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Abstract— The development of new, light robotic systems has
opened up a wealth of human–robot interaction applications. In
particular, the use of robot manipulators as personal assistant
for the disabled is realistic and affordable, but still requires
research as to the brain-computer interface.

Based on our previous work with tetraplegic individuals, we
investigate the use of low-cost yet stable surface Electromyog-
raphy (sEMG) interfaces for individuals with Spinal Muscular
Atrophy (SMA), a disease leading to the death of neuronal
cells in the anterior horn of the spinal cord; with sEMG, we
can record remaining active muscle fibers. We show the ability
of two individuals with SMA to actively control a robot in
3.5D continuously decoded through sEMG after a few minutes
of training, allowing them to regain some independence in
daily life. Although movement is not nearly as fast as natural,
unimpaired movement, reach and grasp success rates are near
100% after 50 s of movement.

I. INTRODUCTION

SH and SV are two of the approximately 0.1‰ of the

European population suffering from SMA (Spinal Muscular

Atrophy): a disease leading to the death of neuronal cells in

the anterior horn of the spinal cord. This disease, which they

have carried with them since birth, has lead to a situation

where their limb movement is limited to minute thumb ab-

duction, allowing them to control their wheelchair. That gives

them some freedom to move around; but as they cannot move

their arms or legs, every other physical interaction with their

environment must be realised through human assistants. De-

spite their wheelchair control, they cannot go outside alone:

as the doorbell as well as the elevator button must be pressed

to be operated, they have no chance to re-enter their home

autonomously. Let alone autonomous drinking.

The development of lightweight robots can profoundly

change the field of assistive robotics for physically disabled

individuals. Simple environmental interaction chores can be

easily realized by such systems, especially when guided by

its user through a brain-computer interface (BCI).

But BCI are still in an infant state. First, interpreting

biological data for BCI is a topic of research: the corre-

sponding biological source signal contains time-coded data

represented by large number of neurons/nerves/muscle fibers,

but usually only a very small subset of these are recorded,

leading to nonstationary behavior. Second, their application
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to the patient is involved. Invasive methods lead to promising

results [1], [2], [3], [4], [5] and have indeed been used for 3D

robot arm control [6], [7]. Nonetheless, such methods remain

heavily debated with respect to their associated discomfort

and risk for the user, while signal interpretation is highly

variable. Indeed, invasive methods are generally used as a

“last resort”, when noninvasive methods cannot be applied.

But also noninvasive methods require mounting sensors on

the body, which is very complex and time-consuming for

Electroencephalography (EEG), but it also requires third-

party assistance when using surface EMG sensors for the

physically disabled. A promising approach is the use of

eye tracking systems. Unresolved challenges include that

extraction of more than 2D is very noisy [8] and not realistic

beyond that. Thus, eye tracking alone is not suited as a robot

control interface currently.

Of the aforementioned BCI methods, surface EMG can

be considered the least cumbersome. Such EMG systems

are affordable and electrode placement is fast; its signal,

involving amplification factors by three orders of magnitude

only, is relatively stable. We have previously reported the use

of EMG for arm position [9] reconstruction, and its stability

inspired us to attempt similar methodologies for individuals

with nonfunctional remaining muscle activity.

The use of surface EMG for prosthetic robotics is nothing

new. The initial ideas stemmed from prosthetic hand robotics,

and various publications on the matter [10], [11], [12], [13],

[14] show that EMG can serve as an excellent means to

control dexterous hand prostheses. Also arm position recon-

struction can be done through EMG, either using models

of the arm geometry [15], [16], [17] or without [9]. The

latter approach, which controls the position and orientation

of the robot end-effector in 6D, leads to a nonnegligible error

in absolute end-effector positioning, but by controlling end-

effector velocity rather than position [18] the system can be

used with considerable accuracy to grab objects.

In this paper we aim to exploit a similar interface to control

a robot by two 45-year old individuals with Spinal Muscular

Atrophy (SMA) type IIa. This disease leads to death of

motor neurons in the spinal cord, such that the corresponding

muscle fibers can no longer be activated and degenerate. In

effect, after many years of progressive disease no voluntary

limb movement is possible, with the exception of, in one

of the individuals, minimal thumb movement with which a

miniature joystick can be pushed to control a wheelchair.

For this individual, thumb movement does not suffice for 3D

robot control; for the other, who can not operate a joystick

at all, sip-and-puff control is used to steer the wheelchair.
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Fig. 1. Robot visualization as presented to the subject during the tasks.
The red sphere in the background illustrates the target location, the semi-
transparent off-white sphere serves for highlighting the robot end-effector
position.

Our goal is to develop an sEMG-based interface through

which these individuals can control a robotic arm for simple

grasp and move operations. To this end, we exploit the EMG

signal stemming from residual arm muscle fibers, which can

be voluntarily activated but which do not suffice to move the

limbs.

II. APPROACH

In the experiments presented in this work we decode

continuous control signals in three Cartesian degrees of

freedom and a discrete grasp trigger from surface EMG

signals measured on the upper limb of two subjects who

suffer from SMA. The decoded control signals are used to

operate a full dynamic simulation of a robotic system in a

3D virtual environment (see Figure 1).

In the following description we refer to experimental

sessions as a combination of training phase and assessment

phase. In the training phase, data is recorded in order to

train a neural network as a decoder for the needed control

signals. In the assessment phase, multiple trials are conducted

in order to evaluate the performance of a specific decoder.

A trial consists of an arbitrary number of reaching tasks that

the subject has to perform with the simulated robotic system.

The parameterization of the neural network decoder stays

unchanged within the assessment phase.

A. Data acquisition and preprocessing

Surface EMG signals are composed of the superposition

of activity of multiple underlying muscle fibers. More pre-

cisely it is the superposition of motor unit action potentials

(MUAP). The amount of MUAPs correlates to the force the

muscle is exerting, and following from the superposition, so

does the sEMG amplitude. In our setup, muscular activity

is recorded using Delsys® Trigno wireless surface EMG

Electrodes. The Trigno system provides an analog differential

signal in the range of ±5Volts which is bandpass filtered

between 20–450 Hz and sampled at 2 kHz. EMG data is

digitized using a National Instruments™ NI 9144 EtherCAT

slave chassis with NI 9205 16-bit analog input module. The

EtherCAT slave chassis is connected to a VxWorks real-time

computer which serves as the EtherCAT master and acquires

the digitized raw-EMG signals at a 1 kHz rate. This real-time

system is also used to evaluate our preprocessing/filtering

methods in order to extract the feature vector, which in our

case consists of the amplitude of the sEMG signal.

A common approach to extract a smooth amplitude signal

is the filtering of sEMG data employing low-pass filters;

channel-wise moving averages based on time windows or

with an exponential decay yield good results. Band-pass

filters are commonly used as well. Removing high frequen-

cies leads to two undesirable effects however. First, a delay

is induced (due to window size and filter order) which is

unwanted for online control applications. Second, sudden

bursts or spikes are essentially flattened out. This is due

to the nature of low-pass filtering and further reinforced by

the shape of MUAPs. A common and crucial step, the full

wave rectification can partially overcome these difficulties:

the differential sEMG signal is transformed to its absolute

value. Alas, the spike is a very local phenomenon while

its effect on limb movement extends over a longer period

because of movement inertia. After evaluation of a range

of filters which we thought well suited to the problem,

including median filters, wavelets, various Fourier transforms

and window based or exponential moving averages, we found

that a filter specifically customized for the characteristics of

sEMG data and the task of posture estimation was beneficial.

Ideally, such a filter needs to (a) preserve the information

contained in spikes for a longer time and (b) be relatively

smooth. Our approach consists of the following stages which

we apply to each channel separately:

• subtract mean;

• normalize to ±1 amplitude;

• full wave rectification;

• moving max filter (window: 50 samples);

• Savitzky-Golay filter (window: 500 samples, degree: 5).

The mean and the normalization factor are extracted from

a training data set and kept constant within an experimental

session. After the full wave rectification of the signal x1:T ,

we slide a time window of size k over the signal and select

the maximum value from it:

x̃t = max |xt−k:t|,

which will result in a step-like signal. In order to obtain

a smooth signal, we employ a local least-squares filter

by fitting polynomial at each time step. While this might

seem costly at first, [19] showed that efficient computation

is possible. The filtering can not only be performed by

solving a least-squares problem and subsequent evaluation;

alternatively, it can be computed as a linear combination of

the values at the preceding time steps of the signal,

x̂t =

L∑

l=1

αix̃t−l, (1)

where the set of coefficients {αi} is independent of the input

data and only depends on the parametrization of the filter: the

window size L and the degree of the polynomial D. For an
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Fig. 2. Illustration of the single stages of the sEMG preprocessing tool
chain on an exemplary data set.

Fig. 3. Electrode placement for subject SH (left) and SV (right). Electrodes
are fixed with doublesided medical tape and additionally wrapped with
medical cohesive tape to ensure fixation (left).

illustration of the process see Figure 2. This finally provides

a comparably smooth hull of the EMG-amplitude, which is

used as a feature for decoding the control signals.

B. Electrode configuration

In the experiments conducted, we equipped subject SH’s

left arm with 6 and subject SV’s right arm with 7 sEMG

electrodes, respectively. Electrode placement was chosen

based on visual (qualitative) signal inspection. We sampled

different locations for each electrode in areas on the arm

where the subjects reported to be able to feel muscle bulging.

When activity was notable on the live view of the sEMG

signal, we attached the electrode to that position with double-

sided medical grade adhesive tape. To ensure fixation of

the electrodes, we additionally wrapped them with cohesive

medical tape. Table I lists the muscle anatomically most

closely located to the single electrodes, based on the phys-

iology of the healthy arm. It has to be noted that due to

the advanced muscular atrophy it can not be guaranteed that

these correspond to the muscles we actually recorded from.

Figure 3 shows the placement for some of the electrodes for

both subjects.

TABLE I

ELECTRODE PLACEMENT

Electrode Muscle in proximity Muscle in proximity
Nr. to Electrode in SH to Electrode in SV

1 flexor pollicis extensor digitorum
2 extensor digitorum anconeus
3 flexor carpi radialis brachioradialis
4 anconeus flexor carpi radialis
5 biceps brachii flexor pollicis
6 triceps brachii triceps brachii
7 - biceps brachii

C. Simulated robotic system

The long term goal of this experiments is to provide

control over a robotic hand-arm system to people with

physical disabilities, using a surface EMG interface. The

work presented here serves as a groundwork to this goal. To

validate the feasibility of the approach, we tested the EMG-

control interface on a full dynamics simulation of the DLR

Light-Weight Robot III (LWRIII) [20], [21] in combination

with the DLR 5-finger robotic hand [22]. Combined with its

soft-robotics control schemes, the LWR [23], [24] has shown

its applicability to safe human robot interaction [25] and as

an assistive robotic device in multiple scenarios [6].

The robot simulations virtual environment is displayed

on a Samsung UE46ES6300 46inch 3D LED monitor. To

enhance depth perception in the visualization of the robot

simulation we make use of the 3D rendering capabilities

of the instantreality virtual reality framework [26]. Subjects

have to wear active shutter glasses to perceive the stereo-

view effect (see Figure 4). The visible scene (Figure 1) is

composed of the robot positioned close to a table above

which target spheres appear in order to be reached by the

subject. A semi-transparent sphere indicates the location of

the robots end-effector position.

D. Training and signal decoding

To gather ground truth data for system training, we use

a paradigm based on visual stimuli. In the training phase

the robot executes a so-called “center out and back” motion

along the cardinal axes. The subject is asked to monitor this

Fig. 4. Participants SH and SV equipped with sEMG electrodes and
shutter glasses, while controlling the robot simulation on a 3D-monitor.
One participant preferred to lie down during the experiments, whereas the
other participant preferred to control the robot sitting in the wheelchair.
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TABLE II

CARDINAL AXIS AND CORRESPONDING DIRECTION FOR THE USER.

Cardinal Axis Direction Cardinal Axis Direction

+X right −X left
+Y away −Y towards
+Z up −Z down

Fig. 5. Target placement during training phase. In this still picture, the
robot is about to move to the highlighted purple target, located at the +Z

direction. The +X target is hidden within the structure of the robot, but it
becomes visible, when highlighted.

motion and perform muscular activation that shall be asso-

ciated with the observed movement direction. Starting from

a center position, the cardinal axes correspond to directions

for the user as summarized in Table II. The target spheres

for the training phase are located along these directions in

a distance of 0.25 m from the center target (see Figure 5).

As the −Z target would be located underneath the table

surface in the used target configuration, this target is omitted.

The training phase typically consists of multiple repetitions

of a training block. In the experiments presented here, a

training block consists of two repetitions of all movement

directions in random order. The target is visually indicated

before the movement begins, and EMG is recorded during

and after movement. To acquire equally many repetitions for

each direction, the upper target is presented twice within one

cycle, as the corresponding down target is missing. To gather

training data for the discrete grasping signal, the robotic hand

performs a grasping motion every time the robot reaches the

center target.

From the data collected in the training phase, the EMG

mean and normalization factor are extracted (see Section

II-A), and a neural network (NN) is trained to decode desired

end-effector velocity and a grasp activation trigger from the

EMG data. In the initial set of experiments presented here,

only data from one training block are used for training the

NN.

Using the MathWorks® Matlab Neural Network Toolbox,

we train a deep neural network consisting of two nonlinear

hidden layers. The hidden layers consisted of 10 units each,

and tansig was used as the transferfunction. We typically

trained the neural network with randomly resampled data

points and ∼10 training epochs using Levenberg-Marquardt

optimization.
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III. EXPERIMENTS AND RESULTS

To evaluate the performance of the decoder, we asked

the subjects to perform a number of grasp tasks. In this

task we show the target at a point randomly chosen but

30 cm away from the current robot position. The task is to

grasp the target object, meaning to place the hand within

3 cm of the target and evoke a grasp action. To clarify

when a target is acquired, the task state (moving, at target,

grasped) was shown by coloring the target (red, yellow,

green) correspondingly; distinguishable beeps indicated the

change of task state. At the end of a task, the robot is

automatically positioned at the center of the target area and,

after a 3 second pause, the next task is started automatically.

In this initial set of experiments the participants performed

2 trials, each of which contained 30 target tasks. We did not
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t = 363 s.
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specify a time limit at which a single task was aborted. Figure

6 depicts the mean times over all tasks for the single trials.

For each pair of bars, the left one shows the average time

needed to first reach the target, while the right bar shows

the average time for task completion, i.e. evoking a grasp

at the target location. Differences are caused by the fact

that evoking a grasp takes some time and additionally, in

some cases, grasp may be decoded as movement, and the

participant must reposition the robot.

Figure 7 shows a more detailed trial time analysis of the

two trials performed by subject SH; Fig. 8 for SV. Some

tasks last several minutes; but for half of the targets the

completion time was less than 30 s each. Looking at the

time series analysis depicted in Fig. 9 it can be seen that for

subject SH performance degrades at the end of the second

trial, which may be an indication of fatigue. For subject SV

no such clear evidence is found in the trial times. Another

reason for longer task times is evident in the direction the

goal is located. Fig. 10 shows the direction dependency of the

decoder, with respect to task completion time: movement in

SH SV

target direction trial1
target direction trial2

X

Y

X

Y

Fig. 10. Dependency of the task execution time on the target direction
(in the X–Y projection plane). The single vectors correspond to the target
direction scaled with the task execution time. X–Y projection is chosen, as
no dependency on the Z direction is noticeable. For trial 2 of subject SH
(left) targets in the +Y direction take longer. For both trials of subject SV
(right) targets in the combined +X/−Y direction require longer times.
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Fig. 11. Top-down projection of three exemplary chosen consecutive targets
from one trial of subject SV. Execution times for these targets were 9.8s,
11.0s, and 7.6s, respectively.

certain directions are “more difficult” to make and therefore

take longer. Example trajectories are shown in Figure 11. It

is clear that the corresponding trajectories are not Cartesian

straight; the participants have to continuously correct the

movement to reach the target.

Another evident issue can be noticed in track3, which

shows a repeating sequence of grasps during movement.

These false grasp activations occur in many of the tasks, as

can be seen from Figure 12. Depicted is the average number

of false grasps during movements up to 60 s. For this, grasp

triggers decoded while the robot hand is outside the target

by 4 cm are counted as false grasps. On the one hand it is

noticeable that the amount of false positive grasps rises in

trial number 2 for both subjects, which may be a cause of

fatigue. On the other hand, subjects were not instructed to

prevent occurrence of grasp commands away from the target

location. Therefore, the peculiarity of false positive grasps
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has to be investigated in future experiments.

IV. CONCLUSION

The preliminary results presented in this report originate

from the very first set of experiments conducted within this

study. Except for a short exploration time, the subjects, who

had never controlled a robot through an EMG-based inter-

face, were basically untrained on the system. Yet the results

show that both subjects could achieve functional control over

the simulated robotic system via the sEMG interface after

very short training times. SV, who controls her wheelchair

over a 2D discrete joystick, reported that the muscular effort

needed to control the robot in 3D space was not more intense

than for her wheelchair control. Furthermore the participant

remarked to be not able to use a joystick providing 3 degrees

of freedom. Likewise, subject SH, who can no longer use

a mechanical interface like a joystick at all, described the

control effort as minimal.

The decoding techniques used in this experiment are

refinements of our previous work on sEMG robot interfaces

for unimpaired subjects [9]. The preliminary results reported

in this paper demonstrate the viability of the approach; yet

training, feature selection and decoding methods need to

be tailored better to the specific characteristics of the BCI

signals obtained in these experiments.
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