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Abstract— This paper describes the design and implemen-
tation of a model-based sonar servoing control scheme for
Autonomous Underwater Vehicles (AUVs). The proposed con-
troller is designed for autonomous surveillance of underwater
structures and it is robust against external disturbances and
parametric uncertainties in the AUV dynamic model. The sen-
sor suite includes a Multi-beam Imaging Sonar which provides
measurements to a RANSAC-based algorithm for structure
detection and pose estimation of the vehicle with respect to
the structure. The sonar-based pose estimation is properly
fused with the rest of the state measurements provided by a
navigation module and the resulted state vector is incorporated
as feedback to the controller. The proposed control scheme has
analytically guaranteed stability and convergence properties,
while its applicability and performance are experimentally
verified using the Nessie VI AUV in the presence of external
disturbances (medium height waves).

I. INTRODUCTION

Autonomous underwater vehicles usually operate under

difficult circumstances and perform complex tasks such as

ship hull inspection, surveillance of underwater facilities

(e.g., oil platforms, propulsion systems, etc) and handling

of underwater equipment (e.g control panels, valves). These

tasks mainly require robust motion control systems as well

as a detailed description of the environment. Motion control

for underwater vehicles has been an active research field for

the past two decades. It is based on a variety of design

techniques such as PID control, linear quadratic optimal

control, nonlinear control, H∞ control and neural/fuzzy con-

trol (see [1]–[3] and the references therein). In the majority

of the aforementioned techniques dynamic models are used

to design model-based control systems in an attempt to

incorporate the dynamic properties and limitations of the

vehicle in the control design to obtain robust performance.

Moreover, the measurements delivered by the sensor suite,

must be used simultaneously both for accurate map building

of the workspace as well as state feedback for the motion

control scheme. A sensor able to meet such requirements in

an acoustic environment is imaging sonar. The development

of sophisticated acoustic image processing techniques, allow

us to integrate these type of sensors to the navigation module
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Fig. 1. Nessie VI AUV. Blue color indicates actuated DOFs. Red color
indicates unactuated DOFs.

of AUVs, contributing in that way not only to the detailed

description of the environment but also to the autonomous

navigation of the vehicle. The incorporation of acoustic

imaging data to the motion control of a robotic system [4]–

[9], is called sonar servoing, similarly to visual servoing

when data from visual sensors (e.g cameras) are used to

minimize the control error function.

Sonar servoing is successfully incorporated in the wall in-

spection task of Kazmi et al. [10]. The raw sonar data is pre-

processed using a low-pass filter to remove the backscatter

noise. Among the various smoothing filters available, Tena

Ruiz et al. [11] argue that the median filter performs better

in removing the noise arising from the backscattering effect.

However, Trucco et al. showed in [12] that the median filter

can be approximated using a 7×7 Gaussian filter at a min-

imal computational cost. In most real time applications the

smoothed image is segmented using a threshold technique.

Then, it is fed to a line fitting algorithm for determining

the exact location of the line/wall. A review of various line

fitting algorithms for 2D range data is presented in [13],

where the authors showed that the least square techniques

are highly influenced by outliers, while a standard hough

transform doesn’t take noise into account. At last, Random

Sample and Consensus (RANSAC) is suggested as a better

algorithm in considering noise while also minimizing the

effect of outliers.

This paper describes the design and implementation of

a sonar servo control scheme for surveillance tasks using
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Fig. 2. The wall following problem.

an AUV. A Multibeam Imaging Sonar is integrated with

the vehicle’s sensor suite. The acoustic measurements are

appropriately filtered using a RANSAC algorithm and the

relative position and orientation of the vehicle with respect

to the surface under surveillance are calculated. A sensor

fusion algorithm is responsible for integrating the sonar

measurements with the state vector provided by the rest of

the sensor suite which consists of a Doppler Velocity Log

Sensor (DVL), a Fiber Optic Gyro (FOG) and a depth sensor.

The estimated state vector is then incorporated as feedback

to the model-based motion control scheme. The proposed

controller is robust against external disturbances as well

as to parametric uncertainties in the AUV dynamic model.

The resulting control scheme has analytically guaranteed

stability and convergence properties, while its applicability

and performance are experimentally verified using the Nessie

VI AUV in the presence of external disturbances (medium

height waves).

The rest of the paper is organized as follows: Section

II describes the proposed methodology, including the wall

detection by the sonar, the sensor fusion algorithm and an

analytical description of the motion control design. Section

III illustrates the efficiency of our approach through an

extensive experimental procedure. Section ?? gives a small

description of the accompanying experimental video. Finally,

Section IV concludes the paper.

II. METHODOLOGY

A. Problem Formulation

The vehicle used in this work is the Nessie VI AUV (Fig.

1), which is modeled as a rigid body subject to external

forces and torques. Let {I} be an inertial coordinate frame

on the wall to be inspected with the x and z axis showing

inwards and downwards respectively, and {B} a body-fixed

coordinate frame whose origin OB is located in front of

the vehicle at the sonar sensor (see Fig. 2). Furthermore,

let η1 = [x, y, z]
T

be the position and η2 = [φ, θ, ψ]
T

be

the orientation of OB in {I} with φ, θ, ψ denoting the roll,

pitch and yaw angles. Let v1 = [u, v, w]
T

be the linear

velocity (i.e., the longitudinal (surge), transverse (sway) and

vertical (heave)) of OB with respect to {I} expressed in

{B} and v2 = [p, q, r]
T

be the angular velocity (roll, pitch,

yaw) around the longitudinal, transverse and vertical axis

respectively. Hence, the kinematic equations of motion can

be written as:

η̇=

[
η̇1
η̇2

]
= J (η)v=

[
J1 (η2) 03×3

03×3 J2 (η2)

] [
v1

v2

]
(1)

where η =
[
ηT1 , η

T
2

]T
and v =

[
vT
1 ,v

T
2

]T
are the gener-

alized position/orientation and velocity vectors and J (η) is

the generalized Jacobian matrix transforming the velocities

from the body-fixed to the earth-fixed frame defined as:

J1 (η2) =

⎡
⎣ cψcθ cψsθsφ− sψcφ cψcφsθ + sψsφ

sψcθ sφsθsψ + cψcφ sθsψcφ− cψsφ
−sθ cθsφ cθcφ

⎤
⎦ ,

(2)

J2 (η2) =

⎡
⎣ 1 sφtθ cφtθ

0 cφ −sφ
0 sφ/cθ cφ/cθ

⎤
⎦ , (3)

where c (�) = cos (�), s (�) = sin (�) and t (�) = tan (�).
Before we proceed, notice that J2 (η2) yields a singularity

when θ → π
2 , owing to the Euler angles representation

adopted in the analysis. To override such a singularity, we

assume that we are operating with low pitch and roll angles,

that is:

|φ| ≤ φ̄ <<
π

2
, |θ| ≤ θ̄ <<

π

2
, (4)

which is quite reasonable for practical cases. Furthermore,

employing the standard underwater vehicle modeling prop-

erties [14], the dynamic model can be described as follows:

Mv̇ +C (v)v +D (v)v +G (η) = τ + d (t) , (5)

where M = MT > 0 is the diagonal inertia matrix for

rigid body and added masses, C (v) = −CT (v) is the

coriolis and centripetal matrix, D (v) > 0 is the diagonal

linear and quadratic drag matrix, G (η) involves the hy-

drostatic restoring forces/torques which are bounded, τ =
[X,Y, Z, 0, 0, N ]

T
is the input (force/torque) control vector

applied by the thrusters and d (t) is a bounded vector (i.e.,

‖d (t)‖ ≤ d̄, ∀t ≥ 0) representing modeling uncertainties and

external disturbances (i.e., waves). Although Nessie AUV

is actuated in 5 DOFs (it has no actuation in roll), in this

work we only consider actuation in surge, sway, heave and

yaw. Hence, Eqs. (1) and (5) formulate an underactuated

dynamical system. Finally, we assume that the parameters

involved in the model matrices M, C (v), D (v) and G (η)
are known (e.g., via an offline identification scheme). In what

follows we formulate the problem to be solved in this work.
Robust Wall-Following Control (RWFC) Problem: As-

sume that the underwater vehicle is initially placed in front
of a perpendicular wall (e.g., a submerged structure). The
control objective is to fix the distance x and the angle ψ
from the wall as well as the depth z to some desired constant
values xd, ψd, zd and maintain a desired constant velocity
ẏd parallel to the wall.

It should be noted that such a task plays an important role

in underwater inspection, where the vehicle has to acquire

information (i.e., video, 3D modeling, fault detection, etc.)

from the submerged structure.
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B. State Feedback

The vehicle used in this work (Nessie VI), is equipped

with various state of the art navigation sensors [15]. How-

ever, in this study only a part of these sensors were exploited

and more specifically, a forward looking sonar (Tritech

Gemini 720i Multi-beam Imaging Sonar), a DVL (Teledyne

Explorer PA), a FOG (KVH DSP-300) and a depth sensor

(Keller Series 33X). The information obtained from the

DVL, the FOG or the depth sensor can be used without

any further processing, while the measurement data from

the sonar require further processing to extract a meaningful

information (i.e. the distance and orientation of the AUV

with respect to the wall).
1) Wall Detection: The forward looking sonar has a field

of view of 120 degrees with a variable range extending

between 0.2 and 120 meters. In the raw image data, the field

of view is arranged in 256 beams, while a maximum of 25
meters range at a scale of 120 pixels per meter in the vertical

bins. Even though, the Gemini 720i is known to provide a

frame rate up to 30 Hz, with our setting it was only possible

to achieve a 2 frames per second. Therefore, a quicker means

of extracting the information is unarguably necessary to

counter balance the computational burden caused by the low

frame rate and the large image size.

Fig. 3. Least square, Hough transform and RANSAC for synthetic data
fitting.

Initially, an empirically defined threshold is applied to

the raw image to identify pixels corresponding to a strong

reflection. The lower range sonar readings are ignored in the

subsequent processing since they are a result of the AUV

body structure’s reflections. The wall is assumed to be the

closest object of reflection, as a result only the first non-zero

bin close to the sonar is considered for the line fitting process.

Finally, a RANSAC algorithm is applied on the 256 pixels

of sonar beams to determine the best line representing the

wall. The selection of a line fitting algorithm is done after

comparing three basic line fitting techniques: least square,

Hough transform and RANSAC. Fig. 3 shows the result on

a synthetic acoustic image. Points in the left are perfectly

represented by a straight line that diverted the Hough line

towards the very few outliers, while the least square tries to

compromise between these points and the rest of the data.

A better result is obtained using the RANSAC algorithm,

Fig. 4. Least square, Hough transform and RANSAC for sonar data fitting.

which considers part of the points in the left as outliers. A

similar result is obtained in Fig. 4 for a real image acquired

using the Gemini 720i Sonar.

2) Sensor Fusion: The sonar is a considerably very slow

sensor, it delivers about twice per second (i.e., δts ≈ 0.5 sec)

in our case. As a consequence, such a low frequency raises

significant issues regarding the closed loop stability and the

performance of the control scheme. To alleviate this problem

(i.e., to implement the control signal more frequently, that is

δt << δts), we designed a sensor fusion system that utilizes

both the sonar as well as the navigation measurements,

that are acquired in a significantly greater frequency, to

estimate the angle ψ and the distance x from the wall. More

specifically, consider two consecutive time instants tis, ti+1
s

at which the sonar delivered measurements of the angle (i.e.,

ψ
(
tis
)
, ψ

(
ti+1
s

)
) and the distance (i.e., x

(
tis
)
, x

(
ti+1
s

)
).

Between those time instants (i.e., for all t ∈ [
tis, t

i+1
s

)
), we

implement the control signal every δt with the updated angle

and distance from the wall estimate, as follows:

ψ (t) = ψ
(
tis
)
+

∑j
k=1 δψk

x (t) = x
(
tis
)
+
∑j

k=1 δxk

}
, ∀t = tis+jδt ∈ [

tis, t
i+1
s

)

with j = 0, 1, . . . ,
⌊
δts
δt

⌋
where:

δψk =
r
(
tis + kδt

)
+ r

(
tis + (k − 1) δt

)
2

δt

δxk =
ẋ
(
tis + kδt

)
+ ẋ

(
tis + (k − 1) δt

)
2

δt

and

ẋ (t) = J1
1 (η2 (t))v1 (t)

with J1
1 (η2 (t)) denoting the first row of the Jacobian matrix

(2). It can be easily verified that the proposed method

updates the angle and the distance via calculating, through

the trapezoidal rule (see Fig. 5), their intermediate changes

δψk, δxk from the measured velocities r (t), ẋ (t) around/in

the corresponding axis.

C. Control Scheme

Following common practice in the relevant literature, we

initially derive a kinematic control scheme considering the

actuated velocities u, v, w, r as virtual control inputs (i.e.,

we design some appropriate desired velocities ud, vd, wd,

rd). Subsequently, the selected velocities are considered as
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Fig. 5. The calculation of δψk and δxk .

reference velocities in the dynamic model and the actual

control inputs X , Y , Z, N are designed. However, before

we proceed, notice that the evolution of the actuated degrees

of freedom (i.e., surge, sway, heave, yaw) is affected by the

unactuated roll and pitch motion which in turn is induced

by the motion in the actuated degrees of freedom. Hence,

the whole model can be viewed as two interconnected

subsystems where the output of the unactuated subsystem

(i.e., p, q) serves as input to the actuated one and vice versa.

In this respect, the analysis will proceed in an Input

to State Stability framework, i.e., we shall first study the

stability of the actuated degrees of freedom assuming that p,

q are absolutely bounded by some constants p̄, q̄, that is:

|p (t)| ≤ p̄, |q (t)| ≤ q̄, ∀t ≥ 0 (6)

and then prove that the overall closed loop system response

does not violate the aforementioned bounds.

In this respect, let us first define the position and orien-

tation errors ex = x − xd, ez = z − zd and eψ = ψ − ψd.

Notice, however, that we have not defined a position error in

y-axis since: i) we require constant velocity ẏd in this axis

and ii) an accurate estimate of y is almost impossible in the

absence of absolute position measurements. To proceed, we

select the following kinematic controller:⎡
⎣ ud

vd
wd

⎤
⎦ = J−1

1 (η2)

⎡
⎣ −kxex

ẏd
−kzez

⎤
⎦

rd = −2kψ
cθ
cφeψ

(7)

with kx, kz , kψ > 0 and we design the control inputs as

follows:

⎡
⎢⎢⎣

X
Y
Z
N

⎤
⎥⎥⎦ = M̄

⎡
⎢⎢⎢⎢⎢⎢⎣

u̇d

v̇d
ẇd

0
0
ṙd

⎤
⎥⎥⎥⎥⎥⎥⎦
+

(
C̄ (v) + D̄ (v)

)

⎡
⎢⎢⎢⎢⎢⎢⎣

ud

vd
wd

0
0
rd

⎤
⎥⎥⎥⎥⎥⎥⎦
+ Ḡ (η)

−

⎡
⎢⎢⎣

kueu
kvev
kwew
krer

⎤
⎥⎥⎦−

⎡
⎢⎢⎣ JT

1 (η2)

⎡
⎣ ex

0
ez

⎤
⎦

cφ
cθ eψ

⎤
⎥⎥⎦ (8)

where M̄, C̄ (v), D̄ (v) and Ḡ (η) involve the rows of the

corresponding model matrices in (5), concerning only the

actuated degrees of freedom (i.e., u, v, w, r). Finally, ku,

kv , kw, kr are positive control gains and eu = u− ud, ev =
v−vd, ew = w−wd, er = r−rd denote the velocity errors.

The following theorem summarizes the main results of this

work.

Theorem 1: Consider an underwater vehicle described by

(1), (5) and the control scheme (7), (8). There exist positive

control gains kx, kz , kψ , ku, kv , kw, kr such that the

proposed control scheme solves the RWFC Problem pre-

sented in Subsection II-A despite the presence of modeling

uncertainties and external disturbances.

Proof: Consider the following Lyapunov function candi-

date for the position/orientation errors:

L1 =
1

2

(
e2x + e2z + e2ψ

)
.

Differentiating with respect to time, substituting (1) and

utilizing the fact that u = eu+ud, v = ev+vd, w = ew+wd,

r = er + rd with ud, vd, wd, rd as defined in (7), we arrive

at:

L̇1 = −kxe
2
x − kze

2
z − 2kψe

2
ψ + [ex, 0, ez]J1 (η2)

⎡
⎣ eu

ev
ew

⎤
⎦

+ eψ
cφ

cθ
er + eψ

sφ

cθ
q .

Employing (4), (6) and completing the squares, we obtain:

L̇1 ≤ −kxe
2
x − kze

2
z − kψe

2
ψ + [ex, 0, ez]J1 (η2)

⎡
⎣ eu

ev
ew

⎤
⎦

+ eψ
cφ

cθ
er +

q̄2

4kψ cos
(
θ̄
) . (9)

Let us now augment L1 with a corresponding velocity error

term:

L2 =
1

2
eTvMev,

where M is the positive definite inertia matrix and ev =
[eu, ev, ew, p, q, er]

T
is the velocity error vector (since the

stabilization of the unactuated degrees of freedom p, q is

required, notice that the velocity error ev involves directly

those states). Subsequently, we define the overall Lyapunov

function candidate L = L1 + L2. Differentiating L with

respect to time and substituting (5), (9) and the control

scheme (8), we get:

L̇ ≤ −kxe
2
x − kze

2
z − kψe

2
ψ − eTvC (v) ev

− eTv (D (v) +Kv) ev − eTv (G (η2) + d (t))

+
q̄2

4kψ cos
(
θ̄
)

where Kv = diag([ku, kv, kw, 0, 0, kr]) and G (η2) =
[0, 0, 0, G4 (η2) , G5 (η2) , 0]

T with G4 (η2), G5 (η2) denot-

ing the 4th and 5th element of the matrix G (η2). Employing:

i) the skew symmetry of C (v), ii) the diagonallity and

positive definiteness of D (v) as well as iii) the boundedness
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Fig. 6. No disturbances: The distance (m) and orientation (deg) with respect
to the wall along with the desired values.

of G (η2) and d (t) (i.e., ‖G (η2)‖ ≤ Ḡ and ‖d (t)‖ ≤ d̄,

∀t ≥ 0), and completing the squares, we finally arrive at:

L̇ ≤ −kxe
2
x − kze

2
z − kψe

2
ψ − kv ‖ev‖2

+
(Ḡ+ d̄)2

4kv
+

q̄2

4kψ cos
(
θ̄
)

where kv = 1
2λmin (D (v) +Kv). Therefore, we

conclude that L̇ ≤ 0 when either |ex| >
√
d/kx or

|ez| >
√
d/kz or |eψ| >

√
d/kψ or ‖ev‖ >

√
d/kv ,

with d ≡ (Ḡ+d̄)2

4kv
+ q̄2

4kψ cos(θ̄)
. Thus, ex, ez , eψ ,

ev are uniformly ultimately bounded with respect

to the sets Ex =
{
ex ∈ 
 : |ex| ≤

√
d/kx

}
,

Ez =
{
ez ∈ 
 : |ez| ≤

√
d/kz

}
, Eψ ={

eψ ∈ 
 : |eψ| ≤
√
d/kψ

}
and Ev =

{
ev ∈ 
6 :

‖ev‖ ≤ √
d/kv

}
respectively. As a result, by adjusting

appropriately the control gains kx, kz , kψ , ku, kv , kw, kr
we may achieve convergence of the errors to a sufficiently

small neighborhood of the origin and consequently solve

the RWFC Problem.

However, the above results hold under the assumption that

|p (t)| ≤ p̄, |q (t)| ≤ q̄, ∀t ≥ 0. Therefore, we need to

establish that the proposed control scheme does not violate

the aforementioned bounds. In this direction, let us define

the set:

E =
{
(ex, ez, eψ, ev) ∈ 
9 : L ≤ L̄

}
where L̄ is chosen as the largest constant for which |p| ≤ p̄,

|q| ≤ q̄, ∀ (ex, ez, eψ, ev) ∈ E. Subsequently, for sufficiently

large control gains kx, kz , kψ , ku, kv , kw, kr it can be

easily verified that Ex × Ez × Eψ × Ev ⊂ E (as it

was mentioned earlier, the size of the sets Ex, Ez , Eψ ,

Ev can be reduced by increasing the control gains in the

direction of achieving satisfactory tracking performance).

Hence, for all (ex (0) , ez (0) , eψ (0) , ev (0)) ∈ E, it follows

that L is bounded from above by L̄, ∀t ≥ 0 since L̇ ≤
0, ∀ (ex, ez, eψ, ev) ∈ E − (Ex × Ez × Eψ × Ev), which

0.7

0.8

0.9

1

1.1

z
(t

)

0 50 100 150 200 250

−0.04

−0.02

0

0.02

0.04

0.06

t(sec)

v
(t

)

Fig. 7. No disturbances: The depth (m) and the velocity (m/s) in the y
axis (parallel to the wall) along with the desired values.

implies that (ex (t) , ez (t) , eψ (t) , ev (t)) ∈ E, ∀t ≥ 0,

where |p| ≤ p̄, |q| ≤ q̄ hold true, thus completing the proof.

III. EXPERIMENTS

In order to prove the overall efficiency of the proposed

system, two experimental procedures where carried out. The

experiments took place inside a water tank using the Nessie

VI AUV. Initially, a rough dynamic model of Nessie VI

was obtained via an off-line identification procedure. The

first experiment was conducted without external disturbances

whereas the second in the presence of medium height waves,

which were produced by the test tank oscillating mechanism.

In both cases the vehicle starts from an arbitrary initial

configuration with at least a part of the wall visible by the

Multi-beam Imaging Sonar. The goal is to follow the wall

by keeping a fixed distance of xd = 2.5m and ψd = 0o

orientation with respect to the wall, while moving alongside

the wall with a constant velocity ẏd = 0.025m/s at a

constant depth zd = 0.75m. The vehicle’s response can be

affected by the waves only when operating close to surface.

Thus, the desired depth is set relatively low. Finally, the

control gains were selected as follows: kx = 0.7, kz = 0.5,

kψ = 0.35, ku = 0.5, kv = 0.2, kw = 0.5, kr = 0.5.

A. No external disturbances

In this experiment, the vehicle performs the sonar servoing

scheme without external disturbances. The response of the

distance x and the orientation ψ with respect to the wall

are shown in Fig.6. The response along z axis is depicted

in Fig. 7. As it was predicted by the theoretical analysis

and proven by the experimental procedure, the states of the

vehicle asymptotically converge to the desired values. The

maximum error at the steady state is no more than ±5cm
along x axis, ±5o about z axis and ±3cm along z axis. It can

also be observed in Fig.7, that due to the velocity controller

along y axis, the parallel to the wall velocity converges to

the desired value with maximum error ±0.005m/s. Thus, a

smooth surveillance trajectory is achieved.
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Fig. 8. In the presence of disturbances (medium height waves): The
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desired values.

B. External disturbances

In this experiment, the same scenario as in Subsection III-

A is conducted, but with the wave creation mechanism of the

test tank enabled. It should be noted here, that the control

scheme does not have any prior knowledge of the external

disturbances (amplitude and frequency). The response of the

position along x axis and the orientation ψ with respect to the

wall are shown in Fig.8. The response along z axis and the

velocity in y axis are depicted in Fig. 7. As it proven by the

experimental procedure, the controller deals with the external

disturbances in a satisfactory manner. The vehicle states

asymptotically converge to the desired values but with more

oscillations relatively to the disturbance free scenario. The

maximum error in steady state is no more than ±8cm along

x axis, ±10o about z axis and ±5cm along z axis. As it can

be seen in Fig.9, sway velocity error can reach ±0.02m/s
although in most cases the velocity error is kept below

±0.005m/s. In any case, a suitable surveillance trajectory

is achieved, even in the case of external disturbances.

IV. CONCLUSIONS

This paper describes the design and implementation of

a sonar-servoing control scheme for an Autonomous Un-

derwater Vehicle. The sensor suite includes a Multi-beam

Imaging Sonar which provides measurements to a RANSAC-

based algorithm for structure detection and pose estimation

of the vehicle with respect to the structure. Subsequently,

the sonar-based pose estimation is properly fused with the

measurements provided by the rest of the navigation sen-

sors (DVL and FOG). The proposed control scheme has

analytically guaranteed stability and convergence properties,

while it is robust against external disturbances and parametric

uncertainties in the AUV dynamic model. The efficiency of

the overall system, is demonstrated using the Nessie VI AUV

in the presence of external disturbances (medium height

waves).
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Fig. 9. In the presence of disturbances (medium height waves): The depth
(m) and the velocity (m/s) in the y axis (parallel to the wall) along with
the desired values.
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