
Stereo Vision based indoor/outdoor Navigation for Flying Robots
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Abstract— We introduce our new quadrotor platform for re-
alizing autonomous navigation in unknown indoor/outdoor en-
vironments. Autonomous waypoint navigation, obstacle avoid-
ance and flight control is implemented on-board. The system
does not require a special environment, artificial markers
or an external reference system. We developed a monolithic,
mechanically damped perception unit which is equipped with a
stereo camera pair, an Inertial Measurement Unit (IMU), two
processor-and an FPGA board. Stereo images are processed on
the FPGA by the Semi-Global Matching algorithm. Keyframe-
based stereo odometry is fused with IMU data compensating for
time delays that are induced by the vision pipeline. The system
state estimate is used for control and on-board 3D mapping.
An operator can set waypoints in the map, while the quadrotor
autonomously plans its path avoiding obstacles. We show
experiments with the quadrotor flying from inside a building
to the outside and vice versa, traversing a window and a door
respectively. A video of the experiments is part of this work.
To the best of our knowledge, this is the first autonomously
flying system with complete on-board processing that performs
waypoint navigation with obstacle avoidance in geometrically
unconstrained, complex indoor/outdoor environments.

I. INTRODUCTION

A. Motivation

Robots can be valuable helpers in search and rescue (SAR)
and disaster management scenarios. Prof. Hajime Asama
showed impressively in his 2012 IROS plenary lecture how
robots were used to analyze, survey and partly clean up
the area around the Fukushima Daiichi nuclear power plant
after the meltdown caused by the catastrophic earthquake and
tsunami in 2011. Nevertheless, there is still a gap between
robotic research and real applications of mobile robots in
SAR scenarios, which is a strong motivation for our work.

Using mobile robots in real disaster management sce-
narios requires the system to provide a certain degree of
autonomy. In many situations a stable, high bandwidth radio
link between the robot and a ground station can not be
guaranteed. Furthermore, external navigation aids such as
GPS are unreliable in areas such as urban canyons, or not
available at all inside buildings. Therefore, at least sensor
data needed for safe navigation has to be processed on-board
the system.

Especially for flying robots, this requirement imposes a
big challenge, as the payload of these systems is usually
strongly limited. Payload limitations accompany limitations
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Fig. 1. Experimental quadrotor platform.

in computational resources. Sensor data processing and nav-
igation algorithms have to be robust, efficient and fast. In
contrast to ground robots, flying robots like quadrotors are
inherently unstable and have to be actively controlled at any
time. Considerable measurement time delays can be induced,
as the sensor data is processed on board resource-limited
systems. These delays have to be compensated for control
applications, as flying systems are highly agile.

The choice of sensors is crucial for navigation, surveil-
lance and planning abilities of the robot. Data from 3D depth
sensors is well suited for these tasks. Laser scanners provide
reliable measurements but are rather heavy for flying robots.
Sensors like Kinect are small and lightweight but work only
indoors. Time-of-flight cameras also work outdoors but have
a limited resolution. Stereo cameras are lightweight and pro-
vide a high resolution. Nevertheless, high resolution stereo
processing on resource-limited systems is a challenging task.

In our previous work [1] we analyzed the influence of
measurement time delays and frequency on the quality of
state estimation for highly dynamic flying systems. The
results motivated us to use stereo vision as the only exte-
roceptive sensor for navigation. We designed a navigation
box [2] including an IMU, a stereo-camera pair, a realtime
system for sensor data fusion and control, a non-realtime
system for ego-motion calculation and navigation, and an
FPGA board for stereo image processing. We optimized the
system for weight and integrated it into our new quadro-
tor platform (Figure 1), which is an advancement of our
previous system [3]. Stereo depth images with 0.5 Mpixel
resolution are calculated on board the quadrotor platform at
14.6 Hz using an FPGA implementation of the Semi Global
Matching (SGM) algorithm [4]. Our sensor data fusion
framework compensates for time delays of about 250 ms
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in the calculated stereo ego-motion and provides an estimate
of the current full 3D robot pose, velocity and IMU sensor
biases. All states are locally drift-free due to our keyframe-
based stereo odometry. The estimates are used for quadrotor
control and on-board 3D mapping using stereo depth images
only. We realized on-board 2D path planning and collision
avoidance by projecting 3D map obstacles at the height of
the quadrotor to the ground plane. The system performance
is demonstrated in a challenging indoor/outdoor flight. The
quadrotor is commanded from inside a building corridor
through a window to the outside, around the building, back
through a door to the inside and following the corridor to the
starting point. An operator only chooses some way points
in the incrementally built on-board 2D obstacle map. The
quadrotor then plans its path autonomously. Newly appearing
obstacles are avoided by continuous, automatic re-planning.

B. Related Work

Flying robots capable of autonomous navigation in GPS-
denied environments have become an area of increasing
research interest. Bachrach et al. [5] use a laser scanner for
pose estimation of Micro Aerial Vehicles (MAV). An off-
board SLAM algorithm using laser scan matching performs
pose-graph optimizations and loop detection. With off-board
planning, autonomous exploration and a flight through a
window was shown. Shen et al. [6] also utilize a laser
scanner for multi-floor navigation, but perform all computa-
tions including SLAM with loop closure on-board the MAV.
Based on his previous work, Shen et al. [7] added an RGB-
D sensor. With a focus on frontier exploration and map
representation, autonomous operation in a large multi-floor
indoor environment was shown. The MAV pose is however
still estimated via laser scan matching, limiting it to a 2.5D
environment with vertical walls. Outdoor navigation is only
partially possible as long as multiple walls are still seen by
the laser scanner.

Huang et al. [8] fuse visual odometry estimates from an
RGB-D sensor with IMU measurements in an EKF for local
navigation. Pose and velocity estimation for real-time control
of the MAV is performed on-board. The RGB-D data is also
transmitted to an off-board laptop for global navigation and
loop closure with a SLAM algorithm. Due to significant
processing delay, a state history needs to be kept. Upon a
new SLAM correction the state in the history is modified
and all future estimates recomputed. Usage of the RGB-D
sensor such as Kinect also does not permit outdoor operation
in direct sunlight.

Heng et al. [9] use stereo cameras for on-board mapping
and path planning to avoid obstacles. Pose estimation is done
using known artificial markers or with an external Vicon
motion tracking system.

Our system is most closely related to the work of Fraun-
dorfer et al. [10]. A front-looking stereo camera is used as
the main sensor to build a global 3D occupancy map with
0.1 m resolution on-board the MAV. A 2D slice (at a fixed
height) of the 3D Octomap is used for on-board planning
and obstacle avoidance as well as frontier-based exploration

and wall following. The state estimation is split into several
parts. Using the stereo cameras, visual odometry is computed
at 10 Hz. A reference frame is maintained as long as feasible
to avoid local drift. A downward looking optical flow camera
(in conjunction with a sonar for altitude) provides velocity
measurements, which are used in a simple Kalman Filter to
estimate the partial state. The integrated velocities are then
combined with the output of the visual odometry via a low-
pass filter for providing a complete pose estimate. While
this works well for their stated assumptions, it can become
problematic in a real SAR scenario where the floor is not
planar or the small roll and pitch angle approximation is
violated in dynamic flight. For example the usage of sonar
and optical flow as speed estimate for the controller does
not allow for a flight through a window. Furthermore, the
pose-graph SLAM algorithm is run off-board and only used
for post-processing.

Another notable work for stereo image processing has
been shown by Honegger et al. [11]. A 376×240 pixel depth
image and an optic flow field are computed at 127 Hz on an
FPGA. In contrast to optic flow with high frame rates, our
FPGA implementation aims for high resolution, high quality
depth images. Nevertheless, our lower frame rate of 14.6 Hz
is sufficient for an agile system with fast movements, due to
our visual odometry approach that can reliably and accurately
compute the ego-motion even if successive images overlap
by just 50%.

In contrast to the previous work and to the best of our
knowledge, we present the first flying system that can navi-
gate autonomously in complex, geometrically unconstrained
indoor/outdoor environments without relying on vertical
walls or a flat ground while all data is processed on-board.

II. SYSTEM DESIGN

The hardware design of our system, introduced in the
following section, is carefully adapted to the needs of the
software components introduced in section II-B.
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Fig. 2. Hardware block diagram of the system components.

A. Hardware

Our experimental quadrotor platform, shown in Figure
1, has the dimensions of 0.60 m × 0.60 m × 0.35 m, a
maximum horizontal diameter of 0.77 m and a weight of
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Fig. 3. Exploded and assembled view of the processing stack, showing
(1) FPGA card, (2) Core2Duo board, (3) Gumstix (4) plate that carries
the stack, (5) IMU (not visible in assembled view) and (6) stereo camera
assembly. The stack is mounted to the quadrotor via (7), which is rigidly
fastened to the plate (4). Dampers are placed on (4), so that the whole stack
is damped w.r.t. the quadrotor frame. This allows fast disassembly from the
quadrotor frame without losing IMU to camera calibration.

1.63 kg (excluding batteries). The integrated navigation box
is shown in Figure 3.

1) Navigation Box Design: The design of the navigation
box takes several key requirements into account. Firstly, it
is decoupled of the quadrotor frame, so that all sensors are
integrated with the processing electronics. The only physical
connection to the quadrotor frame is via four screws at point
(7) in Figure 3. In this way, integration, calibration and
testing can be done without the quadrotor. Secondly, due to
the vibrations induced by the rotors, the navigation box must
to be damped to cut off some of the high frequency vibrations
measured by the IMU. Therefore, we added an extra plate
(4) with dampers that connects to the quadrotor frame. The
navigation box is fastened on top of the dampers on this
plate. In this way, the whole mass of the navigation unit
is used to lower the natural frequency of vibrations acting
on the box. Hence, the dampers and mass of the unit act
as a mechanical lowpass filter. Thirdly, the sensors used for
state estimation – IMU and cameras – have to be rigidly
connected. Therefore, they are mounted on the same plate,
which is additionally stiffened. Finally, the camera stereo
pair is designed to be stiff in all rotational directions. All
custom components are milled out of carbon fiber plates or
aluminum (camera to rod connection).

2) Navigation Box Electronic Components: The hard-
ware configuration of the integrated navigation box is sim-
ilar to the hand-held pose estimation device that we de-
veloped earlier [2], but optimized for weight. We use a
stereo camera pair consisting of two hardware synchro-
nized Point Grey Firefly cameras connected via USB to a
Core2Duo SU9300@1.86GHz processor board. The cameras
are equipped with light-weight Computar HM0320KP lenses
(f=3mm, horizontal FOV=80.5◦, manual aperture). Stereo
data processing is done on a Spartan 6 LX75 FPGA Eval
Board which is connected via PCI Express. Figure 2 depicts

the block diagram of the system.
Additionally to the x86 platform, we use a Gumstix

computer board providing a OMAP3530 ARM Cortex
A8@720MHz processor. An ADIS16407 Inertial Measure-
ment Unit (IMU) integrating a triaxial digital accelerometer,
gyroscope, magnetometer and a barometer is connected via
SPI. The hardware trigger of the stereo camera pair is
registered at the Gumstix computer board.

We run Linux on both computer platforms. The commu-
nication between the boards is carried out via Ethernet. A
software wireless LAN/Ethernet bridge on the Core2Duo
board integrates the on-board network transparently into the
ground station network. Furthermore, we synchronize system
clocks via Precision Time Protocol V2.

An overview of the weight of the individual components
which is crucial for all MAVs is summarized in Table I.

TABLE I
WEIGHT OF SYSTEM COMPONENTS

Component Weight
FPGA board 95 g
Core2Duo stack 345 g
Gumstix board 37 g
IMU incl. baseboard 22 g
Cameras incl. lenses 2 x 33 g
Mount and cables 171 g
Total 739 g

B. Software

The software architecture of our system is depicted in
Figure 4. We use ROS (Robot Operating System) as middle-
ware connecting all software components. Modules with hard
realtime requirements implement their own message queues
using the linux FIFO scheduler.
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Fig. 4. Block diagram of software components.
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1) Stereo Matching and Visual Odometry: The image
processing software is responsible for computing dense depth
images from stereo images and the visual odometry from
subsequent camera images.

The depth image is computed from rectified stereo images
by Semi-Global Matching (SGM) [4]. The method performs
pixelwise matching, supported by a global cost function that
prefers piecewise smooth surfaces. The Hamming distance
of Census transformed images is used as matching cost [12],
since it offers a high radiometric robustness that is needed
for processing real images [13]. SGM delivers dense, high
quality depth images with high spatial resolution (i.e. fine
structures are visible in the depth image). The method is not
sensitive to the choice of parameters, which makes parameter
tuning needless in practice.

We use a Spartan 6 FPGA implementation of SGM that
is an optimized version of Gehrig et al. [14]. The imple-
mentation processes rectified stereo images in a resolution of
1024×508 pixels with 12 bit radiometric depth and 128 pixel
disparity range in 68 ms.

The depth image is used for obstacle avoidance and
mapping, but it also serves as base for visual odometry,
which works on subsequent left camera images. The used
method [15], [16] has been developed for fast movements
and rather low framerates. It performs corner detection and
tries to find initial correspondences by correlating the Rank
[12] signature of all corners against each other. Outlier
detection is based on relative distances of corner pairs that
are reconstructed in 3D by using the dense depth image of
SGM. Due to using 3D features, the motion can be calculated
with six degrees of freedom with a theoretical minimum
of three correspondences. In contrast, mono camera based
approaches can only determine five degrees of freedom
(i.e. no scale) from a minimum of five correspondence,
which requires more complexity for outlier detection and is
therefore potentially slower and less robust in practice.

The incremental visual odometry method has been ex-
tended by using keyframes and estimating the motion error
as well [17]. Keyframes are used by storing old images into
a small, fixed sized list of previous images. The motion to
a new image is always determined from all previous images
in the list. The motion that minimizes the estimated overall
motion error is used as resulting motion and the new image
replaces the one in the list with the highest overall error.
This mechanism reduces an erroneous motion drift for a slow
moving system and is drift free for a system that is standing
still or moving on the spot.

In our implementation, depth images and the visual odom-
etry are computed at 14.6 Hz with a latency between 223 ms
to 288 ms. Everything except SGM runs on the Core2Duo
board with a CPU load of 129 % [2].

2) Data Fusion: The visual odometry is fused with IMU
data for getting a system state estimate that is used for
mapping and control. The requirements for mapping are
rather relaxed: the stereo camera pose with respect to the
mapping frame at the time of image acquisition is needed.
This pose could also be calculated from visual odometry

only, but fusion estimates are more robust against vision
dropouts as was shown in our previous work [2].

By contrast, system state estimation for control of flying
robots has to fulfill some requirements – the fast dynamics
of quadrotors have to be reflected in a high controller
bandwidth. Therefore, the system state has to be available
at a high rate, at least at the rate of the lowest controller
cascade. Furthermore, the controller needs the system state
at the current time without any delays coming from sensor
data processing. In our case, the stereo odometry system
introduces a measurement time delay of about 250 ms.

Our filter framework shown in Figure 5 considers these
requirements – the system state estimate is available at a
rate of up to 819 Hz, i.e. the full IMU data rate, while mea-
surement time delays are compensated. As discussed above,
the position estimation accuracy is increased by processing
key frame odometry instead of simple incremental odometry
[2]. In the following we will summarize the structure of the
filter framework [1].

realtimenon realtime

Stereo
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IMU
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Fig. 5. State estimation system design.

We define the direct system state as

x =
(
pn,Tnb vn,Tnb qn,Tb bb,Ta bb,Tω

)T
(1)

defining body position and velocity in the navigation frame,
the orientation quaternion between the body and navigation
frame and the IMU accelerometer and gyroscope biases.
The navigation frame is defined with the z-axis pointing
downwards and the x-and y-axes coinciding with the cor-
responding body axes at the starting point. x is calculated
at 200 Hz by the computationally inexpensive Strap Down
Algorithm (SDA) using accelerometer and gyroscope mea-
surements from the IMU.

The direct system state will accumulate errors due to
integration of noisy measurements and linearization effects
in the SDA. Therefore, we estimate the errors defined as the
indirect system state of an Extended Kalman Filter (EKF):

δ =
(
δn,Tp δn,Tv δn,Tψ δb,Tba δb,Tbω

)T

(2)

The position, velocity, orientation and bias errors, respec-
tively, are estimated in every filter step and used to correct the
direct system state. By using the indirect filter formulation
in feedback configuration, the computationally expensive
calculation of system state errors can be executed at a much
lower rate than the direct system state calculation.

For error estimation, corresponding to the EKF update
step, we use two measurement sources. Most of the time,
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(a) On-board left camera view. (b) On-board calculated Semi Global Matching
(SGM) depth image.

(c) On-board calculated 3D map. The
coordinate frame shows the current
pose of the quadrotor.

Fig. 6. Quadrotor crossing a window from an indoor corridor to the outside.

the IMU acceleration measurement is dominated by the
gravity vector. We fuse this pseudo gravity measurement
for roll and pitch angle stabilization, which is especially
important for flying platforms. The second measurement
update is provided by the stereo odometry system in form of
a delta position (∆p) and delta orientation quaternion (∆q)
between the delta measurement start at time ts and the end
at time te. For a time delayed measurement arriving at tn
we know tns < tne ≤ tn. To process these time delayed delta
measurements we clone the system error pose into the filter
error state and save the direct system state at the time of
a camera hardware trigger. Only the part of the error state
vector reflecting the current state needs to be propagated
in the Kalman Filter propagation step, while the augmented
states stay constant. At the arrival of a time delayed delta
pose measurement the augmented states are referenced in
the measurement matrix and hence the measurement delay is
compensated implicitly. The calculated correction improves
all system states including the augmented system states in
the past. Augmentations that will not be needed for future
measurements are removed from the filter.

3) Control: We employ a cascaded controller structure,
which consists of a low level PD attitude controller (running
on the Autopilot at 1 kHz), and a position controller, which
runs on the Gumstix at 50 Hz. The PID position controller
sends attitude commands via a UART connection.

The trajectory is generated by linearly interpolating the
position between waypoints and lowpass filtering the result.
In this way, a smooth velocity and acceleration feedforward
signal is generated. We advance to the next waypoint when
the quadrotor is within the specified tolerance of the current
waypoint.

4) Mapping and Path Planning: A 3D occupancy map
is computed on-board using the Octomap Library [18].
The SGM stereo depth image calculated by the FPGA is
converted to a point cloud and downsampled with a Point
Cloud Library (PCL) grid filter. The resulting thinned out
cloud is inserted into the Octomap using the best current
pose estimate from the data fusion.

For collision avoidance and path planning, a horizontal
layer at the altitude of the quadrotor and its height as
thickness is cut out of the 3D map. The occupied cells are

projected down on the horizontal plane to get a 2D collision
map. The ROS Navigation package is used to generate a
collision-free path to a waypoint given by the operator. In
the first step, obstacles in the collision map are inflated by
a certain radius. In the second step, Dijkstra’s algorithm is
employed to find the shortest, collision-free path.

In the next step, we thin out the resulting dense grid-
sampled path. The dense path is approximated by linear
straight-line segments. The approximation is based on com-
paring the path length to the segment length from the last
added waypoint. If the difference exceeds a threshold, a new
waypoint is added. By filtering the path in this way, implicitly
higher velocities are reached in straight paths, while the
velocity is reduced in areas with high curvature (e.g. around
obstacles).

The path planner is configured to re-plan continuously, in
order to react to previously unknown obstacles.

III. EXPERIMENTS

For verifying the robustness of our system design, we
chose a challenging indoor/outdoor flight path of about 60 m.
We show the results of one flight representing the conducted
3 runs.

The transition from indoor to outdoor and vice versa is
challenging in several aspects: the lighting conditions change
quickly and usually the visual odometry shows dropouts for
several images until the camera shutter is re-adapted. In
contrast to our odometry system, feature based SLAM meth-
ods can easily lose the correspondence connection and need
reinitialization. Wind conditions change suddenly between
a narrow indoor corridor with self induced turbulence and
a wide outside free space with possible wind gusts. In our
case, we conducted the indoor/outdoor transition through a
1.26 m wide window, while the quadrotor has a diameter of
0.77 m. Therefore, the obstacle map has to be accurate to
find a valid path through the inflated window frame and the
controller has to follow the planned path precisely to prevent
collisions.

During the experiment, the incrementally built on-board
obstacle map was transmitted to a ground station where the
operator clicked on the map to set a new goal point. As the
starting point, we placed the quadrotor within the corridor
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Fig. 7. Reference ( ) and estimated ( ) path with locations of interesting
points.

of a building. The operator commanded it to start and hover
at a height of 1.6 m. The window became visible in the map
and the operator set a waypoint outside the building. Figure
6 illustrates the on-board data processing chain just before
crossing the window. Outside, the operator chose successive
waypoints (partly in unknown map areas) to command the
quadrotor around the building through the entrance back to
the starting point. By continuously re-planning the flight path
on the updated map, appearing obstacles were autonomously
avoided by the quadrotor. If a waypoint set in unknown
space was accidentally occupied by an obstacle, the system
canceled the path in front of the obstacle and switched to
hover mode waiting for a new goal.

A. Ego Motion Estimation

Figure 7 depicts the on-board estimated position in blue
with the commanded reference trajectory in red. In the top
view (top plot) the building construction plan is depicted in
the background. The quadrotor flight was started in the mid-
dle of a 0.80×0.80 m platform defined as trajectory origin.
At the end of the trajectory the quadrotor was commanded
to land on the platform. The final, manually measured (x,
y)-position was (0.15; 0.24) m, with a position estimate of
(1.10; -0.23; -0.36) m (x,y,z). This corresponds to a total
loop closure error of 1.13 m after a total trajectory length of
about 60 m.

Sparse obstacle density on the trajectory (outside the
building) is reflected in a sparse sampling of the commanded
flight path. In these areas the quadrotor comes close to
the maximum allowed flight speed of 1.8 m/s. Figure 8
shows the absolute quadrotor speed estimate in blue with
the commanded reference trajectory in red.
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Fig. 8. Reference ( ) and estimated ( ) flight velocity

B. Mapping

Figure 9 shows a 3D reconstruction of the flown area,
recomputed offline at a higher resolution of 2 cm. The offline
map was only processed for visualization in this paper. It is
not used by the flying system itself. The depth images and
ego-motion estimates which were calculated and logged on-
board were used. No offline optimization or loop closure was
applied. In Figure 10 we overlaid the reconstruction by the
on-board calculated 3D obstacle layer at the altitude of the
quadrotor in green. The inflated 2D obstacle map used for
path planning is depicted in red.

Fig. 9. Offline 3D reconstruction with 2 cm resolution using on-board
calculated ego-motion estimates and depth data only. The indoor trajectory
is marked in red, while the outdoor trajectory is marked in green.

IV. DISCUSSION

The presented system is a major step in the direction of
autonomous, flying robots that can be used as a surveillance
tool in disaster management scenarios. All tasks including
high resolution stereo image processing, visual odometry
calculation, data fusion, mapping, path planning and control
are realized in realtime on-board the robot. None of the
algorithms requires special geometrical constraints on the
surrounding environment such as flatness of the ground or
vertical wall assumptions and the system works indoors as
well as outdoors equally well. These are the basic require-
ments for real world SAR scenarios.

The conducted experiments show the robustness of our
system in challenging situations as indoor/outdoor transitions
with changing light and wind conditions. The accuracy
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Fig. 10. Overlaid on-board 3D map view at 2 cm resolution. The obstacle
layer at flying altitude and height of quadrotor is shown in green, while the
down projected 2D inflated obstacle map used for planning is shown in red.

of the state estimation system with an experimental loop
closure error of less than 2 % makes the system suitable
for mixed indoor and outdoor exploration tasks. It has to
be considered that the loop closure error is only used as
accuracy measuremnt for our local navigation approach. We
believe that global navigation in huge areas of operation can
be realized more efficiently by combination of global topo-
logical navigation approaches [19] and our visual keyframe-
based local, metric navigation in contrast to global pose
graph SLAM with loop closure.

Nevertheless, one of the most critical factors for employ-
ing the system in real life scenarios is the limited flight
time of less than 10 minutes due to limited battery capacity.
Flight time can be increased by reducing the total system
weight. We see great potential in lightening the navigation
unit by combining all processing units on one base board.
Considering the weight of the components we expect a
possible reduction of at least 150 g. Furthermore, the system
is limited to areas with good lighting conditions which
could be solved by equipping the robot with active LED
illumination.

At the current state, the system is on the limits of its com-
putational load, therefore, we are optimizing our algorithms.
We are working to move further parts of the vision pipeline
into the FPGA. Candidates are image rectification, feature
detection, description and initial correspondence determina-
tion. We assume a possible reduction of 50% of the CPU load
caused by the vision pipeline. In the current implementation,
our stereo odometry algorithm could be confused by moving
objects covering great areas of the images. We plan to
use data fusion results for supporting outlier detection in
subsequent images.

Our system state estimation framework was shown in sim-
ulations to cope with fast flight dynamics doing maneuvers
like flips [1]. We will explore the limits of our system
dynamics in future work. Limitations will come from lighting
conditions resulting in motion blur in the camera images and

from physical motor thrust limitations. To guarantee safe,
highly dynamic maneuvers in unknown environments we
also have to integrate a fast, reactive collision avoidance as
well as full 3D path planning.

V. CONCLUSION

We introduced a new, highly optimized quadrotor plat-
form, developed for the use in disaster management and
SAR scenarios. All navigation tasks including system state
estimation, mapping and path planning are realized on-board
the flying robot, which is the requirement for autonomy.

We developed a modular navigation unit which is inte-
grated into our quadrotor as a monolithic, damped block with
a stiffened configuration between cameras and IMU. The
unit processes stereo images with a resolution of 0.5 MPixel
using an FPGA implementation of the Semi-Global Matching
algorithm at a rate of 14.6 Hz. Depth images are used for
keyframe based stereo odometry calculation. The results are
fused with IMU measurements, for compensating time delays
of 250 ms that are introduced by the vision pipeline. System
state estimation results are available with a rate of up to
819 Hz. They are employed for control and 3D mapping.
The map forms the basis for dynamic 2D path planning for
avoiding known and appearing obstacles.

We have demonstrated the autonomous navigation ability
of our system by a challenging indoor/outdoor trajectory.
Setting waypoints on the incrementally built on-board map,
an operator commanded a roundtrip from inside a building
corridor through the window around the building and through
the door back to the starting point. Depending on the obstacle
density, the system flies with a maximum speed of 1.8 m/s.
The relative loop closure error of our metric, local navigation
system on the 60 m trajectory was less than 2% without
conducting an actual loop closure. The map built during the
experiment, using on-board processed data only, is presented.
The paper comes with a video of the flight.

In future work we will optimize system weight and imple-
ment further algorithms on the FPGA. In addition, we will
increase system dynamics to demonstrate highly dynamic
flight behavior.
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