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Abstract— Industrial applications often impose hard require-
ments on the precision of autonomous vehicle systems. As a
consequence industrial Automatically Guided Vehicle (AGV)
systems still use high-cost infrastructure based positioning
solutions. In this paper we propose a map based localiza-
tion method that fulfills the requirements on precision and
repeatability, typical for industrial application scenarios. The
proposed method - Normal Distributions Transform Monte
Carlo Localization (NDT-MCL) is based on a well established
probabilistic framework. In a novel contribution, we formulate
the MCL localization approach using the Normal Distributions
Transform (NDT) as an underlying representation for both
map and sensor data. By relaxing the hard discretization as-
sumption imposed by grid-map models and utilizing the piece-
wise continuous NDT representation the proposed algorithm
achieves substantially improved accuracy and repeatability.
The proposed NDT-MCL algorithm is evaluated using offline
data sets from both a laboratory and a real-world industrial
environments. Additionally, we report a comparison of the
proposed algorithm to grid-based MCL and to a commercial
localization system when used in a closed-loop with the control
system of an AGV platform. In all tests the proposed algorithm
is demonstrated to provide performance superior to that of
standard grid-based MCL and comparable to the performance
of the commercial infrastructure based positioning system.

I. INTRODUCTION

Localization systems are an essential enabling component
of mobile robotic systems. The importance of accurate posi-
tioning is even higher in modern logistics application scenar-
ios, which rely on precise and repeatable trajectory follow-
ing using Automatically Guided Vehicles (AGV). An AGV
typically has to achieve positioning accuracy of under 3cm,
especially during loading operations. Moreover, as AGVs are
typically non-holonomic platforms, sufficient accuracy has to
be maintained throughout the trajectory in order to guarantee
accuracy in orientation at loading points. In addition to being
accurate, the pose estimate must be smooth and updated in
real-time in order to avoid violent corrective control actions
which can be catastrophic for heavily loaded vehicles. As
a consequence of hard requirements, industry is still using
positioning methods that rely on fixed infrastructure in the
factories. Setting up a localization infrastructure is, however,
a high-cost investment and thus there is a strong demand for
more flexible solutions.

Monte Carlo Localization (MCL) [3] is among the most
popular localization approaches in the robotics research
community. MCL is a probabilistic map based localization
approach that has been shown to be robust in real-world
scenarios [3], [15], [9]. However, in prior contributions MCL
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Fig. 1. Positioning accuracy visualized: Fifteen images recorded from a
stationary camera overlaid in positioning accuracy test using a) grid-based
MCL and b) NDT-based MCL.

has not been reported to reach the precision requested by
industrial applications [3], [15], [9]. Röwekämper et al. in [9]
analyzed the accuracy of an MCL localization system with
KLD-sampling and reported mean MCL errors of approx.
6cm in a repeatability test. Their solution for improving the
accuracy was to perform scan matching alignment to reach
accurately the final pose. Unfortunately this approach only
works for holonomic vehicles, while the majority of AGVs
are non-holonomic and cannot reliably correct their position
and orientation over a short trajectory.

The insufficient accuracy of the standard MCL algorithm
is further confirmed by our experiments. Fig. 1a visualizes
the positioning error of a standard MCL approach. The figure
is composed of fifteen overlaid pictures recorded with a
stationary camera during a positioning accuracy test. In this
experiment the vehicle was instructed to repeatedly execute a
pre-determined trajectory and stop at the same location at the
end of each trial. The blurriness of Fig. 1a demonstrates that
even in a simple stationary environment the standard MCL
approach fails to meet the accuracy requirements needed in
typical industrial applications. We argue that the main reason
for this failure stems from the grid-based representation used
by MCL. Occupancy grids [8], used for map representation in
the standard MCL approach, are discretized by definition and
thus cannot represent the environment accurately, especially
in presence of sensor noise.

In this paper we propose to use Normal Distributions
Transform (NDT) representation for an MCL implementa-
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tion. The NDT is a piecewise continuous representation,
which represents the space as a set of normal distributions
[1], [6]. It is a compact representation allowing to model
the environment with a significantly lower number of cells
than occupancy grid maps. Moreover, NDT is by nature
a likelihood model, which makes it an ideal candidate to
be utilized in MCL. The accuracy of the proposed Normal
Distributions Transform based Monte Carlo Localization
(NDT-MCL) is demonstrated in Fig. 1b, which is obtained
through the same procedure as for the grid-based MCL (Fig
1a).

The main contribution of this paper is to formulate NDT-
MCL and to evaluate it using both pre-recorded datasets and
in a closed-loop fashion on board of an AGV test platform.
The experiments performed confirm that NDT-MCL provides
accuracy and repeatability superior to those of the standard
grid-based MCL and comparable to the performance of a
commercial infrastructure based system.

The rest of this paper is organized as follows. Sec. 2
first introduces and formalizes the standard MCL approach,
before presenting the proposed NDT-MCL algorithm. Sec. 3
describes the test setup and analyzes the obtained results and
finally Sec. 4 concludes the paper with discussion.

II. NDT-MCL
A. Grid-MCL

In this paper we follow closely the formulation for Monte
Carlo Localization (MCL) introduced in [3]. MCL is most
commonly used with 2D occupancy grid maps [8], and there-
fore we refer to it as grid-MCL, in order to distinguish it from
the proposed NDT-based approach. MCL is a recursive map
based localization algorithm, which estimates the posterior of
the robot’s pose p(xt|ut, zt,m), given a map m, a sequence
of controls ut = {u1, ..., ut} and a sequence of observations
zt = {z1, ..., zt}, i.e,

p(xt|ut, zt,m) = ηp(zt|xt,m)·´
xt−1

p(xt|ut, xt−1)p(xt−1|zt−1, ut−1,m)dxt−1,
, (1)

where η is a scaling factor, p(zt|xt,m) is a mea-
surement model, p(xt|ut, xt−1) is a motion model and
p(xt−1|zt−1, ut−1,m) is the posterior of the previous state.
The motion model describes the probability that a control ut
causes the state change from xt−1 to xt. The measurement
model provides the probability of observing zt from a state
xt given a map m.

MCL uses a particle filter approach to solve Eq. 1. It
estimates the posterior of pose with a set of N weighted
particles:

p(xt|ut, zt,m) ∝
{
xit, w

i
t

}N
i=1

, (2)

where xit is one pose sample and wi
t is a weight associated to

it. In this paper we are considering localization in 2D-plane,
so a pose xit ∈ R3 is represented with x,y position and a
heading of the robot.

MCL estimation consists of three steps: 1) prediction, 2)
update and 3) resampling. The prediction step implements

the motion model by applying the control for each particle
and generating noise according to the model. In this paper
we use the so called odometry model. Given two odometry
readings xot−1 and xot we compute the differential motion
dxtt−1 with respect to xot−1, so that xot = xot−1⊕dxtt−1,
where ⊕ is the 2D pose compounding operator as introduced
in [11]. Since dxtt−1 is affected by noise in the odometry
measurement, a normally distributed noise vector σi ∈ R3,
proportional to relative motion, is sampled for each particle.
In this paper we use 10% odometry error in generation of the
noise. The prediction is done by transforming each particle
pose according to Eq. 3:

xit = xit−1 ⊕ (dxtt−1 + σi). (3)

Next, in the update step, the measurement model is used to
evaluate the likelihood of observation given a state. A beam
sensor model was used in the original formulation [3]. The
beam model predicts the measurement using a raycasting
approach and the map, and the predicted measurement is
compared against the real measurement in order to compute
the likelihood. This approach was found to result in degener-
ation of the particle distribution with accurate sensors, such
as laser scanners [15]. An alternative, likelihood field, or end
point model, was introduced in [14]. The likelihood field
model is generated by computing for each cell in the map
the likelihood for observing a point in the particular cell.
The likelihood field model is computationally lighter and it
has been shown to produce smoother posterior distributions
than the beam model [14].

Finally, a resampling step is needed in order to avoid
the divergence of the particles [7], [2]. The resampling
step replaces the particles with low weight, with ones that
are representing the posterior better. An efficient sampling
strategy, called KLD-sampling, was introduced by Fox in [4].
The baseline implementation for grid-MCL uses this strategy,
however, NDT-MCL implementation presented in this paper
runs without any adaptation scheme.

B. NDT-MCL

In this paper we use NDT to represent both, the map
and the measurements. The NDT was first introduced by
Biber and Strasser [1] for 2D scan matching and it was later
extended to 3D [6]. Here we assume that a measurement
is represented in the sensor coordinate frame with a set of
Nt points zt = {pi}Nt

i=1, where pi ∈ R2 or pi ∈ R3. The
measurement is transformed to an NDT representation by
accumulating the sensor measurements to a regular grid with
given resolution and then computing the mean and covari-
ance estimates for each grid cell containing points. After
this process, the measurement is represented with a set of
Nzt normal distribution parameters z̄t = {µi,Σi}Nzt

i=1 , where
typically Nzt � Nt. The result describes the probability of a
point being measured at a particular physical location. Thus,
the NDT by nature is a likelihood model [1] and moreover,
it is a piecewise continuous representation.
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The NDT map is based on a regular grid containing
estimated normal distribution parameters of the mapped envi-
ronment. The map can be built during a short-term operation
in a similar manner than described above, but accumulating
points to the map over several observations. However, in
this paper we used the recursive implementation described
in [10] to build the static map. The map is maintained in
grid representation for an efficient access to the Gaussian
components, however, for a sake of notation, let us assume
that the map is a set of normal distribution parameters
m = {µj ,Σj}Nm

j=1.
Next let us investigate one particle pose xk. This pose

can be represented as a rotation matrix Rk and translation
tk with respect to the global frame of reference. Now, the
likelihood between z̄t, given map m and state xi can be
given as L2-likelihood [12]:

Lk
2(z̄t|xk,m) =∑Nm

j=1

∑Nz

i=1 d1exp(−
d2

2 µ
T
ij(RkΣiR

T
k + Σj)

−1µij)
, (4)

where µij = Rkµi + tk − µj , and d1 and d2 are scaling
parameters. Eq. 4 computes the likelihood over all observa-
tions and all map components. In practice we approximate
Eq. 4 by finding the cell from the map that corresponds to
the mean µ̄i = Rkµi + tk and search the local neighborhood
in order to find the closest normal distribution to µ̄i. The
update step computes the weights for each particle as:

wk
t =

1∑N
i=1 w

i
t

wk
t−1L

k
2 . (5)

In this paper we use a basic resampling approach [2]. The
resampling is triggered when the variance of the weights
grows over a given threshold. This way resampling is done
when necessary. For the final pose estimate we use the
maximum aposteriori estimate over the particles.

In this paper we do not analyze the global initialization
and thus the filter is initialized to a known initial location
with given variance.

III. TESTS AND RESULTS

A. Test setup

We evaluated NDT-MCL using a commercial Automat-
ically Guided Vehicle (AGV) system from Kollmorgen. A
Vehicle Master Controller (VMC 500) controls the vehicle
along the predefined trajectories. The localization is based
on a commercial infrastructure based positioning system,
which tracks wall mounted reflectors using a rotating laser
[5]. Since 1991 there have been approx. 15000 AGVs’
deployed using the VMC system and approx. 10000 of
those are using reflector based positioning. The reflector
based localization requires pre-installation and calibration of
the reflector network. Once properly set-up and calibrated
it provides an accurate position information, which in this
paper is used as a baseline for evaluation. The test vehicle is
a training platform for AGV operators, which has the same
kinematics and hardware as commercial AGV’s but is smaller
in size (see Fig. 2).

a)

b)

Fig. 2. Test vehicle (a) and (b) the map of the test environment with the
trajectory that the vehicle was set to drive in most of the tests.

The primary comparison in this paper is done between
grid-MCL and NDT-MCL. The implementation for grid-
MCL was chosen to be AMCL1, which is a mature and
widely used localization node of ROS. In the experiments
we used the likelihood field model, with a maximum of 100
beams, and adaptation range set from 100 to 1000 particles.
These parameters were selected in order to have as much
particles and measurements as possible, while still main-
taining the real-time constraints. The odometry model was
set to differential steered and the motion model parameters
were tuned so that the filter provided consistently reliable
estimates in real-time.

Our tests include two different scenarios 1) offline and
2) closed-loop. In the offline scenarios the vehicle was con-
trolled using the reflector-based position, and the data from
odometry, SICK S300 safety laser and the reflector-based
position were logged. The evaluated localization methods
used odometry and SICK S300 data as inputs. The evaluation
was done by offline processing the data using the two
approaches and the accuracy was compared against the pose
given by the reflector-based localization system.

1http://www.ros.org/wiki/amcl
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Fig. 3. Expected reflector based positioning accuracy in basement setup.
The accuracy of the reflector based positioning system should be 1cm or
less through out the test area.

In closed-loop testing the vehicle was controlled using
the pose output from the two MCL approaches. In both
cases the map for the algorithms was precomputed using
the reflector-based pose for mapping and the measurements
from the SICK S300. The mapping was carefully done in a
static environment and the same data was used for creating
both an occupancy map and an NDT map.

The test environment is a basement in Örebro University
(referred as “basement” from now on) approximately 25m
x 25m area, with 22 reflectors installed and calibrated for
providing an accurate ground truth estimate. Fig. 3 illustrates
the best case expected position accuracy of the setup. The
figure is generated by a tool provided by the manufacturer
and it shows that the positioning accuracy in our setup should
be below 1cm throughout the trajectory. The test area and the
trajectory used for the vehicle in trajectory following tests
are illustrated in Fig. 2b. The speed of the vehicle while it
followed the trajectory was 1m/s for the most parts.

B. Offline accuracy test

These tests are based on recorded datasets and the results
are generated offline. The evaluation was done against the
pose given by the vehicle’s navigation system. As a measure
of accuracy we use the Absolute Trajectory Error (ATE)
[13]2. Three different tests were conducted: 1) static-, 2)
dynamic- and 3) sliptest. The static test was performed in
an empty basement without disturbances. The dynamic test
had additional obstacles inserted into the basement, and
eight people that both disturbed the view of the vehicle and
moved the obstacles in the basement during the experiment
(see Fig. 4c). The obstacles were initially placed into the
basement and were also present in the maps (see Fig. 4b).
In sliptest the vehicle was driven in a static environment and
small disturbances to the odometry were occasionally caused
while driving by giving a “gentle push” to the vehicle. The
trajectory lengths in the three tests were: 120m in static test,
180m in dynamic test and 300m in the slip test.

Fig. 5 shows the ATE plots for both grid-based MCL and
NDT-MCL with different resolutions in the static case. The
best case value for grid-MCL was 5.4cm while for NDT-
MCL it was 1.4cm. In fact, the worst case value (for a

2ATE implementation from the Rawseed Project
(http://www.rawseeds.org) was used

Fig. 4. Experimental setup. Occupancy maps of a) static trial and b)
dynamic trial. c) shows snapshots from dynamic trial.

cell resolution up to 1.8m) for NDT-MCL is 2.8cm. The
grid-MCL follows closely a rule of thumb that the accuracy
corresponds to the resolution of the map, however, not better
than the 5.4cm mentioned above even with small cell sizes.
These findings are consistent with those reported in previous
works on MCL [3], [9]. NDT-MCL, on the other hand,
performs slightly worse with very high resolutions. This is
due to two reasons: 1) with high resolution, due to small cell
size, there is not sufficient statistics to represent the surfaces
with normal distributions correctly and 2) our approximation
of Eq. 4 accounts only for neighboring cells and thus when
the cell size is small there is a risk of erroneous associations.

Fig. 6 illustrates the results of all three offline tests. The
Grid-MCL and NDT-MCL results are illustrated in separate
subplots with different scale for better visualization. The first
remarkable observation is that NDT-MCL is hardly affected
by the resolution in the static cases and provides almost
constant performance over the full range of resolutions from
0.1m up to 1.8m.

Both static- and sliptest produce very similar performance.
In the dynamic test there is a slight loss of performance for
NDT-MCL. The best mean accuracy in this case for NDT-
MCL was 2.4cm and for grid-MCL it was 5.3cm. The worst
case accuracy for NDT-MCL in this test was 6.6cm, which
was obtained at 0.15cm resolution in the dynamic test data
set. The resolutions between 0.3m to 0.9m give less than
3cm mean ATE.

Finally, Fig. 7 compares the mean runtimes of the two
approaches. The large variance in grid-MCL is an effect that
the particular implementation does not update the observa-
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Fig. 5. Absolute Trajectory Error (ATE) comparison between grid-MCL
and NDT-MCL in static environment. The curve represents the mean value
and the bars the standard deviation.
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Fig. 6. Accuracy in three different scenarios using different resolutions.
The static test was performed in a completely static environment, the Slip
test includes disturbances to odometry while driving, and the dynamic test
contained eight people around the robot causing changes to the environment
by moving obstacles.

tion in every iteration and therefore resulting low runtimes
in log files. Both approaches can run in real-time in our use-
case. The NDT-MCL is clearly faster at lower resolutions.
The resolution does not have (much) effecton the grid-MCL,
since the likelihood field model is precomputed and the laser
measurements are directly used for updates. Thus, the update
of grid-MCL is always O(NM), where N is the number of
particles and M is the number of measurements in a scan,
regardless of the resolution of the map.

C. Closed-loop tests

When evaluating a localization approach, one should not
limit the analysis only to offline processing. A short term
localization error or unsmoothness of the pose estimate
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Fig. 7. Run time comparison between grid-based MCL and NDT-MCL.

Fig. 8. Trajectories in online smoothness test. The value in the legend is
the relative smoothness value (see Eq. 6) with respect to the reflector based
approach.

may very well remain hidden in the mean value estimates,
while in a real-world implementation the effects could be
catastrophic. Moreover, the smoothness of the pose estimate
will have an effect on the controller performance and thus
on the overall performance of the system. In this section we
analyze the localization approaches when used in a closed-
loop with the vehicle control. The pose estimates of different
approaches are fed to the controller, which in turn tries to
follow a predefined trajectory. The controller, as mentioned
in Sec. III-A, is a commercial AGV controller used by
thousands of AGV’s in production. The selected resolution
for NDT-MCL was 0.5m and for grid-MCL 0.03m.

The ground-truth estimate was not available in the closed-
loop tests. This is due to the vehicle controller design; once
an external position source is fed into the system the reflector
position gets disconnected. Therefore other metrics are used
in this evaluation.

The first test measures the smoothness of the control. The
vehicle was driven in a static environment during five laps on
the trajectory illustrated in Fig. 8. The same test was repeated
using grid-MCL, NDT-MCL and reflector based localization.
The smoothness was measured as:

E =
n∑

t=1

4ω(t), (6)

where 4ω(t) is change of turning angle between time steps
t − 1 and t. This is a measure of the amount of control
actions that the controller does in order to execute the given
trajectory. The results in Fig. 8 are given relative to the
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Fig. 9. Trajectories in repetition tests as returned by the algorithms. The
stop points are illustrated as red squares. The areas with dashed rectangles
are close-ups from the two different stop points and show that the grid-MCL
reports the largest deviation in position in the test.

reflector based approach. For both grid-MCL and NDT-
MCL the control visually looked smooth. According to Eq.
6 1.1% more control actions were needed for grid-MCL and
2.1% less for NDT-MCL, compared against reflector based
positioning.

Repeatability, especially in loading operations, is crucial
for an AGV system. An AGV has to be able to position itself
within 3cm accuracy and with little angular error in order
pick up pallets, for example. Loading points in industrial
systems are at the end of a straight line, because typical AGV
kinematics are non-holonomic and the loading point needs to
be approached with less than 1deg error in heading. In order
to simulate this, we use a trajectory illustrated in Fig. 9. The
red rectangles in Fig. 9 are places where the vehicle stops.
Also, the speed of the trajectory profile was set so that the
vehicle approaches slowly the target points. The trajectory
was a closed loop and we collected data from 15 loops, i.e,
in total from 60 stop points.

In order to evaluate the accuracy of the AGV positioning
at the loading locations, we use scan matching [12]. During
the first loop, a reference scan and an associated pose were
recorded for each stop point. In the following rounds the pose
difference was computed by matching the newly acquired
scan at each loading location to the recorded reference scan.
Fig. 10 illustrates translational errors and Fig. 11 the heading
errors. The results show that NDT-MCL performs nearly
equally well with 1.4cm accuracy, compared to the reflector
based positioning with 1.2cm accuracy. Grid-MCL, on the
other hand performs substantially worse, giving a deviation
of 13.6cm (see Table I) and almost one degree in heading.
The most likely reason for the bad performance of Grid-
MCL in this test is that it does not continuously provide
a smooth pose estimate, as is visible in the close-up in
Fig. 9. The test vehicle is non-holonomic and thus when
a sudden jump in the pose estimate occurs while the vehicle
approaches a stop point, the controller simply cannot make
the necessary control actions to reach the correct pose and
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Fig. 10. Positioning accuracy in repeatability test.
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Fig. 11. Heading accuracy in repeatability test.

thus accumulates error. As can be seen in Fig. 1, it is quite
clear that grid-MCL results in substantially worse repetition
accuracy than NDT-MCL.

D. Large-scale test in an industrial environment

The final test demonstrates the scalability of NDT-MCL
for larger, more realistic, environments. The test is based on
data logged using an AGV in production use (see Fig. 12).
The duration of the dataset was 550 minutes and the total
length of the trajectory driven by the AGV was 7.24km. The
dataset contains Velodyne HDL-32 sensor measurements,
odometry and reflector based pose reported by the navigation
system, which we use for comparison. The AGV’s trajecto-
ries are visible in Fig. 15 and the visible area (for laser) was

TABLE I
MEAN HEADING ERRORS AND ABSOLUTE DEVIATION OF POSITION FOR

REPETITION TESTS.

Method Heading deviation (deg) Translation deviation (m)
NDT 0.074 0.014
Grid 0.743 0.136

Reflector 0.045 0.012
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Fig. 12. AGV in operation.

approximately 150m x 150m. One 3D map was built for 3D
tests and one 2D map for the 2D test. The maps were built
using datasets collected on a different production day. The
maps were created using the NDT-OM approach proposed
in [10] with the pose information from the infrastructure
based positioning system. Four tests runs were done with
different height cut-off values h. The 2D tests use only
one horizontal line from the scanner. The 3D tests used a
segment of the scan such that the accepted z-values were
within zs−h < z < zs, where zs is the height of the sensor.

We noticed that the vehicle had a large bias in odometry
while turning sharply. The amount of bias was such that
it violated the motion model significantly and it took a
long time for the filter to converge to a correct solution.
Because of this, we added a map matching step to help
the convergence. The map matching uses the recent mea-
surement (with height cut-off) with an initial pose estimate
from the NDT-MCL. The measurement is then registered
against the map using the registration approach proposed
in [12]. The result of the map matching is then used to
replace one random particle from the distribution before
calculating the observation likelihood. This was found to
produce smooth trajectories, while maintaining the accuracy.
The total number of particles used for the filter was 150 and
the resolution of the map was 0.5m.

Fig. 13 summarizes the absolute trajectory errors obtained
in the tests. The subplot titles in Fig.13 indicate the height
cut-off value. Interestingly using 2D scans achieves the best
accuracy. A likely reason for the larger deviation is that the
dynamics of the environment increase close to the floor level.
The 2D scans contain dynamics only from the other vehicles,
while the 1.7m cutoff case captures also the continuously
changing warehouse layout.

These differences in accuracy are not significant between
the trials, however, the errors are larger than in our basement
setup. One obvious reason for this is that the accuracy of
the reflector based position in the factory was not as high as
in our basement setup. In the basement we had 22 reflectors
installed into a relatively small space. In a large scale facility,
installation of reflectors is expensive and time consuming.
Thus, when installing the system, the positioning accuracy
is guaranteed only in the areas, where it is needed (i.e
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Fig. 13. Absolute trajectory errors for 10h localization set in industrial
environment using different amounts of data from Velodyne HDL-32 sensor.
The meter value indicates the amount of data included from horizontal level
downwards.

TABLE II
MEAN RUNTIMES IN INDUSTRIAL SETUP.

NDT-MCL Map matching
2D 28ms 37ms

0.6m 48ms 56ms
1.1m 53ms 120ms
1.7m 87ms 200ms

loading positions). This is also visible from the expected
accuracy plot of the factory setup (Fig. 14). In regions other
than loading areas the accuracy is in the range of 3-10cm.
This clearly affects both the quality of the map used for
localization, as well as the overall evaluation. The mean
runtimes for both the map matching step and the NDT-MCL
updates are shown in Table II.

Fig. 15 shows the trajectories of the AGV and close-ups
of two often visited loading points. At these points there
a slight offset from the ground truth trajectories is visible,
however, the deviation of trajectories of individual methods
is within 2-3cm, which is within the requirements for the
use-case.

Fig. 14. Expected reflector-based position accuracy in factory setup.
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Fig. 15. Trajectories from the 10h localization test in an industrial
environment. The top figure shows the overall trajectory and the other sub
figures show close-ups from three selected loading points.

IV. SUMMARY AND CONCLUSION

In this paper we propose a Monte Carlo Localization
approach, based on the Normal Distributions Transform rep-
resentation (NDT-MCL). NDT-MCL was compared against a
grid-MCL approach in several tests, both using pre-recorded
datasets as well as in closed-loop control tests. In all tests
NDT-MCL was found to provide superior performance over
the grid-MCL and comparable to a commercial infrastructure
based system. In addition the approach was successfully
evaluated in a long-term test in a real world industrial
sscenario.

Overall, the NDT representation was found to be very
suitable for MCL. It is inherently a likelihood model and
piecewise continuous. This results in an accurate and smooth
posterior distribution that is clearly a desired property in
localization.

Although the results obtained in this paper showed that
NDT-MCL has potential to meet the industrial accuracy
requirements, the tests in highly dynamic environments

showed some loss of performance. The NDT-MCL imple-
mentation presented in this paper had no rejection policy
for measurements originating from dynamic obstacles. Also,
the present implementation of NDT-MCL did not consider
global initialization and for this purpose an efficient sampling
method has to be used [4].
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