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Abstract— This paper presents the application of a Bayesian
nonparametric time-series model to process monitoring and
fault classification for industrial robotic tasks. By means of
an alignment task performed with a real robot, we show how
the proposed approach allows to learn a set of sensor signature
models encoding the spatial and temporal correlations among
wrench measurements recorded during a number of successful
task executions. Using these models, it is possible to detect
continuously and on-line deviations from the expected sensor
readings. Separate models are learned for a set of possible
error scenarios involving a human modifying the workspace
configuration. These non-nominal task executions are correctly
detected and classified with an on-line algorithm, which opens
the possibility for the development of error-specific recovery
strategies. Our work is complementary to previous approaches
in robotics, where process monitors based on probabilistic
models, but limited to contact events, were developed for
control purposes. Instead, in this paper we focus on capturing
dynamic models of sensor signatures throughout the whole task,
therefore allowing continuous monitoring and extending the
system ability to interpret and react to errors.

I. INTRODUCTION

The application of probabilistic models to industrial
robotics has a few decades of history. Restricting ourselves
to process monitoring and fault detection in industrial robotic
tasks, which are the focus of this paper, we can summarize
the relevant previous work in two main categories. The
first category comprises approaches that focus on modelling
events that discretise the task execution in sub-tasks relevant
for control purposes. In [1], for example, Hidden Markov
Models (HMMs) are used to model contact events between
an object manipulated by a robot and the environment. By
analysing the force/torque spectrogram, the type of contact
can be identified among a discrete set of edge-surface
configuration possibilities. Since a precise a priori model of
both the shape of the object and the workspace is available,
the recognition of the contact type can be used to trigger
appropriate control actions that lead to the accomplishment
of the task. Detecting errors in the task is possible, but limited
to comparing the sequence of recognized contacts to the ex-
pected one. The error detection policy is therefore inherently
discrete in nature, since the sensor measurements evolution
between contact events is not modelled. In addition, the
success of the task execution is based on the assumption that
there is a well known correspondence between contact events
and the robot “world” state (i.e. relative positions between

The authors are with the Department of Mechanical Engineering, Division
Production engineering, Machine design and Automation, KU Leuven, 3001
Heverlee, Belgium

the robot itself, the manipulated object and the workspace).
As will be shown later, these assumptions is restrictive if we
consider a human-robot cooperation scenario, because the
human might, voluntarily or not, introduce deviations from
the expected world state that cannot be immediately detected
by the robot. In this scenario, the robot should be able
to continuously detect these deviations, possibly recognize
them, and act accordingly.
In the second category fall those approaches that have the
interpretation of some sort of measurement time-series as
a key feature. In [2], Support Vector Machines are used in
combination of Principal Component Analysis, for classi-
fication of force/torque measurement time-series. Under the
assumption that the wrenches time-series recorded during the
task are correlated with the execution outcome, successful
task execution can be discriminated from faulty one. While
the adopted classification method is general purpose and
model-based, task-specific knowledge is not required, the
error detection can only happen upon task completion. In
[3] the authors overcome this limitation, applying Relevance
Vector Machines in combination with a Markov Chain
model, to continuously estimate the quality of a grasp from
the gripper joint angles time-series. In this way, the robot
can detect on-line whether to continue the task or abort
it to perform a better grasp. Another example of wrench
time-series analysis for assembly outcome verification can
be found in [4], where a hierarchical taxonomy is built to
classify the outcome of a snap assembly from a recorded
wrench signature. The development of such a taxonomy is
done by visual exploration of sequences of linear segment
primitives in the time-series, and can hardly be re-used for
a different assembly. Furthermore, the proposed approach is
validated only on simulated data.

In this paper, we focus on Bayesian time-series model that
can be applied to heterogeneous sensors, allowing continuous
and on-line detection of deviation from nominal executions
of an industrial robotic task. This is obtained by learning
sensor signatures throughout the whole task and not limiting
ourselves to contact events. The proposed approach requires
little or none model-based, task specific knowledge, but still
allows its integration in the learning process if available. The
assumptions on which the proposed method relies can be
summarized as follows:

1) during a number of task execution, data is recorded
from one or more sensors (e.g. force/torque, joint
encoders).
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2) the task execution scenario (and/or its outcome) can be
identified by a human expert, and the corresponding
recorded data is labelled accordingly (e.g. nominal or
error scenario 1). If only deviations from the nominal
task execution must be detected, than data should be
recorded only for nominal execution trials. If error
classification is required, example trials for each error
scenario must be recorded as well.

3) the recorded sensor signature is correlated with the task
execution scenario (and/or its outcome). That is, the
sensor time-series (signature) contains, at some point
in time during the task, enough information to detect
deviations from the expected measurements.

In this paper, we show that the proposed method can
successfully be applied to learning force/torque sensor sig-
natures for of a simple alignment task. The learned models
can be used on-line to detect deviations from nominal task
executions and classify the error cause between a set of
previously identified scenarios.
While the task presented in this paper is not challenging per
se, the wide applicability of the proposed method is demon-
strated by our preliminary work [5], where the assembly task,
the robotic setup and the sensor setup where different, but
the aforementioned assumptions where still satisfied.

The paper is organized as follows: in Section II the
robotic setup, the example task, and a set of possible non-
nominal execution scenarios arising from human interaction,
are described. In Section III the adopted time-series model
for learning the sensor signatures is described. In Section
IV we explain the on-line error recognition approach and
the performance for real executions of the example task are
examined. In Section V we conclude by describing other
potential application scenarios and discuss future directions.

II. A ROBOTIC ALIGNMENT TASK UNDER
CHANGING WORKSPACE CONDITIONS

In this Section we will describe an example robotic task
and how the robot and the developed control strategy behaves
under unpredictable changes in the workspace due to human
intervention. The focus is neither on the complexity of the
task nor on the optimality of the execution strategy. This
example task serves as an example of a generic robotic
task whose nominal execution can be defined via a Finite
State Machine (FSM) and executed via a hybrid control
strategy, like for example in [6]. The FSM discretises the
task in a set of intermediate actions (sub-tasks) and defines
for each of those a specific control strategy and an “event”
that triggers the transition to the next state. These events are
usually defined by thresholds on measurable quantities (e.g.
a force or a torque) and implicitly define a correspondence
between them and a specific world state. This means that
during the sub-tasks design phase, these events are usually
defined by a human expert via trial-and-error, with the task
executed under constant conditions. Force/torque events are
usually linked to contact events, and sequence of contact
events are assumed to correspond to a desired configuration
of the manipulated object, the robot, and the workspace. To

demonstrate the limitations of this approach we describe a
simple alignment task where an object (specifically, the case
of a stop button) must be aligned to one side of a rectangular
workspace. The task execution strategy is encoded in a FSM,
where events are defined on force/torque measurement, time,
position, or joint angles and is successfully executed. We then
introduce an unmodelled object in the robot workspace, that
interferes with the nominal task execution. This scenario can
naturally arise in the context of human-robot cooperation,
where part of an assembly is performed by a human, and
a semi-assembled part is involuntarily dropped or delivered
to the robot in a position different than expected. We will
show how this change in the workspace configuration breaks
the correspondence between contact events and the assumed
world state, leading to unpredictable task executions.

A. Robot setup and Task FSM

The robot setup used for the example alignment task is
a KUKA LWR. Wrench measurement can be obtained via
the Fast Research Interface [7], and recorded during task
execution at 500Hz. We briefly describe the FSM developed
to perform the task, as well as the transition events. The
goal of the task is to align the yellow stop button case to
one side of the table (see figure 1). To achieve this, the task
is decomposed in the following sub-tasks, encoded together
with their transition events in a FSM:

Fig. 1. The example alignment task: after step1(top-right), after step2(top-
left), after step3(bottom-left), after step6(bottom-right)

step1 Rotate the case by 45◦ around the z axis. When the
task is started, the case is assumed to be roughly pre-
aligned, therefore this motion results in one corner of
the case pointing approx. towards the expected contact
point.

step2 Move towards the table until contact is detected
(threshold on y−axis force, −7N).

step3 Rotate the case around z-axis until a new contact
is detected. This should mean that opposite corner
has made contact with the table. (threshold on z-axis
torque, 0.5Nm). The duration of this step is measured.
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step4 Rotate around z in the opposite direction of step3 for
the previously measured time divided by two. After
this, the case should be reasonably well aligned with
respect to the table.

step5 Move towards the table as in step2.
step6 Upon contact, align in y direction, by applying a force

of −20N in y-direction for 3 seconds, while being
compliant in the rotational d.o.f x and y.

step7 Move back
A video of a nominal and a faulty execution of the task

can be found at http://people.mech.kuleuven.
be/˜edilello. Additional details about implementation
and control strategies are beyond the scope of this paper.

B. Nominal and abnormal task executions

When implementing a FSM for the alignment task, the
system designer implicitly defines a correspondence between
the measured wrenches and a desired intermediate config-
urations of the robot world that are supposed to lead to
the achievement of the task. This correspondence can be
broken if an undesired object is accidentally introduced in the
workspace. As an example, consider the scenario depicted
in the figure 2, where different objects were placed in front
of the table against which the stop button case is supposed
to be aligned. It can be foreseen that the robot will detect
a contact when touching the object, and as long as the
event-specific thresholds are crossed, the FSM will switch
to the corresponding states. The results in terms of the
accomplishment of the alignment are unpredictable, but the
outcome might be a graceful fail as well as a damaging of the
robot or the manipulated objects. Clearly, this is true for our
particular implementation of this task. The robustness of this
task could be improved, for example, by extending the FSM
introducing intermediate states whose goal is to confirm that
contact has been made as expected.

Fig. 2. Alignment task execution with unmodelled obstacles: button (left),
metal square (center), metal round(right)

What we want to highlight is that this kind of mismatches
between a detected event and the assumed world state can be
solved by focusing on how some measurable quantity evolves
over time and linking this time-series to a semantically richer
and probabilistic description of the world state (i.e. “sub-
task succeeded with probability 0.9” instead of “ForceX
above threshold”), allowing for continuous error detection
and interpretation.

Data was recorded for a 24 task execution in 5 different
scenarios classc, c ∈ {1, . . . ,5}:
• nominal : clear workspace, task successfully completed

(8 executions);
• metal round : round metal object placed between the

robot and the table (5 executions);
• metal square : square metal object placed between the

robot and the table (4 executions);
• button : round plastic stop button placed between the

robot and the table (3 executions);
• box : stop button case placed between the robot and the

table (4 executions);
In all the non-nominal execution scenarios, the robot went

trough all the FSM states, but did not align successfully with
the table, because it was unable to correctly estimate the
desired angle due to contact with the unexpected objects.
Depending on the execution scenarios, the wrench signature
will diverge, at some point of the task, from the nominal
ones. As an example, we show the recorded wrenches for
step4 of the FSM, for all classc, c ∈ {1, . . . ,5} in figure 3.
It can be seen that the sensor signatures are different among
execution scenarios while still being somewhat consistent
among trials of a given scenario.

III. LEARNING A BAYESIAN TIME-SERIES
MODEL OF WRENCH SIGNATURES

This section provides a short overview of the Bayesian
time-series model named sticky-Hierarchical Dirichlet Pro-
cess Hidden Markov Model (sticky-HDP-HMM) [8], used
for learning force/torque signature models for all the steps
steps of the example alignment task described in II-A and for
each possible execution outcome classc. The learned models
will be used in section IV to develop a system for detecting
on-line deviations from the nominal force/torque signature
that characterize a successful task execution, and possibly
identify the specific execution scenario classc. Depending
on the task, deviation from the nominal task execution might
be detectable by different sensors and only from a particular
point in time during task execution. Therefore, it is necessary
to:
• segment the recorded time-series according to the FSM

evolution;
• select the specific sensor that allows for the deviation

to be detected;
• label the corresponding time-series according to the task

execution scenario classc (i.e. nominal, metal part).
While the first is done automatically we assume that

the second and the third steps are performed manually.
Approaches to automate these latter two steps are found in
literature, but are beyond the scope of this paper.

A. Hidden Markov Models

The Hidden Markov Model is a statistical signal model
widely used for speech recognition, natural language mod-
elling, on-line handwriting recognition, and the analysis of
biological sequences such as proteins and DNA [9]. In
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Fig. 3. Wrenches recorded during step4 of execution scenario nominal (top-left), metal square (top-right), button(bottom-left), metal round(bottom-right)

robotics, HMMs and their extensions have been successfully
applied to encode human motion primitives and transfer them
to a humanoid robot [10], to programming by demonstration
[11], and to model contact events in assembly tasks [1] . The
HMM can be seen as a stochastic finite state automaton,
where each state emits an observation. More in detail, at
each time t the observations Yt are considered a probabilistic
function of the state Zt . The state Zt is represented by
a discrete random variable with Z ∈ {1 . . .K}, where K is
the cardinality of the hidden state, evolving according to a
stochastic process that is not observable (i.e. hidden), and
can only be observed through the produced sequence of
observations [12]. A HMM is represented as a Dynamic
Bayesian Network [13] (DBN) in figure 4(a) and is defined
by the following set Π of model parameters:

• an initial state distribution π0 = [π1,π2, . . . ,πn], where
π(i) = P(Z1 = i). π0 is represented by a multinomial
distribution.

• a transition model, represented by the stochastic matrix
A where A(i, j) =P(Zt = i|Zt−1 = j), modelling the evo-
lution of the unobservable discrete state. Each row of the
matrix defines a conditional multinomial distribution.

• a set Θ of observation models, defining the probabilities
P(Yt = y|Zt = i). If the observations are defined as
continuous feature vectors then a conditional continuous
p.d.f., (usually Gaussian) is defined as the emission
distribution for each state Θ = {θ1, ...θK} .

In our experiments, we used a HMM with Gaussian
observation models to capture the spatial and temporal cor-
relations among the measured wrenches and their first order
differences for each sub-task encoded in the FSM, and for
each different execution scenarios. The choice of extending
the wrench measurements with their first order derivatives
is motivated by better recognition performances. The idea is
that the segmentation of the time-series induced by the HMM
is influenced by changes in both location and slope of the
signals. What we obtained is a set of probabilistic models
that can represent the different sensor signatures shown in
figure 3 and be used for error detection and classification.

B. Bayesian Nonparametric Learning of HMMs: the sticky-
Hierachical Dirichlet Process

In robotics, the problem of estimating the parameters
of a HMM has mostly being solved via Expectation-
Maximization (EM) algorithm [9], which allow estimate
the HMM parameters that maximize the likelihood of the
observations contained in a set of training time-series. An
alternative approach is given by Bayesian methods, in which
prior distributions are placed on the HMM parameters them-
selves, and then a maximum a posteriori estimate of these
parameters, conditioned on a training set, is obtained. Re-
cently, a Bayesian nonparametric method for learning HMM
with an infinite state space, namely the Hierarchical Dirichlet
Process (HDP) - HMM has been proposed [14]. The HDP is
a distribution over probability measures on a parameter space
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(a) HMM

(b) HDP-HMM

Fig. 4. Hidden Markov Model (4(a)), HDP-HMM dynamic Bayesian
network( 4(b))

Θ, that encourages different states to have similar transition
distributions (defined by the rows of the transition matrix
A) and to limit the number of (potentially infinite) states.
The HDP-HMM has been extended by Fox [15] to bias the
posterior distributions towards models with smoothly varying
dynamics, and has therefore being named sticky-HDP-HMM,
whose DBN is shown in 4(b). In this paper, we used this
latter approach to learn wrench signature models, using the
Gibbs sampling routines made available by Fox [16].

For space reason, we will not discuss the details of the
sticky-HDP-HMM. For the particular application on which
this paper focuses, the advantages of a fully Bayesian
approach over EM are manifold. The definition of prior
distributions on the HMM parameters, opens the possibility
to integrate domain-specific knowledge about the static and
dynamic features of the sensor signature that we are trying to
fit. For example, referring to figure 4(b), the hyper-parameter
γ can influence the number of unique observation models
generated to fit the time-series observations, κ can bias
the self-transition probabilities of the transition matrix A,
while λ can be used to define a priori knowledge about the
spatial distribution of the observations (in case of a Gaussian
observation models). If this knowledge is not available,
weakly informative priors can be used. Furthermore, the
HDP-HMM can naturally be extended to a model were the
observation models consist of Linear Dynamical Systems
[17], allowing to take into account the correlations between
measurements and therefore represent a more natural choice
for smooth trajectories. Finally, the nonparametric treatment
of the hidden space cardinality eliminates the need for cross-
validating this parameter that arises in Maximum Likelihood
settings (i.e., when using the EM algorithm).
We used the blocked Gibbs sampler for the sticky HDP-
HMM [15] to learn the posterior distributions over the
initial state probability π0, the transition matrix A, and
the corresponding set of emission parameters {θ1, ...θ j}

capturing the time and spatial correlations from a training set
composed of k wrench time-series, together with their first
order derivatives z =

[
fx, fy, fx,τx,τyτz, ḟx, ḟy, ḟx, τ̇x, τ̇y, τ̇z,

]T
k

for each sub-step steps and execution scenario classc.
For each task sub-step and for each execution scenario, we
randomly select 50% of the trials for training the model. We
then apply the blocked Gibbs sampler for the HDP-HMM
to the recorded wrench time-series. After convergence of
the Gibbs sampler, the obtained samples approximate the
posterior distributions for the HDP-HMM model variables
(for a more detailed description of the adopted sampler and a
review of Markov Chain Monte Carlo methods, see [15]). For
our experiments, we used 12-dimensional Gaussian emission
parameters, and placed a weakly informative conjugate Nor-
mal Inverse Wishart (NIW) prior on the space of mean and
variance parameters (we therefore assume full correlation
between the dimensions of z). The number of degrees of
freedom was chosen as the minimum number necessary
to obtain a proper prior, the mean equal to the empirical
mean of the observations, and the scale matrix equal to 0.75
of the empirical variance. After convergence, the posterior
means for the parameters Π = {π0,A,Θ = {θ1, ...θ j}} are
computed from the samples. Figure 5 shows an example
of the learned segmentation for a time-series of step4 of
execution scenario nominal. The different colours correspond
to different values of zt and the horizontal lines represent
the 2σ interval of the corresponding Gaussian emission
parameters θzt = N (µ,σ2).

IV. TASK EXECUTION MONITORING AND
ABNORMALITY CLASSIFICATION

The output of the Gibbs sampler of section III-B consists
of the estimated mean values for the parameters Πk =
{π0,A,Θ}, representing the initial state probability, the tran-
sition matrix, and the set of learned Gaussian emission pa-
rameters θ j =N (µ,σ2), of a HMM capturing an “average”
wrench signature of the training trials recorded for each task
sub-step and each execution scenario.
The standard forward-backward (fwd-bwd) algorithm [12]
allows to compute the likelihood that a sequence of obser-
vations was generated by a learned HMM.

For each of the 11 task executions not used for training, we
perform online error detection and classification as follows:

• iterating over the wrench time-series, we identify the
current steps from the FSM;

• in case only error detection is required, we select
only the learned HMMs nominals and run the fwd-
bwd algorithm to iteratively compute the likelihood
p(zs1:st |Πnominals), where t goes from the first to the
last time-index where the FSM in step s. If error
classification is required the same is done for the HMMs
classcs learned for all the execution scenarios classc.

• again, if only error detection is required it is sufficient
to raise an error signal when the p(ws1:sT |Πnominal,s)
falls below a threshold, determined via ROC analysis
[18]. In case of error recognition the time-series is
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Fig. 5. Learned segmentation for a wrench time-series of step4 of execution scenario nominal. The different colours correspond to different values of zt
and the horizontal lines represent the 2σ interval of the corresponding Gaussian emission parameters. Plots for wrench first order derivatives are omitted.

assigned to the classc for which the computed likelihood
is maximal.

A. Error Detection and Recognition: experimental results

The error detection and classification recognition rou-
tines are currently implemented in both MATLAB scripting
language and in C++, allowing their integration with the
robot controller while preserving real-time performances.
The whole learning procedure of section III was repeated 10
times, each time randomly selecting the execution trials used
for training. Error detection and recognition is performed on
the remaining 11 execution trials. The earliest sub-task for
which the sensor signature allow for reliable error detection
is step4. Figure 6 shows the ROC curve for step4 obtained
averaging over the 10 learning/classification iterations. A
ROC curve illustrates the performance of a binary classifier
system as its discrimination threshold is varied. In our case,
we use the log-likelihood log(p(ws1:st |Πnominals)) to discrim-
inate between sensor signatures generated by trials belonging
to the nominal execution scenario, and any of the others. The
x-axis refers to the false positive rate (i.e. the percentage of
non nominal trials erroneously classified as nominal, divided
by the total number of alarms raised), while the y-axis to the
true positive rate. The curves can be interpreted as follows:
the ROC curve for step4, indicates a minimum true positive
rate of 97.5 . This is consistent with the confusion matrix
shown in table I, where it is shown that in only one case an
execution trial of scenario nominal is misclassifed as button.
This confirms our hypothesis that under the assumptions
mentioned in section I the learned HMMs can successfully
model the difference sensor signatures and that this models
can be used for on-line error detection. In terms of error
classification, table I shows the confusion matrix for the
classification of all the validation trials (for space reason, we
restrict ourselves to the time-series of step4), averaged over
the 10 learning/recognition iterations. On average, 91% of
the validation trials are correctly classified, with a maximum
of 97.5% for class nominal, and a minumum of 80% for
class box. In figure 7, we show how the class-specific log-
likelihoods for each measurement wt and for measurements
ws1:st evolve as more measurements wt , recorded during

classc4 nominal4 metal round4 metal square4 button4 box4
nominal4 97.5%(39/40) 0 0 2.5% 0
metal round4 0 90%(18/20) 10% 0 0
metal square4 10% 0 90%(18/20) 0 10%
button4 0 0 10% 90%(9/10) 0
box4 0 0 20% 0 80%(16/20)

TABLE I
RECOGNITION PERFORMANCES FOR 11 TRIAL RANDOMLY SELECTED

VALIDATION TRIALS FOR ALL EXECUTION SCENARIOS, FSM step4 ,
AVERAGED OVER 10 LEARNING/RECOGNITION ITERATIONS

step4 of a nominal execution trial, are examined. It can
be noted how, for t < 325 (where t is a time-step index,
sampling rate is 500Hz), the likelihood of class metal round
is the highest, with nominal being the second most-likely.
For t > 325, the cumulative likelihood of the measurements
w1:t are estimated to belong to the nominal scenario. The
classification results shown in this section refer to the case
where a decision is made at the end of any steps. Hastening
the decision time allows for faster reactions, but is more
likely to cause false alarms.

Fig. 6. ROC curves (for the 10 learning/recognition iterations) for step4,
obtained varying the threshold for log p(ws1:st |Πnominals in red the no-
discrimination line
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Fig. 7. (top) Plot of log p(wst |Πclasscs ) and log p(ws1:st |Πclasscs ) (bottom)
for step4 of a nominal execution trial. From t > 325, the log-likelihood of
all the measurements from s1 to st is constantly highest for the nominal
class.

V. CONCLUSION AND FUTURE WORK

In this paper we have shown how a Bayesian time-series
model, namely the sticky-HDP-HMM, can be applied for pro-
cess monitoring and fault classification in industrial robotics
tasks. By means of an alignment task performed with a real
robot, we demonstrated the ability of the sticky-HPD-HMM
to capture sensor signatures for a nominal and abnormal task
executions. These signature models are then used on-line
to perform error detection and classification. The proposed
method is widely applicable to different tasks and sensors,
since its assumptions are limited to the availability of human-
labelled task execution data, and the amount and quality of
the information content in the sensor signatures. The rele-
vance of this work for the field lies in the possibility to extend
the semantics of events usually used for modelling task FSM.
We envision high-level robot controllers that can use the
typical discrete events used in sub-task modelling, and at
the same time measure continuously and probabilistically
the correspondence of sensors time-series to the expected
ones, when this knowledge is available. The possibility of
identifying and react to semantically richer error events is
of great importance in context of human-robot cooperation
scenarios, where the assumptions of precise modelling of
the workspace and its static nature have to be relaxed. An
interesting future work direction consists in the investigating
the use of the sticky-HDP-VAR and HDP-SLDS models
[15], extensions of the sticky HDP-HMM that allows the
use of Vector Auto-Regressive (VAR) and Linear Dynamical
Systems (LDS) as observation models. These models assume
correlation among the measurements associated to a given
state z, and are therefore better suited to model smooth
signals like the ones recorded in this setting. Unfortunately,
fitting these model is computationally more expensive in
both the learning and the recognition steps, and require
more informative priors to obtain reliable posterior models.
These priors could be obtained leveraging available expert

knowledge about the expected dynamic content of the sensor
signatures.
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