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Abstract— Designing intrinsically elastic robots recently at-
tracted significant attention. Inspired by the elasticity in bio-
logical muscles, these designs aim at enabling robots to imitate
human or animal motions during various tasks such as hopping,
running, etc. In particular, reaching peak velocities, using
the stored energy in the according elasticities, is of great
interest. Applying optimal control theory, we investigate the
problem of maximizing link velocity for visco-elastic joints. The
main contribution of the paper is thus isolating the effects of
mechanical joint damping on the optimal control policy.

I. INTRODUCTION

Actuators with passive compliance are becoming ex-
tremely popular [15]. Two major properties of these actuators
are their ability to absorb shocks and to store potential
energy in their elastic elements. Exploiting these properties
in order to realize highly dynamic motions that could not
be achieved with rigid robots is our main goal. In particular,
the energy storage ability of visco-elastic joints may result in
a significant performance increase. A recent implementation
of such a robot is the DLR Hand-Arm System [4], which
is shown to be capable of outperforming classical rigid
robots in throwing motions [8]. In this paper, we focus on
maximizing the performance of a visco-elastic joint in terms
of its maximally achievable link velocity. The solution to this
problem was already discussed in [9] for a 1-DoF1 undamped
elastic joint. The same system was then investigated further
in the presence of a deflection constraint by solving a mini-
mum time problem to reach the maximum velocity [5]. The
results were then extended to general undamped VSA joints
[7], [8], [10] with experiments verifying that the obtained
optimal controls are applicable to real systems. In this line
of research, the present paper discusses how mechanical joint
damping influences the optimal strategy to maximize the link
velocity of a 1-DoF visco-elastic joint and investigates the
maximum performance limit imposed by the according joint
dynamics.

The paper is organized as follows. Section II gives a
concise introduction to Optimal Control (OC) theory with
particular focus on the Minimum Principle. In Section III,
OC is applied to a 1-DoF visco-elastic joint robot for
different motor models. Optimal control strategies are found,
which are interpreted in terms of the system’s impulse
response functions and used to find maximum performance
of visco-elastic joints, i.e. the joint speed gain. The obtained
results are validated with numerical simulations in Section
IV.

II. OPTIMAL CONTROL AND THE MINIMUM PRINCIPLE

The objective of this paper is to derive and discuss
optimal control strategies, which exploit intrinsic elasticity
for reaching peak link side velocities. The main mathematical
tool used for the derivation of these strategies is Optimal
Control (OC) theory and the Minimum Principle [11], [13].
In this section we summarize some results of the Minimum
Principle, which are used in the paper.
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Fig. 1: 1-DoF Visco-Elastic Joint

For a dynamical system described by first order differential
equations ẋ = f(x,u, t), the Minimum Principle provides
necessary conditions to be satisfied by the optimal control
u∗ ∈ U ⊂ R

m, which minimizes the following scalar-valued
cost functional J(u):

J(u) = ϑ(x(tf ), tf ) +

∫ tf

t0

L(x,u, t) dt. (1)

In (1), L is called the running cost, ϑ the terminal cost, tf the
final time, and x ∈ R

n denotes the system states [11]. The
function space, to which the control trajectories u belong and
over which the minimization takes place, will be the space of
piecewise continuous functions PC0. The differential equa-
tions f(x,u, t) are assumed to have a unique solution for
t ∈ [t0, tf ] and the set U ⊂ R

m, which the controls u belong
to, will depend only on time or remain constant otherwise.
Under these assumptions, the Minimum Principle states that
the optimal control u∗ minimizing the cost functional (1)
also minimizes the Hamiltonian H on the optimal trajectory
at every time instant t ∈ [t0, tf ]:

(∀u ∈ U)[H(x∗,λ∗,u∗, t) ≤ H(x∗,λ∗,u, t)], (2)

where the Hamiltonian H is defined as:

H := λTf + L. (3)

The dynamics of the optimal costates λ∗ in (2) are deter-
mined in terms of H:

λ̇
∗
= −∂H

∂x

∣

∣

∣

∗
, (4)

and if no terminal constraints are present, the following
transversality condition holds at final time tf :

λ∗(tf ) =
δϑ

δx

∣

∣

∣

tf ,x
∗

f

(5)

The condition on the Hamiltonian along the optimal tra-
jectory (2) will be of great importance in determining the
optimal strategies for the discussed joints.

III. VISCO-ELASTIC JOINTS

The 1-DoF robot joint with constant joint stiffness KJ and
damping DJ , which we discuss in this paper is depicted in
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Excitation u1 u1 = θ̇ u1 = θ̈ u1 = τm/B

States x

(

φ
q̇

)

(

x1
x2
x3

)

=

(

φ
q̇
θ̇

) (

x1
x2
x3

)

=

(

φ
q̇

θ̇ + αq̇

)

Differential Equations f(x, u1)

(

u1 − x2

ω2x1 + 2Dω(u1 − x2)

)

(

x3 − x2

ω2x1 + 2Dω(x3 − x2)
u1

) (

x3 − (α+ 1)x2

ω2x1 + 2Dω(x3 − (α+ 1)x2)
u1

)

Costates λ̇ = − ∂H
∂x

= − ∂(λT f(x,u1))
∂x

(

−ω2λ2
λ1 + 2Dωλ2

)

(

−ω2λ2
λ1 + 2Dωλ2
−λ1 − 2Dωλ2

) (

−ω2λ2
(α+ 1)(λ1 + 2Dωλ2)

−λ1 − 2Dωλ2

)

TABLE I: OC Problems for the Unconstrained Elastic Joint with Constant Stiffness
ω2 = KJ

M
, D = DJ

2
√
KJM

, α = M
B
, J(u1) = −x2(tf )

Fig. 1. The linear differential equations describing the link
and motor dynamics are of second order:

Mq̈ +DJ q̇ +KJq = KJθ +DJ θ̇ (6)

Bθ̈ +DJ θ̇ +KJθ = KJq +DJ q̇ + τm, (7)

where q denotes the link position, θ the motor position, M
the link inertia, B the motor inertia, and τm the motor torque.
We want to compute control strategies that maximize the
final link velocity q̇(tf ) at final time tf . The corresponding
cost functional J to be minimized then takes the form

J = ϑ(tf ) = −q̇(tf ). (8)

Note that this cost functional does not consist of any running
costs, which are usually included to ensure that constraints
on the real system are not violated. However, since we want
to obtain the optimal strategy that fully exploits the system
dynamics, we first turn our attention to the unconstrained
system and investigate (8) consisting merely of a terminal
cost. We also provide a fixed final time tf , as the velocity
of this unconstrained system is not always bounded and the
corresponding OC problems would otherwise not be well de-
fined. In addition, we will mostly ignore the initial condition
x(0), since the analytically obtained optimal strategies for
our OC problems will not depend on x(0), as shown below.

Three different possibilities to excite the visco-elastic joint
are investigated next, all of which assume a different motor
model. These three different cases, which are summarized in
Table I, will help interpret the system’s optimal behaviour.

A. Velocity Source (u1 = θ̇)

In this subsection, we assume that the motor dynamics
of intrinsically elastic arms to be much faster than the
link side dynamics. Consequently, we consider the motor

to be a perfect velocity source2: u1 = θ̇. Furthermore, we
constrain the velocity of the motor u1 to be a piecewise
continuous function and contained in the time-dependent
set U(t) described by two piecewise continuous functions
u1min(t) and u1max(t):

u1(t) ∈ U(t) = {ū ∈ R| u1min(t) ≤ ū ≤ u1max(t)}, (9)

such that constraints on the achievable motor velocities are
being accounted for.

In order to apply the Minimum Principle, the dynamics
of the model must be described in terms of first order
differential equations. This can be done by defining the state

vector to be x = (φ q̇)
T

and applying (6) with u1 = θ̇. The

2The validity of the assumption may be shown by bringing the dynamics
into singular perturbation form as done in [8].

first column of Table I summarizes the resulting equations
f . According to (3) the Hamiltonian H becomes with L = 0

H = u1(λ1+2Dωλ2)−λ1x2+ω2λ2x1− 2Dωλ2x2. (10)

Applying the Minimum Principle (2) to (10), the optimal
control u∗

1 is known to depend on the sign of σ∗(t) = λ∗
1(t)+

2Dωλ∗
2(t) = λ∗

1 − 2D
ω
λ̇∗
1:

u∗
1(t) =







u1max(t) , σ∗(t) < 0

u1min(t) , σ∗(t) > 0

singular , σ∗(t) = 0

, (11)

where σ(t) is called the switching function. In order to
compute the optimal controls, the sign of this function along
time t needs to be determined.

By taking the partial derivative of (10) with respect to x
(see (4)), differential equations for the costates are obtained.
The resulting equations are provided in Tab. I. Since these
equations are autonomous and linear, boundary conditions
are sufficient to uniquely determine the optimal costates λ∗.
As no end constraints are present, (5) yields the missing
boundary condition for the costates at final time tf :

λ∗(tf ) =
δϑ

δx
=

(

0
−1

)

(12)

It is now possible to see that the costates are described by
exactly the same mechanical system as the system states, see
Fig. 1. Indeed, introducing the time transformation τ = tf−t
with λ̃(τ) := λ(tf − t), and rewriting the differential equa-
tions for the costates by taking the second time-derivative of
the first costate in Tab. I, we arrive at the following well-
known initial value problem [12]:

λ̃
′

=

(

ω2λ̃2

−λ̃1 − 2Dωλ̃2

)

⇒ λ̃
′′

1 +2Dωλ̃
′

1+ω2λ̃1 = 0, (13)

where ω2 := KJ

M
, D := DJ

2Mω
and dλ̃

dτ = λ̃
′

= −λ̇. Thus, the

dynamics of λ̃1 in (13) describe an unforced linear damped
mass-spring system, with the same eigenfrequency ω and
damping ratio D as the robot joint (6). The initial conditions
of this new system can be obtained from (12) and (13) as
follows:

(

λ̃∗
1(0)

λ̃
′∗
1 (0)

)

=

(

λ∗
1(tf )

ω2λ∗
2(tf )

)

=

(

0
−ω2

)

(14)

In order to obtain the optimal control u∗
1, (13)-(14) must

be solved for λ̃∗
1 such that the switching condition σ∗ =

λ∗
1 − 2D

ω
λ̇∗
1 can obtained. Equation (13) is a linear second

order differential equation with constant positive coefficients.
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Damping Ratio, D u∗

1(t) = θ̇∗(t)

D = 0

{

u1max(t) sin(ω(tf − t)) > 0
u1min(t) sin(ω(tf − t)) < 0

0 < D < 1











u1max(t) cos(ωd(tf − t) + arctan 2D2
−1

2D
√

1−D2
) > 0

u1min(t) cos(ωd(tf − t) + arctan 2D2
−1

2D
√

1−D2
) < 0

D = 1

{

u1max(t) t > tf − 2
ω

u1min(t) t < tf − 2
ω

D > 1



























u1max(t) t > tf −
ln

2D2
−1+2D

√
D2

−1

2D2
−1−2D

√
D2

−1

2ω
√

D2
−1

u1min(t) t < tf −
ln

2D2
−1+2D

√
D2

−1

2D2
−1−2D

√
D2

−1

2ω
√

D2
−1

TABLE II: Optimal Control Strategies for u1 = θ̇

Thus, its solution depends not only on the initial conditions in
(14), but also on its damping ratio D [12]. Indeed, depending
on the magnitude of D, four different cases need to be

considered. The computations for λ̃∗
1 and σ∗ are omitted for

brevity. The corresponding optimal control strategies u∗
1 are

summarized in Tab. II. Let us briefly discuss these results.
a) D = 0 (Undamped System): If the motor is attached

to the link via a spring and no damping elements exist (DJ =
0), (13) merely describes a mass oscillating with the joint

eigenfrequency ω =
√

KJ

M
. Using the initial values in (14),

we can derive

σ∗(t) = λ∗
1(t) = −ω sin(ω(tf − t)). (15)

Equation (15) shows that the optimal costate λ∗
1 never

remains at zero for finite time. Furthermore, the switching

condition (11) depends only on λ̃∗
1. Consequently, the opti-

mal control u∗
1 will always take its minimum or maximum

values depending on the sign of λ∗
1 as described in (11). Such

a structure is called bang-bang control in literature [11], [13].
Note that u∗

1 is periodic with ω, as found already in [10].
b) 0 < D < 1 (Underdamped System): For D ∈ (0, 1),

the switching function σ∗ can be written as

⇒ σ∗(t) = − ω√
1−D2

e−Dω(tf−t) · cos
(

ωd(tf − t)

+ arctan
2D2 − 1

2D
√
1−D2

)

, (16)

where ωd = ω
√
1−D2 is the system’s damped frequency.

According to (16), σ∗ oscillates with the damped eigen-
frequency and its amplitude increases exponentially. Con-
sequently, even if the robot link is connected to the motor
with a damping element (0 < D < 1), the optimal control
u∗
1 maximizing the end velocity q̇(tf ) will be of bang-bang

type. In particular, it oscillates with ωd.
c) D = 1 (Critically Damped System): If D = 1, the

switching function takes the form

⇒ σ∗(t) = ω2e−ω(tf−t)

(

tf − t− 2

ω

)

. (17)

According to (17), the switching function will switch its sign
only once at t∗ = tf − 2

ω
and remain negative for t > t∗.

Consequently, if tf is greater than 2
ω

, the motor must start

moving at its minimum velocity θ̇min and then switch to its

maximum velocity θ̇max at t∗ = tf − 2
ω

. The maximum link
velocity is then obtained by letting the motor move with its

maximum velocity θ̇max(t) till final time tf is reached.
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σ∗ > 0 ⇒ u∗
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σ∗ < 0 ⇒ u∗

1 = θ̇max

Fig. 2: Switching Function σ∗ for u∗
1 = θ̇

ω = 10 rad
s
, tf = 1s

d) D > 1 (Overdamped System): If D > 1, the
switching function takes the form:

⇒ σ∗(t) = 2Dωe−Dω(tf−t) ·
(

2D2 − 1

2D
√
D2 − 1

sinh(
√

(D2 − 1)ω(tf − t))

− cosh(
√

(D2 − 1)ω(tf − t))

)

· (18)

As for the previous case, it is possible to show that the
switching function σ∗ in (18) will change its sign only once

at t∗(D) = tf −
ln

2D2
−1+2D

√
D2

−1

2D2
−1−2D

√
D2

−1

2ω
√
D2−1

and remains negative

for t > t∗. Consequently, if tf > t∗, the optimal control

strategy will be to first move at minimum velocity θ̇min and

then switch to θ̇max at t = t∗. The motor velocity should

then attain its maximum value θ̇max(t) for all t ∈ (t∗, tf ].
To sum up, the value of the damping ratio D plays a

significant role for the optimal strategy to be followed. If
the system is undamped or underdamped, the optimal motor
velocity will switch periodically between its minimum and
maximum values, where the period depends on the eigen-
frequency ω and the damped frequency ωd, respectively. On
the other hand if D ≥ 1, there is at most one switching from
u1min to u1max. Fig. 2 illustrates the switching function σ∗

for ω = 10 rad
s

, tf = 1s and different damping ratios.
It is important to notice that the obtained optimal strategy

is not easy to follow in a real system, when it involves
switchings of the motor velocity. Indeed, switching the veloc-
ity instantaneously is only possible, if the motor experiences
a mechanical impulse, which is in general not possible.
Nevertheless, if the motor torque is high enough, it is still
possible to make use of this optimal strategy by trying to
minimize the duration needed to change the velocity from
u1max to u1min and vice versa. This problem is addressed in
[6], where it is shown that a bang-bang velocity control can
be followed with little tracking error by choosing appropriate
motor parameters, which then leads only to small deviations
compared to the optimal solution.

B. Acceleration Source (u1 = θ̈)

Modeling the motor as a velocity source led to an optimal
control strategy with a piecewise continuous motor velocity
profile. Consequently, at points where the velocity is dis-
continuous, the magnitude of the torque needed to follow
this profile tends to infinitity. In order to obtain a continuous
velocity profile, we now assume, that the motor acceleration
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is directly controlled: u1 = θ̈. Furthermore, we constrain u1

to belong to the set U(t) defined in (9), where u1min and
u1max now denote the minimum and maximum achievable
slope of the velocity profile.

To apply the Minimum Principle we again need first order
differential equations, which can be obtained by extending
the state vector of the previous model by a third state to

x =
(

φ q̇ θ̇
)T

and noting that φ̇ = x3−x2. The resulting
state-space representation is already given in Tab. I. Using
this representation, the Hamiltonian H becomes

H = λ1(x3−x2)+λ2(ω
2x1+2Dω(x3−x2))+λ3u1. (19)

According to the Minimum Principle, the optimal accelera-

tion θ̈∗ will thus depend on the sign of λ∗
3 = σ∗ as follows:

u∗
1(t) =







u1max(t) , λ∗
3 = σ∗ < 0

u1min(t) , λ∗
3 = σ∗ > 0

singular , λ∗
3 = σ∗ = 0

(20)

Thus, in order to compute u∗
1, the third optimal costate needs

to be found. The analytical expression for the costates can
again be found by first obtaining their dynamics using (4)
(see Tab. I) and then using the transversality condition (5),
which yields the boundary conditions for λ∗ at tf . In order
to transform this problem into an initial value problem, we

use again the time transformation τ = tf − t with λ̃(τ) :=
λ(tf − t) and obtain the following differential equations and
initial values for the costates

λ̃
′

=





ω2λ̃2

−λ̃1 − 2Dωλ̃2

λ̃1 + 2Dωλ̃2



 , λ̃
∗
(0) =

(

0
−1
0

)

. (21)

Note that the differential equations and the initial values of

the first two costates λ̃∗
1 and λ̃∗

2 are exactly the same as the
ones computed in the previous Section III-A (compare (21)
with (12) and (13)). Consequently, these two costates remain
the same. However, the optimal acceleration u∗

1 now depends

on λ̃∗
3. Nevertheless, a careful look at (21) shows that λ̃∗

3 is

related to λ̃∗
1 as follows:

λ̃
′

3 = −λ̃
′

2

⇔
∫ τ

0

λ̃
′

3 dτ = −
∫ τ

0

λ̃
′

2 dτ

(21)⇒ λ̃∗
3(τ) = −1− λ̃∗

2(τ) = −1− λ̃
′∗
1

ω2
, (22)

where the last equality is found using the first row of

(21). Note that the solution for λ̃∗
1 in (22) is already found

for various damping ratios D, since λ̃∗
1 did not change.

Differentiating λ̃∗
1 with respect to τ and using (22) yields

then the analytical expression for λ̃∗
3, on which the optimal

control u∗
1 depends. Table III summarizes these expressions

for the new switching function σ∗(t) = λ∗
3(t) = λ̃∗

3(tf − t)
depending on D. Fig. 3 exemplifies its time evolution for
ω = 10 rad

s
and different damping ratios.

As already mentioned, the analytical expressions for

λ∗
3(t) = λ̃∗

3(tf − t) in Tab. III depend on the magnitude of
the damping ratios. For the undamped system, λ∗

3 describes
a harmonic oscillation around the equilibrium point −1 with
amplitude 1. In addition, for the damped robot joint (D > 0)
λ∗
3 is negative for all t ∈ [0, tf ) regardless the magnitude of

D. Consequently, λ∗
3 is never positive and never remains zero
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Fig. 3: Switching Function σ∗ for u1 = θ̈
ω = 10 rad

s

for a finite time interval. According to (20), this means that
the optimal motor acceleration of the robot link is always

θ̈∗(t) = θ̈max(t). (23)

According to the optimal strategy in (23), if θ̈max and tf are
large enough, the optimal strategy may lead to a violation of

a possible constraint on the maximum motor velocity θ̇max

along this optimal trajectory. In order to account for this
constraint, an OC Problem with state constraints must be
solved (|x3| ≤ θ̇max). Such an OC Problem is not trivial to
solve analytically, since the costates may be discontinuous
and additional jump conditions need to be examined [13].
Numerical Simulations in Sec. IV will discuss the solution
for this OC Problem in more detail.

C. Torque Source (u1 = τm/B)

So far, we have not considered the dynamics of the motor
and the resulting motor torques explicitly. In order to unveil
the effect of the motor dynamics, we now consider a torque
controlled motor such that in addition to (6), we also need
to consider (7). Adding both equations and dividing the sum
by B yields

θ̈ + αq̈ =
τm
B

= u1, (24)

where α := M
B

. The control in (24) belongs to U(t) in (9),
where u1min(t) and u1max(t) now indicate the minimum
and maximum achievable torques in t ∈ [0, tf ]. Defining the

state vector as x =
(

φ q̇ θ̇ + αq̇
)T

, the dynamics of the
system can be described by first-order differential equations
using (6) and (24), see Table I. The Hamiltonian for this OC
Problem becomes

H = λTf

= λ1(x3 − (α+ 1)x2)

+ λ2(ω
2x1 + 2Dω(x3 − (α+ 1)x2) + λ3u1.(25)

According to (25), u∗
1 depends on the sign of λ∗

3 as in
(20). Consequently, we again need to find the sign of
σ∗ = λ∗

3 along the optimal trajectory. The dynamics of the
corresponding costates are provided in Tab. I. The boundary
condition for λ∗(tf ) remains the same, since we still want
to minimize the terminal cost ϑ = −q̇(tf ). Using again the
previous time transformation, we have the following initial
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Damping Ratio D λ∗

3(t)
D = 0 −1 + cos(ω(tf − t))

0 < D < 1 −1 + e
−Dω(tf−t)
√

1−D2
cos(ωd(tf − t) + arctan( D√

1−D2
))

D = 1 −1 + e−ω(tf−t)(1− ω(tf − t))

D > 1 −1 + e−Dω(tf−t)

(

cosh
(

√

(D2 − 1)ω(tf − t)
)

− D√
(D2

−1)
sinh

(

√

(D2 − 1)ω(tf − t)
)

)

TABLE III: The Switching Function σ∗ = λ∗
3 for u1 = θ̈

value problem:

λ̃
′

=





ω2λ̃2

−(α+ 1)(λ̃1 + 2Dωλ̃2)

λ̃1 + 2Dωλ̃2



 , λ̃
∗
(0) =

(

0
−1
0

)

(26)

According to (26), λ̃3 is related to λ̃1 as follows.

λ̃
′

3 = − 1

α+ 1
λ̃

′

2

(26)⇒ λ̃∗
3(τ) = − 1

α+ 1

(

1 +
λ̃

′∗
1

ω2

)

(27)

In order to compute λ̃∗
3, we investigate the already derived

solution of λ̃1. Indeed, differentiating the first row of (26)

with respect to τ , it can be seen that λ̃1 still describes a
damped mass-spring system with the initial conditions from
(14):

λ̃
′′

1 = ω2λ̃
′

2

= −(α+ 1)(ω2λ̃1 + 2Dωλ̃
′

1)

⇒ λ̃
′′

1 + 2D̄ω̄λ̃
′

1 + ω̄2λ̃1 = 0, (28)

where ω̄ =
√
1 + αω and D̄ =

√
1 + αD. Note that the

eigenfrequency ω̄ of this new system depends additionally
on the motor mass B and is larger than ω. Furthermore, the
new damping ratio D̄ is greater than D as well. However,

since the initial conditions are equal, equations for λ̃∗
1 from

the previous section can still be used to compute the first
optimal costate by substituting ω with ω̄ and D with D̄. With

equation (27), one can then compute λ∗
3(t) = λ̃∗

3(tf − t),
which now depends on the increased damping ratio D̄ =
D
√
1 + α. The expressions from Tab. III can be used for λ∗

3
in the torque controlled case, when the equations are scaled
down by 1

α+1 and D,ω are replaced by D̄,ω̄ respectively.

In order to obtain the optimal torque τ∗m = Bu∗
1, we need

to now find the sign of λ∗
3 for different damping ratios D̄.

Since λ∗
3 is only scaled by a constant positive factor, we can

conclude that λ∗
3 is never positive or never remains zero in

a finite time-interval, similar to the third costate from the
previous section. In other words, no matter how damped the
robot link is, the optimal torque τ∗m maximizing the end-
velocity is always the maximum achievable torque (see (20)):

τ∗m(t) = τ∗mmax
(t). (29)

Note that this strategy is likely to lead to a violation of
the velocity constraint of the motor, if the magnitude of the
maximal torque or tf are sufficiently large.

For now, we discussed optimal control strategies for a
damped flexible robot joint. The obtained strategies depend
on the chosen motor model. If the motor is modeled as
a pure velocity source, we see that for the undamped and

underdamped system, the optimal velocity is a periodic bang-
bang control. On the other hand, for damping ratios D ≥ 1,
the motor velocity may switch only once from minimum
to maximum velocity during the entire trajectory and this
only if the final time is long enough. Otherwise, chosing the

maximum velocity θ̇max during the full trajectory maximizes
the end velocity of the robot. Finally, if the acceleration of the

motor θ̈ (or its torque τm) is directly controlled, the optimal
strategy is to always apply the greatest control possible, no
matter how damped the system is.

Note that, we have not explicitly stated an initial condition
x(0) for the models so far. Indeed, the derived strategies are
valid for any given initial condition of the system since the
dynamics and the boundary conditions of the costates do not
depend on x(t0). In the following Section III-D, we shortly
discuss a useful interpretation of the costates, which will help
us understand the different analytical expressions we derived
for the costates. In particular, this interpretation is useful, if
the optimal policies are to be implemented on a real elastic
joint. It will also explain why the initial values of x(t0) do
not have an influence on the optimal strategy.

D. Costates Interpretation

In this section, we provide an interpretation of the costates
in terms of impulse response functions and discuss how
one can make use of this. First, we exploit the linearity
of the discussed models, describe their solutions using a
convolution integral, and thus arrive at the relation between
the system response to an arbitrary excitation and the system
impulse responses. Applying then the Minimum Principle,
the interpretation for the costates is provided.

A linear system can generally be described with first-order
differential equations [2]

ẋ = A(t)x+B(t)u, (30)

where x ∈ R
n denotes the states of the system, u ∈ R

m the
control vector, A ∈ R

n×n the state matrix and B ∈ R
n the

input matrix. Given an initial state x(t0), the response of the
state x(t) to a control u can then be written in terms of a
convolution integral as follows [2].

x(t) = G(t, t0)x(t0) +

∫ t

t0

G(t, ξ)Bu(ξ) dξ, (31)

where G(t, t0) is the state-transition matrix. The state-
transition matrix depends merely on the state matrix A(t),
is unique, and satisfies

∂G(t, t0)

∂t
= A(t)G(t, t0), G(t0, t0) = I. (32)

G(t, t0) can also be written as a matrix product:

G(t, t0) = U(t)U−1(t0), (33)
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where U(t) is called the fundamental solution matrix, which

satisfies U̇(t) = A(t)U(t) [2]. Furthermore, the terms in
G(t, t0) = [gij(t, t0)]i,j=1..n provide the system impulse
responses. Indeed, gij(t, t0) yields the response of the i’th
state xi(t) at t to a unit impulse function δ(t − t0) applied
to the j’th state at t0 [2]. Equation (31) thus shows how
the system impulse response functions determine the way a
given control trajectory u affects the system state x. Note
that for fixed final time tf , the influence of the initial state
x(t0) on the obtained state x(tf ) is given by G(tf , t0)x(t0)
and can not be influenced by the control u, since G(tf , t0)
only depends on A(t). This justifies our previous statement
that x(t0) does not influence the derived optimal strategies
to maximize q̇(tf ).

As already mentioned, the response of a linear system to a
control u depends on the system state-transition matrix and
thus on its impulse response functions. Consequently, there
must exist a relation between the optimal control strategy and
the system impulse responses. Indeed, the optimal costates
λ∗ and the impulse response functions gij are closely related.
To obtain this relation, we now look at the optimal control
that maximizes a linear combination of the final states
αTx(tf ) for the linear system (30):

J(u) = ϑ(tf ) = −αTx(tf ), (34)

where α ∈ R
n is a constant vector. Applying the Minimum

Principle to the OC problem with the cost functional in (34),
the Hamiltonian for the problem becomes:

H = λT ẋ = λTA(t)x+ λTB(t)u. (35)

With this Hamiltonian, the costates can now be fully deter-
mined using (4) ,(5) and (32) as follows3:

λ̇ = −∂H

∂x
= −AT (t)λ

λ∗(tf ) =
∂ϑ

∂x
= −α

⇒ λ∗(t) = −GT (tf , t)α, (36)

where (36) finally provides the relation between the costates
and the impulse responses gij , leading to the following
interpretation: The j’th costate λ∗

j (t) provides the response

of the linear sum −αTx(tf ) at the final time tf to the unit
impulse function δ applied to the j’th state at t. To see this
more clearly, one can rewrite equation (31) by premultiplying
it with −αT and evaluating it at tf :

−αTx(tf ) = −αTG(tf , t0)x(t0)

−
∫ tf

t0

αTG(t, ξ)Bu(ξ) dξ

⇔ J(u) = λ∗T (t0)x(t0) +

∫ tf

t0

λ∗TBu dξ (37)

The j’th costate λj(t) thus shows the influence of the control
applied to the j’th state on the cost functional J(u)4.

In order to appreciate the relation between the costates
and the cost functional, let us now return to the elastic joint

3Note that
∂G(tf ,t)

∂t

(33)
= U(tf )

dU−1(t)
dt

= −G(tf , t)A(t)
4Note that this interpretation of the costates is well-known in the general

context of OC Theory, where for sufficiently smooth cost functionals the
costates correspond to the partial derivative of the optimal cost J(u∗) with
respect to the system’s initial state x(t0), see for ex. [13].

model with its motor acting as a velocity source. Using (37),
we can now write the following relation between the final
velocity and the optimal costates5.

−q̇(tf ) = −x2(tf ) = λ∗
1(t0)x1(t0) + λ∗

2(t0)x2(t0)

+

∫ tf

t0

(λ∗
1 + 2Dωλ∗

2)u1 dξ (38)

With equation (38), it is now obvious why the Minimum
Principle in (11) must hold. In order to minimize −q̇, the
integral in (38) must be minimized. Consequently, u∗

1 will
depend on the sign of σ∗ = λ∗

1 + 2Dωλ∗
2 and always

attain its maximum possible magnitude in order to maximize
q̇(tf ). Similar arguments can also be made for the other two
motor models, we analyzed. For the case, where the motor
acceleration is directly controlled, we see for example:

q̇(tf ) = −λ∗T (t0)x(t0)−
∫ tf

t0

λ∗
3(ξ)u1(ξ) dξ. (39)

Since λ∗
3 is always negative, the magnitude of the optimal

costates |λ∗
3(t)| indicates how strong the achieved final veloc-

ity q̇(tf ) depends on a control applied at t. For example, for
the system illustrated in Fig. 3, if the system is overdamped
(D = 2), the effect of the control remains mostly the same
until t ≈ 0.9s and then descreases. On the other hand, if the
system is undamped, a significant difference in the influence
of the applied control u1(t) on q̇(tf ) along the trajectory can
be observed. Nevertheless, since λ∗

3 is always negative, the
optimal control u∗

1 remains the same for both cases.
Having now understood the relation between the mini-

mized cost functional and the costates in terms of a convo-
lution integral, we turn our attention in the following two

subsections again to the motor velocity constraint |θ̇| <
θ̇max. Using (38) together with the analytical solutions from
Section III-A, we first discuss the maximum performance
limits of visco-elastic joints. We provide numerical results
to discuss the effect of the motor velocity constraint on the
optimal strategies (23) and (29), which were derived for the
unconstrained system.

E. Maximum Performance

In order to explicitly derive the performance of visco-
elastic joints regarding explosive motions, we investigate the

joint speed gain ǫ = q̇max

θ̇max
, assuming that the joint is initially

at rest. In other words, we show how fast the link can move
with respect to the maximum motor velocity, when it starts
from its equilibrium x(0) = 0.

Since we are interested in the maximum performance for
a given motor velocity constraint, we model our motor as
an ideal velocity source and ignore any other constraints.
Consequently, we can make use of our results derived in
Section III-A. According to the relation between the switch-
ing function and the cost functional in (38), ǫ depends on tf
as follows.

ǫ(tf ) =
max q̇(tf )

θ̇max

=

∫ tf

0

|σ∗| dt, (40)

where we used the fact that the optimal control is bang-

bang with |u∗
1| = θ̇max. We showed already that σ∗ depends

on the damping ratio (see (15)-(18)). Using the derived
equations for σ∗, we can now calculate the integral in (40)

5Note that the contol matrix for this case is simply B = (1 0)T .
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ǫ(n,D) D = 0 D ∈ (0, 1) D = 1 D > 1

n = 0 2 1 + F1(D) 1 + e−2 1 + F2(D)

n = 1 4 1 + F1(D) (2 + F3(D)) 1 + 2e−2 1 + 2F2(D)

n ≥ 2 2(n+ 1) 1 + 2F1(D)
(

∑n−1
i=0 F i

3(D) + F3(D)n
)

− −

n → ∞ ∞ 1 + 2
F1(D)

1−F3(D)
− −

F1(D) := e
−

D√
1−D2

(

π−arctan(
2D

√
1−D2

1−2D2 )

)

, F2(D) :=
(

2D2 − 1 + 2D
√
D2 − 1

)−
D√

D2
−1 , F3(D) := e

−
πD√
1−D2

TABLE IV: Maximum Performance ǫ(D,n) = q̇max

θ̇max
(u1 = θ̇, n = Switching Number of u∗

1, σ
∗(0) = 0)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
1

2

3

4

5

6

7

D[1]

ǫ
=

q̇ m
a
x

θ̇
m
a
x
[1
]

n = 0
n = 1

n = 2
n → ∞

n = 0
n = 1

Fig. 4: Maximum Performance ǫ(n,D) = q̇max

θ̇max

u1 = θ̇,n = Switching Number of u∗
1, σ

∗(0) = 0

ǫ DJ = 0 DJ = 0.4 DJ = 1 DJ = 2

u1 = θ̇ 6.16 1.94 1.27 1.10

u1 = θ̈ 5.85 1.90 1.26 1.09

u1 = τm/B 1.68 1.31 1.16 1.06

TABLE V: ǫ = q̇max

θ̇max
(Simulation Results)

and determine ǫ as a function of D and tf . These ratios are
summarized in Table IV for a fixed switching number of u∗

1
with σ∗(0) = 0 and depicted in Fig. 46,

It is important to note that ǫ is bounded as soon as me-
chanical joint damping is present. We have shown in Sec. III-
A that the link velocity of the damped joint can always be
increased by enlarging tf , and thus the switching number
of u∗

1. Nevertheless, the presence of damping makes this
increase bounded. Consequently, for high damping ratios,
increasing tf may have only little effect on the maximum
velocity, and thus on ǫ. For instance, if D is greater than
0.6, the change of ǫ is neglectable for n > 1, see Fig. 4.
It is also important to note that ǫ in Tab. IV depends on
D, but not on ω. The eigenfrequency ω determines only the
switching instances (see Sec. III-A) and thus tf at which
q̇max is obtained.

In order to validate our theoretical results and to investi-
gate the effect of the motor velocity constraint on the optimal
velocity profiles, numerical results are presented next.

IV. NUMERICAL SIMULATIONS

In contrast to our previous discussions, the magnitude of
the motor velocity will now be constrained in all the three
models as follows.

(∀t ∈ [t0, tf ])[|θ̇| < θ̇max = const.] (41)

6Note that given the switching number of u∗

1 , the maximum value for q̇
and thus ǫ is obtained when σ∗(0) = 0.

The system is again assumed to be at rest at t0 = 0 (x(0) =
0) and the controls are bounded by: |u1(t)| ≤ u1max.
The constraint (41) can cause different control strategies
compared to (23) and (29).

The numerical computations were obtained with the soft-
ware GPOPS[14], which uses the Gauss Pseudospectral
Method to solve OC Problems ([1], [3]). Figure 5 (left row)
visualizes the obtained motor velocities of the three different
models for different damping ratios, while the obtained
performance is summarized in Tab. V. The optimal switching
function σ∗ in (15)-(18), which determines the optimal
velocity profile for the model in Sec. III-A is depicted as
well. Even though σ∗ only determines the switching strategy

for this model, it relates the motor velocity θ̇ and the final
link velocity q̇(tf ) regardless of the chosen motor control.
Indeed, for all the three considered models, the force acting
on the link is due to the elastic joint torque and the viscous
damping, which depend on the positions and velocities of
motor and link, respectively. The impulse-response function,
relating the velocity of the motor to the link is thus valid for
all three models and using the convolution integral in (38)
with x(0) = 0, we can obtain the following relation for all
considered motor models (x(0) = 0).

q̇(tf ) = −
∫ tf

0

σ∗(ξ)θ̇(ξ) dξ (42)

According to (42), the switching function σ∗(t) at t describes

the influence of the motor velocity θ̇(t) at time t on q̇(tf ).
With this information the optimal velocity profile for u∗

1 = θ̈,
which is illustrated in Fig. 5, can easily be interpreted: the

optimal acceleration θ̈(t) switches whenever the influence
|σ∗(t)| approaches zero. Consequently, the difference in
the achieved final link velocities differ not significantly
(right row in Fig. 5). Furthermore, depending on the system
damping, the switching times and structure change. Indeed,
for the undamped case (D = 0), we see that there is a

certain symmetry in the two velocity profiles for u∗
1 = θ̇∗

and u∗
1 = θ̈∗. To be more specific, the velocity of the

motor, whose acceleration is optimally controlled, reaches
zero whenever σ∗ is zero. This is due to the fact that σ∗

describes a harmonic motion. For the under-damped case,
on the other hand, the amplitude of σ∗ is increasing and this
symmetry is lost. Similar observations can also be made for
D ≥ 1.

We have thus seen that the switching function σ∗(t) and
the convolution integral (42) can be used to interpret the
optimal system behaviour. Nevertheless, care must be taken
when this approach is followed, since merely looking at
(42) might lead to false conclusions. For instance, if we
compare the velocity profile of the torque controlled motor
with the switching function, a direct relation does not seem
to exist if the system is undamped (D = 0). Indeed, for the
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torque controlled motor, the constraint in (41) also affects
the maximum angular deflection achievable by the system.
A very high deflection might lead to the violation of the
constraint in the motor velocity, if the torque is not high
enough to brake the motor. Consequently, as seen in Fig.
5 (middle row), the angular deflection φ obtained with
the torque controlled motor model is considerably smaller
compared to the other two models, resulting also to smaller
ǫ, see Tab. V). As damping increases, this effect on the
angular deflection is not as crucial. Consequently, the three
velocity trajectories resemble each other and the difference
in ǫ become smaller, see Tab. V.

V. CONCLUSION

In this paper we gave several insights into the optimal
control of visco-elastic joints with different motor models
and discussed especially the influence of constant mechanical
joint damping on the optimal control policy regarding ex-
plosive motions. Having established the relation between the
system’s costates and impulse response functions for general
time-varying linear systems, we showed how this property
can be used in interpreting numerical simulation results and
how additional state constraints might effect the resulting
strategy.

Despite we mainly focused on explosive motions, many
other motion types exist that can be investigated with OC
theory to elaborate how to fully exploit elastic system’s
dynamics. The problem is rather new in robotics with many
interesting open questions to be treated in the future. Our
ongoing research focuses on addressing these questions for
1-DoF joints, including variable stiffness joints [7], and
extending the obtained results to systems with state con-
straints, non-linear spring characteristics and finally to n-
DoF systems with non-linear dynamics. Our first results into
this direction can be found in [10], [8], [7].
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