
Rigid body pose and twist scene graph founded on geometric
relations semantics for robotic applications

Tinne De Laet, Herman Bruyninckx, and Joris De Schutter

Abstract— This paper presents a scene graph for geometric
relations between rigid bodies that keeps track of poses and
twists of rigid bodies in the scene. The scene graph relies on
semantic pose and twist representation, making it invariant to
the actual coordinate representation at hand. This makes the
scene graph more general and interoperable than most scene
graphs currently available. The presented scene graph takes
into account constraints imposed by particular coordinate
representations, allows for constant poses, answers semantic
pose and twist queries, and provides built-in semantic consis-
tency checks. Since the scene graph also keeps track of the
twist, it allows native twist calculations, as opposed to deriving
the velocities from the poses in the graph. This paper comes
with software released under a dual BSD/LGPLv2.1 license.

I. INTRODUCTION

In robotics, questions like “Where is the gripper of
my robot with respect to the door handle?” or “What is
the speed of my head camera with respect to the tracked
object?” are very typical. These questions arise in different
application scenarios such as robot programming, robot
navigation, sensor processing,. . . To provide answers, time-
dependent geometric relationships such as relative position,
orientation, pose (position and orientation), linear velocity,
angular velocity, and twists (linear and angular velocities)
between objects in the scene have to be calculated. To
this end the robot programmer can build a scene graph,
keeping track of the geometric relationships between the
rigid bodies in the scene.

The name “scene graph” is often used for graphs that
arrange the logical and/or spatial representation of a scene.
Scene graphs are used in a wide range of applications
and domains: vector-based graphics editing applications,
computer games, 3D creation suites like Blender, but also
in robotics. This has led to a proliferation of different scene
graph implementations, based on the same principles but
adapted to the particular application or domain at hand.
This paper focuses on scene graphs that model spatial
representations in a robotics scene. Such graphs, mostly
modelling the orientation and position between different
objects in the scene, are also referred to as “transform
graphs”.

All authors are with the Department of Mechanical Engineering,
KU Leuven, Belgium. Corresponding author: Tinne De Laet (Tinne.
DeLaet@mech.kuleuven.be)

Via the scene graph, the robot programmer can auto-
matically retrieve time-dependent geometric relationships
between objects in the scene. However, to express and
calculate geometric relations and perform mathematical
operations on them (e.g. composition of relative motion,
time differentiation, or integration), robot programmers
have to choose coordinate representations with which to
perform the corresponding numerical operations. Despite a
history of over 50 years, the geometric properties of rigid-
body operations, and their coordinate representations, have
never been standardized. All exisiting representations entail
a surprisingly large number of choices or assumptions,
which are often made implicitly. Not explicitly stating
these assumptions may lead to errors in the calculations
(composition of geometric relations expressed in different
coordinate frames, composition of poses and orientation
coordinate representations in wrong order, . . .) [1]. To
alleviate this problem, we recently proposed semantics
for the standardization of geometric relations between
rigid bodies [1], [2], referred to as ‘geometric semantics’.
These semantics explicitly state the coordinate-invariant
properties and operations, and, more importantly, all the
choices that are made in coordinate representations of
these geometric relations. This results in a set of concrete
suggestions for standardizing terminology and notation,
allowing programmers to write fully unambiguous software
interfaces, including automatic checks for semantic correct-
ness of all geometric operations on rigid-body coordinate
representations. Furthermore, a C++ implementation is
available as open-source [3], [4].

The goal of this paper is to show how the geometric
semantics can be used as primitives for scene graphs with
built-in semantic consistency checks. In particular, this
paper develops a scene graph that keeps track of rigid
body poses and twists. We will show how the development
of the scene graph profits from the geometric semantics.
This paper advances the state of the art in robotics in
different ways: 1) it presents the first scene graph explicitly
supporting and relying on the semantics for geometric
relationships between rigid bodies; 2) to our knowledge it
is the first scene graph that keeps track of the twists, hereby
allowing native calculations with twists; 3) it allows for
online semantic queries on the scene graph, 4) it naturally
accommodates for constant poses, 5) it can use any par-

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 2398

ticular coordinate representation, and 6) it automatically
checks the constraints imposed by the particular coordinate
representations. Finally, this paper comes with pointers to
all software released under a dual BSD/LGPLv2.1 license.

Section II gives an overview of related work. Section III
provides a short summary of the geometric semantics
theory relevant for this paper. Section IV explains the
design, implementation, and the use of the scene graph.
Section V contains a robotics example illustrating the use
of the scene graph and the accompanying software. Finally,
Section VI discusses the contributions of this paper and
points to future work.

II. RELATED WORK

This paper does not aim at giving an overview of the
entire scene graph research (for this we refer to the history
overview of scene graphs [5]), but focuses on scene graphs
that model spatial representations in a robotics “world
model”.

The Robotics Library [6] provides a scene graph that is
built from a collection of models (specified in the VRML
format), where each model consists of several bodies with
shapes. The scene graph supports the use of kinematic
models (chains) and allows to calculate collisions between
the objects in the scene.

Another project worth to mentioning is the OpenScene-
Graph [7] as it is a widely used high performance 3D
graphics toolkit in fields such as visual simulation, games,
virtual reality, scientific visualization and modeling. As
for most scene graphs originating from the 3D graphics
community, this project rather targets to the 3D graphi-
cal representation rather than to the underlying transform
graph.

The most used transform graph in robotics is tf [8], or its
second generation descendant tf2 [9], [10]. tf and tf2 keep
track of multiple coordinate frames over time, maintain the
relationship between coordinate frames in a tree structure
buffered in time, and let the user transform the coordinates
of points, vectors, . . . between any two coordinate frames
at any desired point in time. The core tf2 package is a
ROS-independent implementation, with additional tools to
use tf2 within ROS. Recently, tf has been extended to
represent uncertainty in the pose while however keeping
the underlying tf tree structure [11].

III. GEOMETRIC SEMANTICS, BACKGROUND [1]

Geometric relationships between bodies are described
using a set of geometric primitives1: points (e), vectors,
orientation frames ([a] representing an orientation by means
of three orthonormal vectors indicating the frame’s X ,

1This background contains a short summary of the semantics for the
standardization of geometric relations between rigid bodies, for more
details we refer to [1].

[a]

e

C

{g}

[b]

f

D

{h} [r]

Fig. 1: The geometric primitives that are useful to define
geometric relationships of body C with respect to body D

are: an orientation frame [a], a point e, and frame {g} fixed
to body C, an orientation frame [b], a point f , and frame
{h}fixed to body D, and a coordinate frame [r], considered
instantaneously fixed to body D, in which the coordinates
are expressed. (Extract from [1].)

Semantics Geometric primitives

PoseCoord ((e, [a])|C, (f, [b])|D, [r]) point e
orientation frame [a]
body C
reference point f
reference orientation frame [b]
reference body D
coordinate frame [r]

PoseCoord ({g}|C, {h}|D, [r]) frame {g}
body C
frame {h}
reference body D
coordinate frame [r]

TwistCoord (e|C,D, [r]) point e
body C
reference body D
coordinate frame [r]

TABLE I: Minimal coordinate semantics for the pose and
twist of body C with point e, orientation frame [a], and
frame {g}with respect to D with point f , orientation frame
[b], and frame {h}with coordinates expressed in coordinate
frame [r]. (Extract from [1])

Y , and Z-axes), and frames ({g}). Figure 1 graphically
presents the geometric primitives body, point, vector, ori-
entation frame, and frame. We will consistently use the
following naming for the geometric primitives to represent
the geometric relationship of a body C with respect to
body D in this document: e|C, [a]|C, {g}|C, f|D, [b]|D,
and {h}|D.

Table I summarizes the minimal but complete set of
geometric primitives and the semantics for the geometric
relations pose and twist between rigid bodies, which are
the most relevant relationships for this paper.

2399

IV. SCENE GRAPH

Before discussing the proposed design of the scene
graph it is important to list the envisaged goals: 1) The
scene graph is a physically correct and consistent rep-
resentation of the poses and twists of the rigid bod-
ies in the scene, 2) The scene graph answers semantic
queries2 such as PoseCoord ((e, [a])|C, (f, [b])|D, [r]) and
TwistCoord (e|C,D, [r]) online, 3) Instead of enforcing a
particular coordinate representation or to silently convert
the user’s coordinate representation to the scene graph’s in-
ternal coordinate representation, the proposed scene graph
uses the coordinate representation chosen by the user and
uses this coordinate representation internally. 4) The scene
graph handles the constraints imposed by the particular co-
ordinate representation. 5) Finally, the scene graph provides
a solid but flexible basis for future extensions (for instance
including uncertainties).

The following general design and development de-
cisions were made: 1) A scene graph combining the
pose and twist relationships is made. Most scene graph
implementations use the pose as native type and derive
the twists from the available poses by means of finite
differences, which is not optimal for all use cases and
applications. Imagine the case where the velocity of a rigid
body is measured. If only poses are kept in the scene
graph, the twist of the body has to be integrated to a
pose, which is subsequently added to the scene graph.
If afterwards, a query is made for this twist, the pose
has to be differentiated again to obtain the twist that was
actually measured. These conversions are avoided when
adding the twist relationships in the scene graph. 2) The
geometric semantics [1] are used as a basis for the scene
graph since: a) They provide the minimal but complete
semantics of the poses and twists and hereby facilitate
interoperability and reduce application and, especially,
system integration development time; b) The scene graphs
can check the physical correctness and consistency of the
scene representation; c) They provide a semantic wrap-
per for geometric operations (composition, integration,. . .)
so abstraction can be made of the particular coordinate
representation operations (multiplication, summation,. . .),
which allows to postpone the decision on the particular
coordinate representation until the user has decided which
coordinate representation suits his needs best. d) After
this choice, the geometric semantics allows to model and
check the constraints imposed by that particular coordinate
representation. 3) Rather than building yet another graph
library next to all the existing ones [12]–[14], the proposed
scene graph can use existing graph libraries (in this case

2The query is called “semantic” because it looks for the particular
coordinate representation (i.e. the actual numbers) corresponding to a par-
ticular geometric relationship defined using the geometric semantics [1].

the Boost Graph Library [12]) since a) it already provides
an efficient implementation of graph operations and allows
to traverse the graph efficiently, and b) the general graph
structure will accommodate future extensions (e.g. when
including uncertainties, in which case the scene graph will
no longer be a directed forest (see Sections IV-B and IV-
C)).

The scientific challenge of the scene graph is to
construct a graph that complies with all the constraints
that exist between poses themselves, between twists
themselves, and between poses and twists. Some
examples: 1) PoseCoord ({a}|A, {c}|C, [c]) should be
equal to the composition of PoseCoord ({a}|A, {b}|B, [b])
and PoseCoord ({b}|B, {c}|C, [c]), hereby intro-
ducing a constraint between these three poses;
2) TwistCoord (a|A,C, [a]) should be equal to
the composition of TwistCoord (a|A,B, [a]) and
TwistCoord (a|B,C, [a]), hereby introducing a constraint
between these three twists; 3) TwistCoord (a2|A,C, [a2])
should be equal to the result of changing the point
and coordinate frame of TwistCoord (a|A,C, [a]) using
PoseCoord ({a}|A, {a2}|A, [a2]), hereby introducing a
constraint between these two twists and the pose. A
scientific contributions of this paper is the identification
of all the constraints the scene graph should satisfy such
that it is a minimal, physically correct, and consistent
representation of the scene (i.e. all the constraints that
exist between poses and twists).

The next sections will discuss the scene graph’s nodes,
representing the rigid bodies and the frames, and the edges,
representing the pose and twist relationships.

A. Rigid bodies and frames

The scene graph contains information about relative
poses and twists between rigid bodies. These poses and
twists define relationships between frames, which are fixed
to rigid bodies. Therefore the nodes in the scene graph
will represent frames and rigid bodies, while the edges
will represent the pose and twist relationships between the
frames and rigid bodies.

This leads to the following node definitions: 1) a rigid
body node represents a rigid body and contains all the
frames fixed to this rigid body; and 2) a frame node
contains a frame and is contained in the corresponding
rigid body node. The nodes in the scene graph have to
satisfy the following constraints: 1) Unique rigid bodies:
Since a rigid body refers to a unique physical entity, each
rigid body can only occur once, 2) Unique frames: Since
a frame can physically only be attached to a single rigid
body and it represents a unique physical entity, each frame
can only occur once. 3) Frame attached to rigid body:
Since a frame is always physically attached to a rigid body,
each frame node should be contained in the rigid body

2400

A

B C

D

E

E

F

G

{a} {a}

{b1}

{b2}

{c1} {c2}

{c3}

{d}

{e}

{e2}{f}

{f} {z}

Fig. 2: A scene graph has two types of nodes: rigid body
nodes and frame nodes. They have to satisfy the following
constraints: 1) Unique rigid bodies: Adding rigid body E

is not allowed since it already exists. 2) Unique frames:
Adding frames {a} and {f} is not allowed since they
already exist. 3) Frame attached to rigid body: Adding
{z} is not allowed since it is not mentioned to which rigid
body it is attached.

node representing the rigid body it is physically attaced to.
Figure 2 illustrates the node definitions and constraints for
the scene graph.

B. Pose relationships

Since the scene graph contains relative poses between
rigid bodies, which entails a directed relationship, the pose
relationships are directed edges called “pose edges”. We
impose that the poses are expressed in the reference
orientation frame, i.e. the coordinate frame equals the
reference orientation frame, and that the poses are between
two frames, i.e. the (reference) point and the (reference)
orientation frame correspond to the origin and the orien-
tation of the frame on the (reference) body, respectively.
This is inspired by the facts that: 1) poses are most often
expressed using full frames instead of a separate point and
orientation frame [1], and 2) composing poses is of multi-
plicative nature [1]. This leads to the following definition:
A pose edge in the scene graph contains the coordinates of
the relative pose of the frame in the head node with respect
to the frame in the tail node and expressed in the frame of
the tail node. This definition entails the following constraint
on the scene graph: 1) Pose edges: A pose edge is always
defined between two frame nodes. Figure 3 illustrates the
pose edge definition and the constraint imposed by this
definition.

The physical correctness and consistency of the pose
relationships are guaranteed by checking two constraints:
1) Constant pose: The pose between two frames both
fixed to the same rigid body is constant, therefore it is
not allowed to change this pose once it is set; 2) Pose

C

D

{g}

{h}

PoseCoord ({g}|C, {h}|D, [h])

Fig. 3: The pose edge contains the coordinates of the
relative pose of the frame in the head node with respect to
the frame in the tail node and expressed in the frame of
the tail node, therefore the pose edges should always be
defined between two frame nodes. The crossed pose edges
illustrate poses not satisfying this constraint.

is uniquely defined: The pose between two rigid bodies
should be uniquely defined leading to two constraints:
a) The pose of a frame should only defined with respect to
a single reference frame. Therefore each node can only
have one parent, making the pose graph a forest. b) There
should exist maximally one pose path between two pairs
of rigid bodies. Therefore, when adding a pose edge no
descendant of the head is allowed to have the same body
as any descendant of the root of the source. This makes the
pose relationships in the scene graph a constrained graph.
The above constraints make the resulting pose relationships
in the scene graph a constrained directed forest. Figure 4
graphically illustrates the constraints.

C. Twist relationships

Since the scene graph contains the information of rela-
tive twists between rigid bodies, which entails a directed
relationship, the twist relationships are directed edges,
called twist edges. For the twist edges we impose that the
twists are screw twists, i.e. the point of the twist is the
origin of the frame on the body and the coordinate frame of
the twist is the orientation frame of the frame on the body.
This is inspired by the facts that: 1) the minimal coordinate
semantics of a twist consists of a point e, often referred to
as the velocity reference point, and a coordinate frame [r]
(Section III), and 2) only a screw (or body-fixed) twist can
be integrated to a pose and the time derivative of a pose
relationship is a screw twist [1]. Therefore, using screw
twist allows us to easily connect the pose changes over
time with the twists. This leads to the following definition:
A twist edge in the scene graph contains the coordinates
of the relative screw twist of the body of the frame in the
head frame node with respect to the body in the tail rigid
body node, i.e. with velocity reference point corresponding
to the origin of the frame in the head frame node and
with coordinate frame the orientation frame of the frame in
the head frame node. This definition entails the following
constraint on the scene graph: 1) Twist edges: The twist

2401

A

B C

D

E

F

{a}

{b1}

{b2}

{c1} {c2}

{c3}

{d}

{e}

{f}

11

2a

2b

Fig. 4: The figure illustrates the constraints on a scene
graph needed to guarantee physical correctness and con-
sistency of the pose relationships: 1) Constant pose: The
pose of {b1} with respect to {b2} is constant since
the frames are both fixed to rigid body B; 2) Pose
is uniquely defined: a) Adding an edge from {f}|F to
{c2}|C (i.e. adding PoseCoord ({c2}|C, {f}|F, [f])) is not
allowed since the pose of {c2}|C is already defined with
respect to {d}|D (i.e. by PoseCoord ({c2}|C, {d}|D, [d]));
b) Adding an edge from {d}|D to {a}|A (i.e. adding
PoseCoord ({a}|A, {d}|D, [d])) is not allowed since this
would result in two possible ways to determine the pose of
C with respect to D, i.e by PoseCoord ({c1}|C, {d}|D, [d])
or by PoseCoord ({c2}|C, {d}|D, [d]).

edges are always defined between a rigid body node and
a frame node. Figure 5 illustrates the twist edge definition
and the constraint imposed by this definition.

The physical correctness and consistency of the pose
relationships are guaranteed by checking one constraint:
1) Twist is uniquely defined: The twist between two
rigid bodies should be uniquely defined leading to the
constraints: a) The twist of a frame on a rigid body
should only be defined with respect to a single reference
body. Therefore each frame node can only have one
parent through a twist relationship. This makes the twist
relationships in the scene graph a forest. b) There should
exist maximally one twist path between a rigid body
and a set of frames on a rigid body that are pose
connected. Therefore, when adding a twist edge no other
frame on the rigid body of the head that is connected
through a pose path with the head frame node is allowed
to have a twist path to the tail rigid body node. Otherwise
the twist information to be added is already contained in
the scene graph: the twist can be calculated using the
poses and twists already present. This makes the twist
relationships in the scene graph a constrained graph. The
above constraints make the resulting twist relationships in

C

D

{h}

{g}

TwistCoord (g|C,D, [g])

Fig. 5: The twist edges contains the coordinates of the
relative screw twist of the frame in the head frame node
with respect to the rigid body in the tail rigid body node,
therefore the twist edges are always defined between a
rigid body node and a frame node. The crossed twist edges
illustrate twists not satisfying this constraint.

A

B C

D

E

F

{a}

{b1}

{b2}

{c1} {c2}

{c3}

{d}

{e}

{f}

1a

1b

Fig. 6: The figure illustrates the constraints on a scene
graph needed to guarantee physical correctness and con-
sistency of the twist relationships: 1) Twist is uniquely
defined: a) Adding a twist edge from F to {c2}|C (i.e.
adding TwistCoord (c2|C,F, [c2])) is not allowed since the
twist of {c2}|C is already defined with respect to D (i.e.
by TwistCoord (c2|C,D, [c2])). b) Adding a twist edge
from A to {c3}|C (i.e. adding TwistCoord (c3|C,A, [c3]))
is not allowed since the twist of {c3}|C is already defined
with respect to A (i.e. by TwistCoord (c1|C,A, [c1]) and
PoseCoord ({c3}|C, {c1}|C, [c1])). Pose and twist relation-
ships are indicated with solid and dashed arrows, respec-
tively.

the scene graph a constrained directed forest. Figure 6
graphically illustrates the constraints.

D. Queries

The purpose of the proposed design for the scene graph
was to answer questions on the geometric relations between
rigid objects in the scene. This section details the supported
semantic queries and the operations needed to answer them.

Possible semantic queries are the relative
position PositionCoord (e|C, f|D, [r]), orienta-
tion OrientationCoord ([a]|C, [b]|D, [r]), pose

2402

PoseCoord ((e, [a])|C, (f, [b])|D, [r]), linear
velocity LinearVelocityCoord (e|C,D, [r]), angular
velocity AngularVelocityCoord (C,D, [r]), or twist
TwistCoord ({e}|C,D, [r]) between rigid objects in
the scene. As an example Algorithms 1-3 provide
(highly simplified) pseudocode for the semantic query
GetPose(PoseCoord ((e, [a])|C, (f, [b])|D, [r])). Three

Algorithm 1: GetPose(PoseCoord ((e, [a])|C, (f, [b])|D, [r]))
pseudocode

Input : semantics of pose to look for
Output: the coordinates of the found pose

1 result = GetBasicPose(PoseCoord ({a}|C, {b}|D, [b]));
// result = PoseCoord ({a}|C, {b}|D, [b])

2 if f != b then // ref point != ref orientation frame
3 pos = GetPosition(PositionCoord (f|D, b|D, [b]));
4 result.changeRefPoint(pos.inverse());

// result = PoseCoord ({a}|C, (f, [b])|D, [b])

5 if e != a then // point != orientation frame
6 pos = GetPosition(PositionCoord (e|C, a|C, [b]));
7 result.changePoint(pos);

// result = PoseCoord ((e, [a])|C, (f, [b])|D, [b])

8 if r != b then // coordinate frame != ref orient frame
9 or=GetOrientation(OrientationCoord ([b]|D, [r]|R, [r]));

10 result.changeCoordinateFrame(or);
// result = PoseCoord ((e, [a])|C, (f, [b])|D, [r])

11 return result;

Algorithm 2: GetBasicPose(PoseCoord ({a}|C, {b}|D, [b]))
pseudocode

Input : semantics of pose to look for
Output: the coordinates of the found pose

1 ancestor =FindYoungestCommonAncestor({a}, {b});
2 pathTarget =FindPath(ancestor,{a});
3 pathSource =FindPath(ancestor,{b});
4 poseTargetAncestor=ComposePosesPath(pathTarget);
5 poseSourceAncestor=ComposePosesPath(pathSource);
6 result =compose(poseSourceAncestor.inverse(),

poseTargetAncestor);
7 return result;

types of operations occur: 1) graph operations, which boil
down to operations on the constrained forest using the
boost graph library, 2) semantic geometric operations,
provided by the geometric semantics, which provide a
semantic wrapper for the actual geometric calculations,
and 3) composite operations, involving both graph
operations and semantic geometric operations. These
operations raise errors in case the operations are not

successful. In particular the semantic geometric operations
raises errors if the constraints imposed by the particular
coordinate representation are not met. For example: if the
homogeneous transformation matrix is chosen as a pose
coordinate representation, it imposes semantic constraints
(the origin and the orientation of the same frame on the
body and reference body are used ((reference) point =
origin of (reference) orientation frame), and the relative
pose is expressed in the orientation frame fixed to the
reference body (reference orientation frame = coordinate
frame). In this example therefore, any query not satisfying
these constraints will be unsuccessful. For example:
semantic geometric operations such as changeRefPoint
(Algorithm 1, line 4), changePoint (Algorithm 1, line 7),
and changeCoordinateFrame (Algorithm 1, line 10) will
fail.

Algorithm 3: ComposePosesPath(path) pseudocode
Input : path along which to compose poses
Output: pose of path head node wrt path tail node

1 for edge = path.begin()to path.end() do
2 result = compose(result,edge.pose);

3 return result;

E. Implementation

The scene graphs C++ implementation [15] is publicly
available under a dual BSD/LGPLv2.1 license. It is built on
top of the geometric semantics library [4] and the Boost
Graphical Library [12]. The core software is templated,
such that the user can still select the most suited coordinate
representation for the application at hand, an implemen-
tation using the KDL [16] coordinate representations is
already available.

We want to emphasize how the development and imple-
mentation process was facilitated and accelerated thanks to
the use of the geometric semantics. Since the geometric
semantics provide the minimal but complete semantic
information, they were very helpful when designing the
different functions by explicitly writing down what every
function is semantically changing. Furthermore, during
the implementation process, the geometric semantics were
continuously providing semantic checking of all the imple-
mented functions. This way errors could be detected early
in the development process.

V. EXAMPLE

The purpose of the scene graph is to answer queries
on the relative position, orientation, pose, linear velocity,
angular velocity, or twist of different objects in the scene.
This section explains how the design and the provided
open-source implementation help to answer the queries by

2403

{b}

{c}

{o2} {e}

{o1}

{f1}

Fig. 7: Robot performing a spray painting operation

means of an application example. The proposed example
highlights a typical work flow when using scene graphs in
robotics.

The example involves a robot that spray paints a cylin-
drical object, as illustrated in Figure 7. The cylindrical
object is moving in the environment, while being observed
by a point cloud camera. The robot holds the spray gun.
To complete the painting task, the robot program has to
determine the joint angles and joint angle velocities of the
robot holding the spray gun such that the desired spray-
painting behavior is obtained. In order to control the spray-
painting behavior the relative pose and twist between the
spray gun and cylindrical object have to be obtained.

When solving geometry problems one first has to iden-
tify the rigid bodies and the frames attached to them. In
the example we have: 1) {b} attached to the base B of the
robot, 2) {e} attached to the end-effector E of the robot,
3) {o2} attached to the spray gun O, 4) {o1} attached
to the cylindrical object O, 5) {f1} coinciding with the
desired spray-painting position on the cylindrical object O,
and 6) {c} attached to the point cloud camera C.

In the example the following poses are available:
1) PoseCoord ({c}|C, {b}|B, [b]) determined by the mount-
ing of the point cloud data with respect to the robot
base, 2) PoseCoord ({o1}|O, {c}|C, [c]) determined by an
object detection algorithm using the point cloud data,
3) PoseCoord ({f1}|O, {o1}|O, [o1]) determined by the
desired spray-painting position on the cylindrical ob-
ject, 4) PoseCoord ({o2}|O, {e}|E, [e]) determined by the
mounting of the spray gun on the robot end-effector, and
5) PoseCoord ({e}|E, {b}|B, [b]) determined by the current
robot joint position. Furthermore, the following twists are
available: 1) TwistCoord (c|C,B, [b]) = 0 determined by
the fixed mounting of the point cloud data with respect
to the robot base, 2) TwistCoord (o1|O,C, [c]) determined
by an object detection algorithm using the point cloud
data, 3) TwistCoord (o2|O,E, [o2]) = 0 due to the rigidly
assumed mounting of the spray gun on the robot end-

B

C

E O

O

{b}

{c} {o1} {f1}

{o2}{e}

Fig. 8: Scene graph for example of robot performing
spray painting operation. Pose and twist relationships are
indicated with solid and dashed arrows, respectively.

effector, and 4) TwistCoord (e|E,B, [e]) determined by the
current robot joint velocities.

Listing 1 shows how the scene graph is created and
how poses and twists are added. Remark that the velocity
of the object as measured by the point cloud camera
TwistCoord (o1|O,C, [c]) is not a screw twist (since its
orientation frame [c] does not belong to the frame {o1}
attached to the body O (with origin the velocity reference
point o1)). Therefore, when adding the twist to the scene
graph, the pose relationships will be used to automatically
transform the twist into a screw twist. Figure 8 shows the
resulting scene graph for the example. Finally, Listing 2
shows how the scene graph can be queried for poses and
twists.

Listing 1: Creating the scene graph - C++

// Create scene graph
SceneGraph<Vector,Rotation,Vector,Vector>* ←↩

scene_graph = new SceneGraph<Vector,←↩
Rotation,Vector,Vector>();

// Adding a pose
Rotation coordinatesRot=EulerZYX(M_PI/4,0,0);
Orientation<Rotation> orient(←↩

OrientationCoordinatesSemantics("f1","O1","←↩
o1","O1","o1"),coordinatesRot);

Vector coordinatesPos(0.02,0,0.2);
Position<Vector> pos("f1","O1","o1","O1","o1",←↩

coordinatesPos);
Pose<Vector,Rotation> pose(pos,orient);
scene_graph->AddPose(pose);
// Adding a twist
Vector coordLinVel(0.2,0.1,0.1);
LinearVelocity<Vector> linVel("o1","O1","C","c"←↩

,coordLinVel);
Vector coordRotVel(0.05,0.1,0.2);
AngularVelocity<Vector> rotVel("O1","C","c",←↩

coordRotVel);
Twist<Vector,Vector> twist(linVel,rotVel);
scene_graph->AddTwist(twist);

Listing 2: Queries on the scene graph - C++

//Querying for pose
PoseCoordinatesSemantics poseQuery = ←↩

PoseCoordinatesSemantics("f1","f1","O1","o2←↩
","o2","O2","o2");

Pose<Vector,Rotation> poseFound;

2404

scene_graph->GetPose(poseQuery,poseFound);
//Querying for twist
TwistCoordinatesSemantics twistQuery = ←↩

TwistCoordinatesSemantics("f1","O1","O2","←↩
o2");

Twist<Vector,Vector> twistFound;
scene_graph->GetTwist(twistQuery,twistFound)

VI. DISCUSSION AND CONCLUSIONS

This paper presents a scene graph explicitly supporting
and relying on the geometric semantics. As the geometric
semantics software implements checks of all queries, its
use will eliminate a source of often hard to track down er-
rors. We believe that by relying on the geometric semantics
library for building scene graphs, the (robotics) researcher
is given a tool that makes working with geometric relation-
ships easier and much less prone to errors.

Compared to tf2, 1) The presented scene graph allows for
any query on the relative position, orientation, pose, linear
velocity, angular velocity, or twist between rigid objects
in the scene. 2) By relying on the geometric semantics
the scene graph naturally allows to treat coordinate frames
that are fixed with respect to each other, i.e. attached to the
same body. 3) The templated design and use of geometric
semantics allow the user the freedom to choose whatever
coordinate representation he thinks is most suited, without
the need for coordinate conversions leading to degraded
performance. 4) Furthermore, the geometric semantics
check if constraints imposed by the particular coordinate
representation are met during construction and query re-
solving. If not, meaningful errors are given. 5) Finally, the
proposed graph relies on the boost graph library, hereby
reusing existing support for graph operations, in stead of
reimplementing it. However, as opposed to tf2, there is
no support for distributed deployment, nor is there (yet)
support for taking into account time.

The constraints of the proposed minimal scene graph
can cause pose and twist relationships to be rejected
(see Section IV). Therefore, the information contained
in the rejected relationships is lost. Future work will
explore automatic strategies that can “transform” the re-
jected pose and twist information such that it is ac-
cepted by the minimal scene graph. As an example con-
sider Figure 4 where PoseCoord ({c2}|C, {f}|F, [f]) is
rejected, by inverting this pose however the resulting pose
PoseCoord ({f}|F, {c2}|C, [c2]) can be added to the mini-
mal scene graph. By doing this automatic transformation,
the information in PoseCoord ({c2}|C, {f}|F, [f]) can still
be added to the scene graph.

Furthermore, future work will introduce time support,
uncertainty in the scene graphs, and kinematic chains. The
time support will use 1) the twist relationships to obtain

pose relationships for the next time step by integration
and 2) the pose relationships of subsequent time steps to
get twist by differentiation. Uncertainties can help to take
into account e.g. sensor limitations and measurement noise.
Support for kinematic chains allows to include complete
robot systems in the graphs.

ACKNOWLEDGEMENTS

All authors gratefully acknowledge the financial support by KU
Leuven’s Concerted Research Action GOA/2010/011 Global real-
time optimal control of autonomous robots and mechatronic sys-
tems, KU Leuven-BOF PFV/10/002 Center-of-Excellence Opti-
mization in Engineering (OPTEC), European FP7 projects Rosetta
(230902), BRICS (31940), and RoboHow (288533). Tinne De
Laet is a Postdoctoral Fellow of the Fund for Scientific Research–
Flanders (F.W.O.) in Belgium.

REFERENCES

[1] T. De Laet, S. Bellens, R. Smits, E. Aertbeliën, H. Bruyninckx, and
J. De Schutter, “Geometric relations between rigid bodies: Semantics
for standardization,” IEEE Robotics and Automation Magazine,
vol. 20, no. 1, pp. 84–93, 2013.

[2] T. De Laet, S. Bellens, and H. Bruyninckx, “Semantics underlying
geometric relations between rigid bodies in robotics,” https://retf.
info/rrfcs/0005, 2012, last visited September 2012.

[3] T. De Laet, S. Bellens, H. Bruyninckx, and J. De Schutter, “Geo-
metric relations between rigid bodies: from semantics to software,”
IEEE Robotics and Automation Magazine, vol. 20, no. 2, pp. 91–
102, 2013.

[4] T. De Laet and S. Bellens, “Geometric semantics software,”
http://www.orocos.org/wiki/geometric-relations-semantics-wiki,
2012, last visited September 2012.

[5] A. Bar-Zeev, “Scenegraphs: Past, present, and future,” http://www.
realityprime.com/articles/scenegraphs-past-present-and-future,
september 2012.

[6] “Robotics library,” http://sourceforge.net/apps/mediawiki/roblib.
[7] http://www.openscenegraph.org/projects/osg/wiki/Support/

Contributors, “OpenSceneGraph,” http://www.openscenegraph.org,
last visited March 2013.

[8] T. Foote, E. Marder-Eppstein, and W. Meeussen, “tf,” http://ros.org/
wiki/tf, 2011, last visited 2012.

[9] T. Foote, W. Meeussen, and E. Marder-Eppstein, “tf2,” http://ros.
org/wiki/tf2, 2011, last visited 2012.

[10] T. Foote, “tf: the transform library,” in Proceedings of the IEEE
International Conference on Technologies for Practical Robot Ap-
plications, Woburn, Massachusetts, USA, 2013.

[11] T. Rühr, “uncertain tf,” http://ros.org/wiki/uncertain tf, 2013, last
visited 2013.

[12] Boost, “The boost graph library,” http://www.boost.org/doc/libs/1
51 0/libs/graph.

[13] lemon, “Library for Efficient Modeling and Optimization in Net-
works,” https://lemon.cs.elte.hu/trac/lemon, 2012, last visited 2012.

[14] LEDA, “LEDA,” http://www.algorithmic-solutions.com/leda, 2012,
last visited 2012.

[15] T. De Laet, “Geometric scene graph software,” http://git.mech.
kuleuven.be/?p=robotics/pose graph.git, 2012, last visited March
2013.

[16] R. Smits, H. Bruyninckx, and E. Aertbeliën, “KDL: Kinematics and
Dynamics Library,” http://www.orocos.org/kdl, 2001, last visited
August 2012.

2405

