
Learning-based Model Predictive Control and
User Feedback in Home Automation

Christopher C. W. Ham, Surya P. N. Singh, and Michael Kearney

Abstract— Air conditioning systems are generally the largest
systems in a home, both physically and energetically, and thus
central to home automation efforts. Finding a balance between
user comfort and efficiency is a complex problem given the
considerable variation present. This paper focuses on comfort,
as opposed to absolute temperature, as gauged using simple,
sparse user inputs. A thermal model of the house is learned
which accounts for weather data and exogenous factors such as
occupancy. By incorporating user feedback, a Learning-Based
Model Predictive Controller (LBMPC) is able adapt to home
conditions and more efficiently operate the system. In contrast
to previous efforts which operate in office spaces and to a
set point, this work is adapted and tested in a typical home
environment and closes a control loop on user comfort. The
controller considers that the user’s comfort levels may change
during the day, for example when the user is in bed, or not at
home. It shows that complex systems may be automated without
extensive tweaking by the user and in a manner that considers
user comfort, time of day, and related factors to reduce energy
consumption.

I. INTRODUCTION

Despite considerable advances in home automation hard-
ware, the application of these systems remains challenging
and limited due to the extent of user variation. In other
words, assumptions that may work for some people may not
necessarily work for others. Trade-offs between comfort and
energy consumption often involve these assumptions, hence
the need for direct user feedback, preferably in a simple,
convenient manner.

In home automation there is a strong motivation to in-
crease the efficiency of HVAC (heating, ventilation, and air
conditioning) systems. In Australian homes, for example,
heating and cooling is the largest consumer of energy [1,
2]. Even though they are not efficient, thermostats remain
the popular means to regulate temperature, in part because
encoding user preferences and assumptions are difficult to
automate.

Consider work attention has been focused on automating
these systems to maximize energy efficiency, particularly
of the split-system air conditioners that are typically found
in Australian homes [3]. Aswani et. al [4] focused on
an optimal control scheme using Learning-Based Model
Predictive Control (LBMPC) that makes use of weather
predictions. However, this work makes fixed assumptions
about temperature ranges for user comfort. Erickson and
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Cerpa [5] improve the performance of this controller by
predicting future occupancy levels, but their proposed system
would be expensive to set up in a residence because of the
extra parts, labor and expertise required.

Traditionally, HVAC control systems focus on regulating
a temperature to a set point when, in fact, it is the users’
comfort levels that are of interest. Towards this, the Nest
thermostat [6] attempts to learn the habits of its users and
estimates what the set point should be at any time. However,
it still relies on the user working out what temperature they
prefer at what times.

This paper introduces a method that closes this loop by
acting on user feedback rather than the temperature. For
example, 25◦C can feel hot in winter yet cool in summer;
or someone at home is less affected by lower temperatures
when they’re in bed.

In HVAC systems assumptions are usually made about the
user’s comfort levels; some attempt to keep the temperature
between 22◦C and 24◦C, for example. By relaxing these
assumptions, it is possible to reduce energy consumption
while improving comfort. Many studies have shown in-
creased efficiency for tightly controlled temperatures [4, 7,
8]. The work in this paper, however, shifts the focus from
tightly controlled temperatures to user comfort. By receiving
occasional feedback from the user, the controller can learn
their range of comfort. The control can then be relaxed
to reduce energy consumption while still ensuring the user
satisfaction.

The controller also makes considerations for the user’s
comfort at different times of day. Homes also differ from
offices in that the requirements of the users are less consis-
tent. By learning these daily patterns the controller tightens
the constraints when appropriate. For example, if the user is
not at home then it does not matter what the temperature is;
if the user is in bed, the room can be cooler than usual and
still maintain their comfort.

The work of Aswani et. al [4] showed the effectiveness
of LBMPC in a computer lab at Berkeley. It is used as a
starting point and is extended by taking advantage of the
personalisation that’s possible in home automation.

The system has been designed to be affordable and easy
to set up with little technical knowledge. It does not require
prior knowledge of the space into which it is being deployed.
During setup, the goal is to learn the parameters following
model which predicts the future temperature based on the
current state of the system:
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T [n+ 1] = kTT [n] + kww[n] + kuu[n] + q[n] + ε[n] (1)

Where T [n] is the temperature at time, n; w[n] is the
outside temperature at time, n; u[n] is the duty cycle of the
air conditioner at time, n; q[n] is the nonlinear occupancy
level at time n; ε[n] is the error in the model.

Here, kT is the time constant for the temperature of the
room, kw is the time constant for the heat transfer between
the room and the outside, ku is the change in temperature
over 15 minutes (◦C) proportional to the duty cycle of
heating or cooling input to the system, and q[n] is the change
in temperature in 15 minutes due to unmodelled factors like
people, open windows, and computers [4].

The parameters, kT , kW , and ku are learned by observing
the response of the system when given a random sequence
of duty cycle inputs for a day.

In this work, LBMPC is extended by encouraging the user
to provide simple feedback (“Too hot” or “Too cold”) via a
smartphone app (Fig. 1) allowing the controller to estimate a
user’s range of comfort by testing for these boundaries. Fig. 2
shows how the estimated comfort bounds of user change with
feedback and time. The first feedback from the user initially
pulls down the maximum temperature for 11am to 24◦C, but
is relaxed the following day to 26◦C. A second input from
the user at this time of day holds the comfort bounds at just
over 24◦C in the days following.

In this paper “Comfort bounds” and “constraints” are
interchangeable. Particularly, “constraints” is used in the
context of optimisation.

Fig. 1. A screenshot of the smartphone app used in this paper

In Section II, the problem is formulated and semiparamet-
ric regression, LBMPC, extensions to LBMPC, and algo-
rithms are described. In Section III, experiments show how
the comfort bounds are estimated from user feedback, and
how the proposed controller performs in a real home envi-
ronment. Section IV summarises the extensions to LBMPC
and the methods used to close the loop on user comfort.
Additionally future work is discussed.
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Fig. 2. Illustrating the controller testing the user’s comfort bounds. Solid,
blue line: inside temperature. Thick, dashed, red line: outside temperature.
Thin, dashed, green line: comfort bounds.

II. METHODS

A. Learning-Based Model Predictive Control

Model predictive control is an advanced control technique
that is commonly to control systems with constraints to
minimize a given objective function. This framework maps
directly to this problem, where the object to minimize is the
energy used by the HVAC system and the user’s comfort
form the constraints [9].

The learning-based variant of MPC (denoted LBMPC),
proposed by Aswani et. al [4, 10], is selected for its ability
to handle disturbances and nonlinear systems. It uses an
empirical model of the system can be obtained by using
semiparametric regression [10]; and no prior knowledge of
the system is required to fit it to the basic thermal model
described in Eq. (1).

Once a model of the system has been obtained, the future
inside temperature can be predicted given a weather forecast
of the outside temperature and sequence of HVAC inputs.
Using this, the cost function Eq. (2) is minimised by selecting
the optimum inputs.

LBMPC operates at each control cycle by:
• measuring the system,
• learning the current occupancy by noting the residual

of the expected and current temperatures,
• updating the model using a regression approach that will

be described in the sequel,
• finding the sequence of inputs that minimises energy

consumption and user discomfort,
• applying the first input of this sequence and discarding

the rest.
For the cost function, the learned occupancy is used to

obtain a tighter estimation of the system (T̃ ). The constraint
function uses the mean of the occupancy (T̄ ) that was
determined while learning the model of the system. Using the
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mean is safer and more stable when considering constraints
[4, 10]. The basic optimisation problem is given by,

(2)minu[·]
N∑

k =0

p · (T̃ [m+ k]− Td)2 + (r+ λ) · u[m+ k]

(3)s.t. T̃ [m+ i] = kT · T̃ [m+ i− 1] + ku · u[m+ i− 1]

+ kw · w[m+ i− 1] + q̂[m+ i− 1]

(4)T̄ [m+ i] = kT · T̄ [m+ i− 1] + ku · u[m+ i− 1]

+ kw · w[m+ i− 1] + qmean

(5)T̄ [m+ i] ∈ [Tmin[m+ i], Tmax[m+ i]]

(6)u[m+ i− 1] ∈ [0, umaxDuty]

Where m is the current time, N is the control horizon
(chosen to be 20; or 5 hours), p is the weighting on the
temperature error and Td is the desired temperature.

B. Semiparametric Regression

Semiparametric regression is used to estimate the coef-
ficients of a model based on input and output data. This
approach allows unmodelled factors such as occupancy, open
windows, and computers to be captured by the model,
thereby reducing the error between the predicted and real
values.

The coefficients from the thermal model discussed earlier
(Eq. (1)) can be determined using the following method. The
process described here is an extension of [11].

The conditional expectations are defined as:

T̂ [n] = E [T [n]|n] (7)
ŵ[n] = E [w[n]|n] (8)
û[n] = E [u[n]|n] (9)

By substituting the expected values into Eq. (1) the fol-
lowing equation is obtained:

(10)T̂ [n+ 1] = kT T̂ [n] + kwŵ[n] + kuû[n] + E [q[n]|n]

Since q[n] is highly nonlinear with respect to time,

E [q[n]|n] = q[n],

and since ε is zero mean,

E [ε[n]|n] = 0.

So by subtracting Eq. (10) from Eq. (1), this nonlinear term
can be removed while estimating the coefficients:

T [n+ 1]− T̂ [n+ 1] = kT (T [n]− T̂ [n]) + kw(w[n]− ŵ[n])

+ ku(u[n]− û[n]) + ε[n]

(11)

Now, the coefficients can be computed by minimising the
error, ε:

(12)(k̂T , k̂w, k̂u) = arg minL(kT , kw, ku)

where:

L(kT , kw, ku) = ||ε(kT , kw, ku)||2
= ||T [n+ 1]− T̂ [n+ 1]− kT (T [n]− T̂ [n])

−kw(w[n]− ŵ[n])− ku(u[n]− û[n])||2. (13)

After obtaining the coefficients of the model the occu-
pancy term can be estimated by

(14)q̂n = T̂ [n+ 1]− kT T̂ [n]− kuû[n]− kwŵ[n]

since q̂[n] should be the discrepancy between the predicted
value and the actual value.

The original model variables are index by time, and so
obtaining the expected values of these variables, T̂ , ŵ, and
û are equivalent to kernel smoothing over time [11]. Similar
to the Berkeley paper, these values are estimated using the
Nadaraya-Watson estimator.

The Nadaraya-Watson estimator was used to statistically
smooth the input data. An appropriate bandwidth, h, was
determined for the kernel smoothing regression using the
guidelines provided in [12];

h = 1.06σN−1/5, (15)

where σ is the standard distribution of the entire data set.

C. Approach

The input that the controller passes to the air conditioner
is a pulse-width modulated (PWM) signal with a period of
15 minutes. This period was chosen so as not to over-cycle
the unit. Additionally, the duty cycle is limited to 70% in
order to respect the limits of the air conditioner and avoid
damage.

The learned temperature bounds are reassessed for differ-
ent times of the day. The idea is that the absolute set-point of
a room is not critical, and that when and where the set-point
should be placed is highly subjective. By this philosophy,
the user is never shown the temperature or asked to input a
desired temperature. Instead they simply inform the system
when they are too hot or too cold.

The work in this paper differs from the work at Berkeley
[4] in other ways. The control was complicated by the local
climate and the fact that the occupancy factor of a room at
home is much less than that of a computer lab. In Brisbane
the temperature can go from 16 to 28◦C in a 12 hour period.
This often means that the control has to handle both modes of
cooling and heating in the same control horizon. This climate
is difficult to handle because the model of the system changes
depending on the mode of input. Additionally computer labs
often have 20 or more computers and bodies forcing the
room temperature higher; homes, in contrast, have a less
dense heating load than labs [13]. This difference makes the
control of homes more multi-modal because they have both
heating and cooling requirements that need to be considered
in the same control horizon.

The process of estimating the coefficients is now de-
scribed. This provides an extension to the approach presented
in [4].
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1) Dual-Mode Model Regression: Due to the climate of
South-East Queensland a combination of heating and cooling
is required to keep the inside temperature within the defined
bounds - even in the same control horizon. As a result,
the semiparametric regression for a dual-mode input model
requires an important modification to the method used for
the single mode input model.

The modification splits the ku constant into separate
constants for cooling and heating (kc and kh). The input
vector is now allowed to vary from -70% to 70% - instead
of 0% to 70%. The sign of the input is used to determine the
mode of forcing and thus which constant to use. A positive
duty cycle is for heating and a negative duty cycle is for
cooling. Note that the magnitude if the input is used for the
model in the algorithms and so the constants kc and kh are
signed. The main reason for doing it this way is so that the
effect of each constant is more obvious. The algorithm is
formalised by Algorithm 2.

Algorithm 1 Determining which ku to use
function GETKU(u)

u← the current input value
ku ← the constant to use
if u < 0 then

ku ← kc
else

ku ← kh
end if

return ku
end function

Algorithm 2 Optimisation Function to Determine Dual
Mode Model
ku ← getKu(u[n])
k̂u ← getKu(û[n])

return
∥∥∥∥T [n+ 1]− T̂ [n+ 1]− kT (T [n]− T̂ [n]) . . .

−kw(w[n]− ŵ[n])− ku
∣∣∣u[n]

∣∣∣+ k̂u

∣∣∣û[n]
∣∣∣∥∥∥∥

2

After obtaining the coefficients for the dual-mode model
the estimated occupancy is calculated in a similar fashion to
a single-mode model [4] except the value of ku used depends
on the sign of the input. This is shown in Algorithm 3.

Algorithm 3 Calculating q̂ for Dual Mode Models
ku ← getKu(u[n])
q̂n = T̂ [n+ 1]− kT T̂ [n]− ku |û[n]| − kwŵ[n] . Note the
absolute value
return q̂n

2) Dual-mode Model Control: As before, the control
considers the two modes of forcing (heating and cooling) by
allowing negative input values in the optimisation step. The
sign of the input is used to select the appropriate model (ku

constant). To predict future temperatures for the optimiser,
Algorithm 4 is used.

Algorithm 4 Predicting the Temperature for a Dual Mode
Model

function GETPREDICTEDTEMP(T0, u, w, q)
N ← time steps in control horizon
u← inputs for current horizon
w ← forecast of outside temperatures
kw ← model coefficient for outside temp.
ku ← model coefficient for input
q ← the occupancy
T0 ← current temperature of system
T ← predicted temperatures for the horizon

T [0]← T0
for i = 1 to N − 1 do

ku ← getKu(u[i− 1])
T [i] = kT ·T [i−1]+kw ·w[i−1]+ku ·|u[i− 1]|+q

end for
return T
end function

3) Learning the User’s Comfort Range: In Aswani’s
implementation [4], the constraints are set to keep the tem-
perature bound between 20 and 24◦C. These temperatures
are the bounds of what is considered to be a comfortable
range for most people [14]. By learning the comfort range
of the user these assumptions can be removed, leading to
potential energy savings.

When learning the user’s comfort bounds, the desired
effect is for the system to “test” these bounds so as to
encourage the user’s input. When the user informs the
system they are too hot or too cold, the controller should
try ensure the user’s immediate comfort. To do this, the
learned comfort bounds are relaxed each day until the user
has provided sufficient feedback. The pseudocode to achieve
this is described in Algorithm 5.

4) Relaxing the Constraints During Transition: When the
controller has just been switched on or when the comfort
bounds have been recently changed due to user input, the
system will attempt to transition into a state that satisfies the
comfort bounds. If the inside temperature is initially outside
of these bounds, the optimiser would ordinarily fail - being
unable to satisfy the constraints.

The constraints on the first n steps are removed. To begin
with n = 0, then each time the optimiser fails by violation
of the constraints, n is incremented and the optimisation is
run again. The algorithm is detailed in Algorithm 6.

III. EXPERIMENTS

The components and interactions of the system used in
the experiments is illustrated in Fig. 3. Note that emphasis is
placed on making the system inexpensive to install in existing
homes. Such a requirement necessitates that the system be
installable without professional help.
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Algorithm 5 Learning a User’s Comfort Range
function FINDBOUNDS(T, t, B)

T ← feedback temperatures for a boundary
t← times the feedback was recorded
d← number of days since each time in t
B ← the boundary these data points are for

Nmin ← min number of data points required
Dmax ← number of days to weight the data
Wmax ← weight given to most recent data
Tnew ← new comfort limit for this boundary
Pdist ← fitted normal distribution parameters

d← daysSince(t)

if B = High then
Tinject ← 27◦C

else . Low
Tinject ← 15◦C

end if

W ← dWmax × Dmax−d
Dmax

e . Weights
W ← max(W, 1)
T ← duplicate(T,W ) . based on W

while length(T ) < Nmin do
T ← cat(T, Tinject + noise) . Noise stops a

singularity from breaking the normal-fitting function
end while

Pdist ← fitdist(T, ‘normal’)
if B = High then

Tnew ← cdf(Pdist) < 0.10
else

Tnew ← cdf(Pdist) > 0.90
end if

return Tnew, Pdist

end function

Algorithm 6 Relaxing Constraints During Transitions
m← the mask vector
u0 ← initial input vector
u← optimal input
r ← minimisation error
f ← minimisation flag
Cmax ← maximum constraints to mask

for k = 0 to Cmax do
m(1 : k)← true
(u, r, f) = argmin(u0) . Run the minimisation. Uses

m internally
if (f = success) then

break
end if

end for

Fig. 3. Interactions between the server and other components.

A laptop is used to run the controller and server, it
communicates with the Arduino via USB serial. The Arduino
and a simple infrared control circuit are used to learn and
emit the appropriate commands to control the air conditioner.
Wireless sensors are used to make measurements of the
inside and outside temperatures.

The server essentially supports the entire setup. All impor-
tant information and events are recorded in a log file on the
server and can be remotely read by any component of the
system. This data includes the temperature measurements,
AC duty cycles, user input from the smartphone app and
calculated user temperature bounds.

A. Dual-Mode Model

Fig. 4 shows the state of the system while random input
was being applied. By applying semiparametric regression
to the results, a model of the system can be obtained. This
can be done without the need for any user interaction or
professional. The coefficients of the model obtained for this
system are shown in Table I.

TABLE I
MODEL COEFFICIENTS FOR DUAL MODE INPUT

kT kc kh kw q̄
0.9161 -1.5964 1.4642 0.0258 1.4865

Using this learned dual-mode model, Fig. 5 shows the
system successfully keeping the temperature inside the gen-
eralised comfortable range. The desired temperature was
22◦C. It shows that the controller is able to keep the tem-
perature inside the constraints by considering both cooling
and heating.

B. Learning the Range of User Comfort

As described in Section II-C, the controller can be con-
figured to continue relaxing the comfort bounds until a
certain number of feedback data points are received. In this
experiment the controller only requires two feedback data
points at a certain time of the day. This number of required
data points is chosen so that the user is not annoyed by
regularly becoming uncomfortable.
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Fig. 4. A signal of random duty cycle [-70, 70]%) forces the system in
order to determine the model. Solid, blue line: inside temperature. Thick,
dashed, red line: outside temperature.

Figure 2 shows the user expressing discomfort. The com-
fort bounds at the same time the next day are slightly relaxed.
The user expresses discomfort again. After which the comfort
bounds remain the same in the following days.

C. Constraint Relaxation During Transition

Figure 6 shows the system responding to sudden changes
in the temperature constraints due to user input (more
information in Section III-B). The system tries to drive the
temperature to inside these constraints as quickly as possible.
If this relaxation is not applied, the optimiser is not able to
find a solution and no actuation at all would occur.

IV. CONCLUSIONS

A smartphone application coupled with an adaptive con-
trol approach based on semiparametric regression has been
shown to estimate user comfort level at different times in the
day without explicitly asking for an exact temperature set
point and operation time. Upon receiving limited feedback
from the user (“Too Hot” or “Too Cold”) the controller
attempts to minimize discomfort by immediately adjusting
the constraints. If the certainty of these comfort bounds is
low (measured by the number of feedback inputs received
by the user), they are relaxed over several days. In doing so,
further feedback is encouraged and so the comfort bounds
are relaxed less, until no further feedback is required.

Learning-based model predictive control (LBMPC) is an
effective control algorithm to handle constraint trajectories. It
is able to calculate future constraints and predict an optimum
input over a control horizon to satisfy those constraints.

LBMPC can be successfully adapted for a home environ-
ment by modifying the modelling and optimisation steps
to account for two modes of air conditioning - heating
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Fig. 5. The output of the system under dual mode control. The optimiser
is able to mix different control modes in the same control horizon. Solid,
blue line: inside temperature. Thick, dashed, red line: outside temperature.
Thin, dashed, green line: comfort bounds. The set point is 22◦C.
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Fig. 6. When feedback is received, the newly learned constraints will go
out of bounds of the current temperature. The controller cannot immediately
satisfy this, and so relaxations are allowed in the next control cycle(s). Solid,
blue line: inside temperature. Thick, dashed, red line: outside temperature.
Thin, dashed, green line: comfort bounds.

and cooling. This is accommodated for by considering both
negative values (cooling) and positive values (heating).

The controller is further improved by allowing relaxations
in the control when the comfort bounds are exceeded during
transitions - when the constraints are changed or the system
is initially switched on. Once the system transitions into a
steady control state this is no longer required.
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An obvious extension to this work will be to allow
the controller to consider the comfort of multiple users.
Integration of the smartphone application would allow the
system to deduce which users are home - there is no need
to satisfy the comfort of anyone away from home.

Other future work will investigate an optimisation ap-
proach to weigh comfort against energy usage. The advan-
tage of such an approach is that the optimiser’s emphasis on
comfort or energy saving can be easily modified by providing
the user with another feedback option on the smartphone app.

In conclusion, it is shown that it is possible to close
the control loop on the user’s comfort using a smartphone
application, and that LBMPC is able to regulate to this while
considering energy consumption.
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