/velocity controller based on the sensed force

error and (C) explicit (model based) hybrid control of rigid

robots in hard contact with a rigid environment, e.g. [3], [7].

Many researches have discussed on the constraint-

combined force/position hybrid control method. To ensure

the stabilities of the constrained motion, those force and

position control methods have utilized Lyapunov’s stability

analysis under the inverse dynamic compensation where

force control strategies have been explained intelligibly in

papers [1], [8], [9]. But these stability proofs are trying to

divide the procedure into two different parts [10], [11]: force

convergence limt→∞ F n = F nd and position convergence

limt→∞ r = rd, here F n and F nd are the actual constraint

force and the desired constraint force, while r and rd are

the actual hand position of the manipulator and the desired

one.

In this research, the third category (C) of contacting situa-

tion that assumes rigid link manipulator and hard contacting

with nonelastic environment. Given this prerequisite, Yamane

and Nakamura have used the following matrix equation in

[12], so both constraint condition and the dynamics can

be represented simultaneously. This equation means that

determining the constraint force Fn does not include time

integration like q̈. In this equation q̈ expresses the angular

acceleration, and Fn does the constraint force, the derivation

will be given in section 2. Upper side represents equation

of motion of robot, and the lower side does the constraint

condition differentiated twice by time. Furthermore, they ex-

tended the dynamics representation method into the concept

of dynamics filter [13], [14].
[

M −JT
c

∂C
∂qT 0

]

[

q̈

Fn

]

=

[

τ − 1
2Ṁq̇ − Nq̇ − G − JT

t Ft

−q̇T [∂C
∂q ( ∂C

∂qT )]q̇

]

(1)

In [15] it is written that “If contact is modeled by means

of geometric constraints, then the contact forces cannot be

expressed as algebraic functions of the state variables q, q̇.”

The q, q̇ express the angle and angular velocity of the joints.

We do not think it is right, because the contact force has

been calculated in (2). (2) is a solution of (1), which has
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been pointed out by Hemami [16] in the analysis of biped

walking robot, denotes clearly the algebraic relation between

the input torque τ of the robot and exerting force to the

contacting object Fn have algebraic relation, when robot’s

end-effector being in touch with a surface in 3-D space:

Fn = a(q, q̇) + A(q)JT
r Ft − A(q)τ . (2)

Where a(q, q̇) is scalar function and A(q), Jr are vectors

defined in following section. (2) exhibits vector τ determin-

ing Fn has a redundancy against constraint force Fn since

Fn is scalar. The other point is that the transmission of τ

to Fn is not time consuming process like joint angle q and

velocity q̇. This means just that (2) is not time differential

equation but algebraic equation, we have also reported these

two characters existing in constraint motion by [17]-[20].

From (2) we can know that the force transmission process

is an immediately finished process for a rigidly structured

manipulator just as the acceleration being determined imme-

diately by state variables and input generalized forces, this

property of contacting motion is extended to a concept of

“dual nature” in the following section. Exploiting (2), we

design a new controller whose stability is guaranteed by

Lyapunov method, which assures exerting force Fn(t) = Fnd

and limt→∞ r = rd. This result that converge to the desired

value instantaneously Fn(t) = Fnd—a part of this result has

been presented by authors at a domestic meeting in Japan

[21]—can be distinguished from the former consequences

limt→∞ Fn(t) = Fnd [10] [11]. The effectiveness of our

proposed position/force control method has been confirmed

by a 2-link grinding robot model in simulation.

II. ANALYSIS OF GRINDING TASK AND MODELING

A. Contacting Force and Friction

The normal grinding force Fn is exerted in the perpen-

dicular direction of the surface. It is a significant factor

for grinding robots that affects ground accuracy and surface

roughness of workpiece. The value of it is also related to the

grinding power or directly to the tangential grinding force as

Ft = KtFn, (3)

where, Kt is an empirical coefficient, Ft is the tangential

grinding force. This relation gives us an estimated value of

Ft given that Kt and Fn are known.

B. Constrained Dynamics

Hemami and Wyman have addressed the issue of control

of a moving robot according to constraint condition and

examined the problem of the control of the biped locomotion

constrained in the frontal plane. Their purpose was to control

the position coordinates of the biped locomotion rather than

generalized forces of constrained dynamic equation involved

the item of generalized forces of constraints. And the con-

strained force is used as a determining condition to change

the dynamic model from constrained motion to free motion

of the manipulators. In this paper, the grinding manipulator,

whose end-point is in contact with the constrained surface,

is modeled according with Lagrangian equations of motion

in term of the constraint forces, referring to what Hemami

[16] and Arimoto [10] have done:

d

dt

(∂L

∂q̇

)

−
(∂L

∂q

)

= τ +
( ∂C

∂qT

)T
/ ‖

∂C

∂r
‖ Fn −

( ∂r

∂qT

)T
ṙ/ ‖ r ‖ Ft

= τ + JT
c (q)Fn − JT

r (q)Ft (4)

where, Jc and Jr are defined as:

JT
c =

(

∂C
∂qT

)T

‖ ∂C
∂r

‖
= JT

( ∂C

∂rT

)T /

‖
∂C

∂r
‖,

J =
∂r

∂qT
, JT

r = JT ṙ

‖ ṙ ‖
,

r is the position vector of the hand and can be expressed as

a kinematic equation,

r = r(q). (5)

q is n(≥ 2) generalized coordinates. Then this manipulator

does not have kinematic redundancy. In this research we only

discuss the problem under only one constraint condition, so

C is a scalar function of the constraint, and is expressed as

an equation of constraints,

C(r(q)) = 0, (6)

Fn is the scalar express the value of the constrained force

associated with C and Ft is the scalar express the value of

tangential friction force.

In [10] (4) can be derived into :

M(q)q̈ +
1

2
Ṁ(q)q̇ + N(q, q̇)q̇ + G(q)

= τ + JT
c (q)Fn − JT

r (q)Ft, (7)

here we express M(q) as M and N(q, q̇) as N for short.

M is an n × n matrix, N is a n × n skew-symmetrical

matrix. G is a n row vectors. τ is n inputs.

From the constraint condition (6) we can get

∂C

∂qT
q̈ = −q̇T [

∂C

∂q
(

∂C

∂qT
)]q̇. (8)
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Fig. 1. Model of Constraint Dynamic System
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The equation (7) and (8) can be combined as follows which

is the same equation of (1):
[

M −JT
c

∂C
∂qT 0

]

[

q̈

Fn

]

=

[

τ − 1
2Ṁq̇ − Nq̇ − G − JT

t Ft

−q̇T [∂C
∂q ( ∂C

∂qT )]q̇

]

(9)

This equation is also used by Nakamura in [12], [13] and

[14], it is easy to see that when the matrix on the left side

is invertible, there exist a τ which determines the q̈ and Fn

satisfying (7) and (8) respectively. And as below, the inertia

matrix combined with constraint condition is guaranteed to

be non-singular.

det

[

M −JT
c

∂C
∂qT 0

]

= det M · det
(

0 −
∂C

∂qT
M−1(−JT

c )
)

=
1

‖ ∂C
∂qT ‖

det M · det
( ∂C

∂qT
M−1

( ∂C

∂qT

)T
)

> 0 (10)

which means that the matrix is invertible since

∂C(r(q))/∂qT 6= 0. We define:

mc
△
= (

∂C

∂qT
)M−1(

∂C

∂qT
)T . (11)

The inverse matrix can be calculated as follow:
[

M −JT
c

∂C
∂qT 0

]−1

=







M−1
{

I −JT
c m−1

c ‖
∂C

∂r
‖

∂C

∂qT
M−1

}

−m−1
c ‖

∂C

∂r
‖

∂C

∂qT
M−1

m−1
c ‖

∂C

∂r
‖ M−1JT

c

m−1
c ‖

∂C

∂r
‖






. (12)

From (9) and (12) the constraint force Fn being identical to

(2) can be solved like:

Fn = [(
∂C

∂qT
)M−1(

∂C

∂qT
)T ]−1 ‖

∂C

∂r
‖ {−[

∂

∂q
(

∂C

∂qT
)q̇]q̇

+(
∂C

∂qT
)M−1(

1

2
Ṁq̇ + Nq̇+ G(q)+JT

r Ft)}

−[(
∂C

∂qT
)M−1(

∂C

∂qT
)T ]−1 ‖

∂C

∂r
‖ {(

∂C

∂qT
)M−1}τ

△
= a(q, q̇) + A(q)JT

r Ft − A(q)τ , (13)

where, a(q, q̇) is a scalar representing the first term in

the expression of Fn, and A(q) is an n line vector. As

shown clearly in (13) that dimension of τ is larger than the

dimension of Fn, and Fn can be realized in the range space

of A(q). This means τ has a kind of redundancy against Fn.

We named this redundancy appearing always in constraint

dynamics of manipulator as constraint redundancy. a(q, q̇)
and A(q) are defined concretely as follow:

a(q, q̇)
△
= mc

−1‖
∂C

∂rT
‖{−[

∂

∂qT
(
∂C

∂q
)q̇]q̇

+(
∂C

∂qT
)M−1(

1

2
Ṁq̇ + Nq̇ + G)}, (14)

A(q)
△
= mc

−1‖
∂C

∂rT
‖{(

∂C

∂qT
)M−1}, (15)

(13) is written as follow for short:

Fn = Fn(q, q̇, τ , Ft). (16)

From (9) and (12), we can get that:

q̈ = M−1(τ −
1

2
Ṁq̇ − Nq̇ − G − JT

t Ft + JT
c Fn). (17)

Inserting Fn calculated in (13) into (17), the state equation

of the system excluding the constrained force (as Fn > 0 )

can be rewritten as

M(q)q̈ +
1

2
Ṁ(q)q̇ + N(q, q̇)q̇ + G(q)

= JT
c (q)a(q, q̇) + (I − JT

c A)τ + (JT
c A − I)JT

r Ft (18)

which is denoted as a model of the constraint dynamic

system in Fig. 1. We have notice the right hand side of (18)

of (I−JT
c A) and (JT

c A−I) in [17] more than 15 years ago,

having sterling up our quality of how to use the interesting

similarity in them for a new controller. But we still have no

idea.

Solutions of these dynamic equation always satisfy the

constrained condition (6). The forward description of con-

tacting dynamics has been represented by (7) and (6). The

fact that the solution q of (7) have to satisfy (6) make

us anticipate that Fd should be satisfied simultaneously

and instantly regardless of the motion q, q̇, and any τ .

The algebraic solution has been derived as (13). Then the

dynamics of the manipulator whose solution q, q̇ always

satisfy the constraint condition (8) derived from (6) has been

translated into (18). In the Fig. 2, the backward relation

of (13) and (18) are described in the right hand half. (13)

exhibits clearly the comment “If contact is modeled by means

of geometric constraints, then the contact forces cannot be

expressed as algebraic functions of the state variables q,

q̇,” in pp.55 [15] is not correct and contradicting to. The

backward description of constraint dynamics (14) has been

long ignored by robotic researchers, but we had proposed the

force sensorless position/force control based on using this

backward description directly [17]. Here two descriptions

on left and right side of Fig. 2 are equivalent, then it can

be called a “dual system.” In this paper , we propose a

new controller with Lyapunov -stability over non-constraint

motion and with instantaneous achievement of desired con-

tacting force.
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Fig. 2. Dual nature of manipulator under constraint condition.

III. FORCE AND POSITION CONTROLLER

In this paper, we propose a controller whose convergence

is guaranteed by Lyapunov method and introduce the calcu-

late method of it.

A. Controller

Let S be a column full rank matrix spanning the null space

of ∂C/∂q, we can get ST
(

∂C/∂qT
)T

= 0, i.e.

ST JT
c = 0. (19)

It is possible to find an auxiliary vector p satisfies

q̇ = Sṗ, (20)

in the manipulator situation, p is the end-effector position

except the constraint direction, and

q̈ = Ṡṗ + Sp̈. (21)

From the definition of A in (15) and S in (19), we can get

ST A = mc
−1‖

∂C

∂rT
‖{ST (

∂C

∂qT
)M−1}

= 0 (22)

so [AT ,S] is reversible, i.e. there certainly exist B (n × 1
vector) and D (n × (n − 1) matrix) satisfies

[

A

ST

]

B =

[

1
0

]

(23)

[

A

ST

]

D =

[

0
T

In−1

]

(24)

respectively. Here In−1 is a (n−1)×(n−1) identify matrix.

B means selection matrix of range space of ∂C/∂q, which

corresponds directly to the range space of A(q) as shown in

(15) and null space of ∂C/∂qT being identical to the null

space of A. And D is vice versa.

Before proposing the controller we will put forward three

assumptions:

(a)The constraint condition is known and expressed by

C(r(q)) = 0.

(b)The tangential grinding force can be calculated by (3).

(c)The dynamic parameters of the system are known.

The following is a controller guaranteeing that the closed

loop satisfies the exerted constrained force Fn be identical

to the desired force Fnd regardless of time and the robot’s

motion along with the free motion directions.

τ = B(Fnd − a) + D
[

kp(pd − p) + kd(ṗd − ṗ)
]

+JT
r Ft (25)

Here on the right side, the first term is to realize the desired

constrained force, the second term is to control the pose of

the manipulator, while the third item is to compensate the

friction, with an assumption of Ft being able to be gotten

correctly. This assumption can be materialized by using Fn

and (3). The block diagram of the system is given in Fig. 3.

Because (2) is a algebraic function of the input torque,

when we substitute (25) into (13), we can get

Fn = a(q, q̇) + AB(Fnd − a)

+ AD
[

kp(pd − p) + kd(ṗd − ṗ)
]

(26)

from the definition we know that AB = 1 and AD = 0 so

AB(Fnd−a) = Fnd−a and AD
[

kp(pd−p)+kd(ṗd−ṗ)
]

=
0, so

Fn = a(q, q̇) + Fnd − a(q, q̇)

= Fnd, (27)

here (27) does not include the variable of time t as a time

differential manner, meaning the output force always equals

the desired one. When the a(q, q̇) calculated by (14) contains

errors, denoted by â, (27) will be

Fn = Fnd + a − â (28)

thus the exerted force would be suffered by the error stem-

ming from measurements of M(q), q, q̇ and constraint

condition C = 0, and so on in (14). But the error would

not be generated through dynamical behaviors of robot but

geometric static algebraic relation depending on the results

of dynamical behavior of motions q, q̇.
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Fig. 3. Grinding position / force control system

B. Calculation of null space of Jc, i.e., S

From definition of Jacobian matrix J we can get

ṙ = Jq̇ (29)

we can always find a matrix P whose row vectors are the

orthogonal space of ∂C/∂rT since ∂C/∂rT cannot be a

zero vector because of C(r) = 0 is independant constraint

condition, then ,

P⊥
∂C

∂rT
(30)

ṗ = PJq̇ = J̃ q̇ (31)

Here ṗ is a direction along the constraint condition. Define

PJ as J̃ , taking (31) into (20) we can get

J̃Sṗ = ṗ. (32)

J̃ is a row full rank matrix of (m−1)×n, so it is possible

to find an S ∈ Rn×(m−1) which satisfying J̃S = In−1

(J̃S ∈ Rm−1×(m−1)) is a solution of (32) J̃S = In−1 and

(19) JcS = 0 can be combined into one matrix equation:
[

J̃

Jc

]

S =

[

In−1

0

]

(33)

Here we define Ĵ = [J̃
T
,JT

c ]T . From the definition of P

in (30) we know
[

P
∂C

∂rT /‖ ∂C
∂rT ‖

]

∈ Rm×m (34)

is reversible. We assume the Jacobian matrix J is also row

full rank matrix so
[

P
∂C

∂rT /‖ ∂C
∂rT ‖

]

J =

[

J̃

Jc

]

= Ĵ (35)

Ĵ is reversible, so S can be calculated as follow:

S = Ĵ
−1

[

In−1

0

]

. (36)

By using S, we can calculate B and D in (23) and (24),

and calculate the input τ in (25).

IV. STABILITY ANALYSIS

Putting (20) into (7), premultiply ST we can get

ST MṠṗ + ST MSp̈ + ST
(1

2
Ṁ + N

)

Sṗ

= ST τ + ST JT
c Fn − ST JT

r Ft (37)

Substituting (25) into (37), from (23) we know ST B = 0

we can get closed loop dynamics as,

ST MṠṗ + ST MSp̈ + ST
(1

2
Ṁ + N

)

Sṗ

= kp(pd − p) + kd(ṗd − ṗ) (38)

From the equation above we can see because B is defined

in the null space of S,which will not affect the motion of

the end effector along the constraint surface, here we set

the desired end-effector position is constant which means

ṗd = 0, so closed loop dynamics is

ST MṠṗ + ST MSp̈ +
1

2
ST ṀSṗ − kp(pd − p)

= −ST NSṗ − kdṗ. (39)

Set Lyapunov argument as:

V =
1

2
ṗT ST MSṗ +

1

2
(pd − p)T kp(pd − p) (40)

so

V̇ = ṗT ST MṠṗ + ṗT ST MSp̈

+
1

2
ṗT ST ṀSṗ − kpṗ

T (pd − p) (41)

From (39), (41) can be transformed to

V̇ = −ṗT ST NSṗ − kdṗ
T ṗ (42)

because N is a skew symmetrical matrix, ṗT ST NSṗ = 0,

so

V̇ = −kdṗ
T ṗ (43)
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Fig. 4. 2-link grinding robot

because V̇ ≤ 0 and V ≥ 0, from (43) we can see if and only

if ṗ = 0, V̇ = 0. Submitting ṗ = 0 into (39) we can get

pd − p = 0, Lasalle theorem bring

lim
t→∞

p = pd, lim
t→∞

ṗ = 0 (44)

Because the robot’s kinematics satisfy rd = f(qd), it leads

to

lim
t→∞

r = rd. (45)

Once more we can see that there is no Fn or a in the process

of the convergence proof from (38), which means that the

system will converge to the desired pose even if there exist

some error between Fn and Fnd.

V. SIMULATION

In this section we will introduce some simulations have

been done to check the controller in 2-link condition as

Fig. 4. To a 2-link manipulator the variables in (18) can

be calculated as follow:

M =

[

J1 + J2 + 2β cos q2 J2 + 2β cos q2

J2 + 2β cos q2 J2

]

(46)

1

2
Ṁq̇ + N q̇ =

[

−(2q̇1q̇2 + q̇2
1)β sin q2

q̇2
1β sin q2

]

(47)

here J1 = I1 + (m1 + 4m2)l
2
1, J2 = I2 + m2l

2
2 and β =

2m2l1l2 and I , m, l are the initial moment, mass and length

of the links. Jacobian matrix J is.

J =

[

− sin q1 − sin(q1 + q2) − sin(q1 + q2)
cos q1 + cos(q1 + q2) cos(q1 + q2)

]

(48)

In the simulation we set the constraint condition as:

C(r(q)) = y − 0.6 = 0 (49)

so

∂C

∂r
=

[

0
1

]

ṙ =

[

1
0

]

(50)

so

Jc =

[

cos(q1 + q2)
cos q1 + cos(q1 + q2)

]

(51)

Jr =

[

− sin(q1 + q2)
− sin q1 − sin(q1 + q2)

]

(52)

from the variables above we can calculate a, A and mc

defined in (14) (15) and (11) and calculate Fn by (18).

For 2-link manipulator, S and ∂C/∂q in (19) are both

2 × 1 vectors, we can get ST
(

∂C/∂qT
)

= 0, i.e.

ST JT
c = 0 (53)

This S also satisfies the following equation,

q̇ = Sṗx (54)

where ṗx is the end-effector position on x-axis, here we

define the two elements of S as S = [S1, S2] and Jc =
[Jc1, Jc2], also the two angles of the joints are define as q1

and q2 respectively, so (54) can be written as
[

q̇1

q̇2

]

=

[

S1

S2

]

ṗx (55)

from the definition of Jacobian matrix we can know

[J11, J12]

[

q̇1

q̇2

]

= ṗx (56)

here [J11, J12] is the first row vector of Jacobian matrix and

also the J̃ in (31). To get S satisfies J̃S = I , take (55) into

(56), we can get

[J11, J12]

[

S1

S2

]

= 1 (57)

Combine (47) and (57), we have

ĴS =

[

J11 J12

Jc1 Jc2

] [

S1

S2

]

=

[

1
0

]

(58)

which is corresponding to (33). Then we have, S as

S = Ĵ
−1

[

1
0

]

=





Jc2
Jc2J11 − Jc1J12

− Jc1
Jc2J11 − Jc1J12



 . (59)

Because there are only 2 links, B and D in (25) can be

determined as,

B =

[

A

ST

]−1 [

1
0

]

(60)

D =

[

A

ST

]−1 [

0
1

]

(61)

The dual nature of manipulator under constraint condition in

Fig. 2 for 2-link manipulator can be written as Fig. 5.

Then we did some simulations to check the controller, first

we set the desired force as a step input, in this simulation

xd = 0.5[m], Fnd = 5[N ] kp = 1000 and kd = 300, 100, 30
respectively, the result is shown in Fig. 6, the constraint force

and y-position coincide and all x-position can converge to

the desired position.

In the second simulation I will show the data of the

simulation when kp = 1000, kd = 300, xd = 0.06t[m] and

Fnd = 5[N ]. From Fig. 7 (a) we can see that the system will

output the desired force. And from (b) and (c) we can see

that the controller can control the end-effector move along

the desired trajectory.
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Fig. 5. Dual nature of manipulator under constraint condition of two link grinding robot
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Fig. 6. Simulation result when kp = 1000, xd = 0.5[m] and Fnd = 5[N ]
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Fig. 7. Simulation result when kp = 1000, kd = 300, xd = 0.06t[m] and Fnd = 5[N ]
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Fig. 8. Simulation result when kp = 1000, kd = 300, xd = 0.06t[m] and Fnd = 5 + sin t[N ]

In the third simulation we make the desired force as a

function of time, in this simulation kp = 1000, kd = 300,

xd = 0.06t[m] and Fnd = 5+sin t[N ] the result is shown in

Fig. 8, from the simulation result we can see that however the

force changes, the end-effector tracks the desired position on

x−axis while moves along the constraint line on y-axis. Just

as it is explained, the surface constraint dynamics expresses

the system by the equation of dynamics and constraint

condition, but this is only a condition but not a limitation.

In the hidden constraint dynamics, the constraint condition

is combined into the dynamics equation, so no matter how

much the input τ is, it just affect the constraint force, and

the end-effector motion on the tangent direction, but the end-

effector always moves along the constraint line of plane. This
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is the reason why we call the two dynamics dual system.

VI. CONCLUSIONS

In this paper we designed a constraint-combined

force/position controller for the continuous shape-grinding

system, and prove the convergence of the controller in a new

way by Lyapunov method, the output force of the system

can always equal to the desired one. At last we did some

simulations to confirm the controller. In the future we will

apply it into experiment.
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