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Abstract— Decentralized control of networked systems has
been widely investigated in the literature, with the aim of
obtaining coordinated emerging behaviors (e.g. synchronization,
swarming, coverage, formation control) by means of local
interaction. In this paper we consider the possibility of injecting
external inputs into the networked system, in order to obtain
more complex cooperative behaviors. Specifically, we introduce
a strategy that makes it possible to control the overall state
of the networked system by directly controlling only a subset
of the networked agents, namely the leaders. Exploiting local
interaction rules, it is possible to define the inputs for the leaders
in such a way that each follower is forced to track a desired
periodic setpoint.

I. INTRODUCTION

This paper introduces a methodology to implement dy-

namic complex behaviors in a networked system. The main

objective is to have a subset of agents, called leaders, that

are in charge of controlling the overall state of the networked

system, in a completely decentralized manner.

Generally speaking, the aim of decentralized control

strategies is implementing local interaction rules to obtain

a coordinated emerging behavior. Mainly investigated coor-

dinated behaviors include aggregation, swarming, formation

control, coverage and synchronization [1]–[4].

The idea of implementing more complex cooperative be-

haviors have recently appeared in the literature. For instance,

[5], [6] present decentralized strategies for the coordination

of groups of mobile robots moving along non–trivial paths.

A decentralized strategy is presented in [7] that extends the

standard consensus protocol to obtain periodic geometric

patterns.

Recently a few works appeared that investigate the pos-

sibility of interacting with a networked system, in order to

obtain a desired behavior [8]. The idea is that of having a

set of agents, interconnected by means of a graph: a subset

of those agents, namely the leaders, may be directly con-

trolled, while the others, namely the followers, are indirectly

controlled through the underlying interconnection graph.

As shown in [9], it is possible to model a networked sys-

tem in such a way that the classical notions of controllability

and observability of LTI systems are applicable. Specifically,

it turns out that in the case of networked systems these

properties are heavily influenced by the topology of the un-

derlying communication graph. It is possible to demonstrate
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that weighted graphs can be opportunely defined to guarantee

the controllability of the networked system almost surely,

provided that the graph is connected. This property can be

ensured, in a decentralized manner, exploiting connectivity

maintenance algorithms [10]–[12]. Duality principle can then

be invoked to show that a networked system is controllable

if and only if it is observable.

In this paper we exploit the well known regulator equa-

tions to design a control law that makes a networked system

follow a predefined periodic setpoint.

II. PRELIMINARIES

A. Matrix operators

In this section we define some matrix operators that will

be used throughout the paper.

Let Ω ∈ R
ρ×σ be a generic matrix. Then, we define

• Ω [i, :] ∈ R
σ as the row vector containing the i–th row

of Ω.

• Ω [:, j] ∈ R
ρ as the column vector containing the j–th

column of Ω.

• Ω [i, j] ∈ R as the element (i, j) of Ω.

• Ω [i : k, j] ∈ R
k−i, with k > i, as the column vector

containing those entries of the j–th column of Ω which

are included between the indices i and k.

• Ω [i, j : k] ∈ R
k−j , with k > j, as the row vector

containing those entries of the i–th row of Ω which

are included between the indices j and k.

On the same lines, let ω ∈ R
ρ be a generic vector. Then, we

define:

• ω [i : j] ∈ R
j−i, with j > i as the vector containing

those entries of ω which are included between the

indices i and j.

Let now ω ∈ R
ρ be a generic vector. We define the

operator mat·×· (·) as follows:

matσ×ζ (ω) = Ω ∈ R
σ×ζ (1)

such that

Ω [i, j] = ω [i+ σ (j − 1)]

∀i = 1, . . . , σ, ∀j = 1, . . . , ζ, with ρ = σζ.

B. Model of the system

Consider a group of N agents, namely mobile robots,

sensors or other entities, whose interconnection structure is

modeled by means of an undirected graph G . Let V (G ) and

E (G ) be the vertex set and the edge set of the graph G ,

respectively. Moreover, let N be the cardinality of V (G )
(i.e. the number of vertices, or nodes, of the graph), and let
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M be the cardinality of E (G ) (i.e. the number of edges, or

links, of the graph). Clearly, E ⊆ V × V.

Let L (G ) ∈ R
N×N be the (unweighted) Laplacian matrix

of the graph G . Moreover, considering an edge–weighted

graph, let LW (G ) ∈ R
N×N be the weighted Laplacian

matrix of the graph G , for an opportune set of edge–weights.

Let xi ∈ R
m be the state of the i–th agent: without loss of

generality, we will hereafter consider the case where the state

corresponds to each agent’s position. Then, let the agents

be interconnected according to the well known (weighted)

consensus protocol [3]:

ẋi = −
∑

j∈Ni

wij (xi − xj) (2)

where wij > 0 is the edge weight, and Ni ⊆ V (G ) is the

neighborhood of the i–th agent, defined as the set of the

agents that are interconnected to the i–th one, namely:

Ni = {j ∈ V (G ) such that (vi, vj) ∈ E (G )} (3)

Without loss of generality, we will hereafter refer to the

scalar case, namely xi ∈ R. It is however possible to extend

all the results to the multi–dimensional case, considering

each component independently.

Hence, let x = [x1, . . . , xN ]
T

∈ R
N be the state of the

multi–agent system. The interaction rule defined in Eq. (2)

can be rewritten as follows:

ẋ = −LW (G )x (4)

As is well known [3], under the consensus protocol the

states of the agents converge to a common value. Assume

now that the goal is to control the states of the networked

agents: for this purpose, define a few leader agents, to whom

it is possible to inject a control action. The state of the other

agents, referred to as the followers, evolves according to the

consensus protocol.

More specifically, let VL (G ) ⊂ V (G ) be the set of the

leader agents, and let VF (G ) = V (G )− VL (G ) be the set

of the follower agents. Then, as shown in [9] for unweighted

graphs, the interaction rule introduced in Eq. (2) is modified

as follows:
{

ẋi = −
∑

j∈Ni

wij (xi − xj) if vi ∈ VF (G )

xi = ui if vi ∈ VL (G )
(5)

where ui = ui (t) ∈ R is a control input.

Let NL be the number of leaders. It is always possible

to index the agents such that the last NL agents are the

leaders, and the first NF = N −NL are the followers. Then,

as shown in [9], it is possible to decompose the Laplacian

matrix LW (G ) as follows:

LW (G ) = −





A B

BT LL



 (6)

where A = AT ∈ R
NF×NF is the Laplacian matrix of

the subgraph of the followers, B ∈ R
NF×NL represents

the interconnection among leaders and followers, and

LL = LT
L ∈ R

NL×NL is the Laplacian matrix of the sub-

graph of the leaders.

Define now xF ∈ R
NF as the state vector of the followers,

namely xF = [x1, . . . , xNF
]
T

. Define also u ∈ R
NL as the

input vector, namely u = [uNF+1, . . . , uN ]
T

. Moreover, let

y ∈ R
NL be the output vector, that is the vector containing

the state variables that are measurable by the leaders: it is

reasonable to assume that each leader is able to measure the

state of its neighbors.

We assume that the leader nodes are able to directly ex-

change information among each other. Namely, the following

assumption is made:

Assumption 1 A complete communication graph exists

among the leader nodes.

Therefore, the dynamics of the networked system can then

be rewritten as a standard LTI system, namely:

{

ẋF = AxF + Bu
y = BTxF

(7)

Hence, the classical notions of controllability and observ-

ability can be applied to the networked system itself. In

particular, the following property can be derived:

Property 1 A networked system whose dynamics are written

according to Eq. (7) is observable if and only if it is

controllable.

Hence, we will hereafter suppose that the (possibly

weighted) communication graph G is designed in such a way

that the corresponding LTI system defined as in Eq. (7) is

controllable and observable.

Therefore, once observability is guaranteed, a standard

Luenberger state observer [13] can be designed. Specifically,

let x̂ ∈ R
NF be the estimate of xF , and let Kl ∈ R

NF×NL

be an opportunely chosen gain matrix. The following update

law may be defined for the state observer:

˙̂x = Ax̂+ Bu−Kl

(

y − BT x̂
)

(8)

It is worth remarking that, under Assumption 1, this state

observer can be implemented in a decentralized manner, that

is exploiting only information locally available to the leaders.

The estimation error ê ∈ R
NF can be defined as

ê = xF − x̂ (9)

III. DEFINITION OF THE CONTROL LAW FOR SETPOINT

TRACKING

In this Section we introduce a methodology to define

a control law that makes the followers track a periodic

setpoint, defined by means of an exosystem [14], that is an

autonomous system whose state vector ξ ∈ R
2n+1 evolves

according to the following dynamics:

ξ̇ = Gξ (10)
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where the matrix G ∈ R
(2n+1)×(2n+1) is a block diagonal

matrix, namely:

G =











G̃0 0 . . . 0

0 G̃1 . . . 0
...

...
. . .

...

0 0 . . . G̃n











(11)

Let each block G̃p be defined as follows:

G̃p =



















0 if p = 0






0 p
2π

T

−p
2π

T
0






if p = 1, . . . , n

(12)

The exosystem exhibits the following property:

Property 2 Any periodic function with period T may be

approximated with a linear combination of the elements of

the vector ξ.

In fact, defining the initial state of the exosystem ξ0 ∈ R
2n+1

as follows:

ξ0 = [1, 0, 1, 0, . . . , 1]
T

(13)

the solution of the differential equation in Eq. (10) is the

following:

ξ (t) = eGtξ0 =



































1

sin

(

2π

T
t

)

cos

(

2π

T
t

)

...

sin

(

n
2π

T
t

)

cos

(

n
2π

T
t

)



































(14)

Consider then a generic periodic setpoint xs (t) ∈ R
NF ,

that has to be tracked by the state xF (t) ∈ R
NF of the

followers. According to Property 2, it is possible to define a

matrix J ∈ R
NF×(2n+1) such that

xs (t) = J ξ (t) (15)

Therefore, once the period T and the number of harmonics

n have been defined, then the choice of the matrix J leads

to the definition of a particular periodic setpoint xs.

Define then the regulation error e (t) ∈ R
NF as follows:

e (t) = xF (t)− J ξ (t) (16)

Then, considering Eqs. (7), (10) and (16), the dynamics of

the networked system can be rewritten as follows:














ẋF = AxF + Bu
y = BTxF

e = xF − J ξ

ξ̇ = Gξ

(17)

As is well known [14] the regulation problem can be solved

defining the input u as follows:

u = FxF + (Γ−FΠ) ξ (18)

where F is an arbitrary matrix, chosen such that (A+ BF) is

Hurwitz stable, and Π and Γ are the solution of the regulator

equations that, considering the dynamical system described

in Eq. (17), can be written as follows:

{

AΠ+ BΓ = ΠG

Π− J = 0

(19a)

(19b)

It is worth noting that Eq. (19a) defines a generalized

Sylvester equation [15], while Eq. (19b) can be solved

satisfying the following equality:

J = Π (20)

We will hereafter introduce some quantities that will be

exploited to provide a solution for the regulator equations.

Hence, define the matrix Ḡ ∈ R
NF (2n+1)×(2n+1) as follows:

Ḡ =











G0

G1

...

GNF−1











(21)

Inspired by [15], define Ξ ∈ R
NF×(NLNF ) as follows:

Ξ =
[

R(NF−1),0B |R(NF−1),1B | . . . |R(NF−1),(NF−1)B
]

(22)

Each matrix R(NF−1),p ∈ R
NF×NF , p = 0, . . . , NF − 1 is

computed according to the following recursive definition:

Rq+1,p =







ARq,p + χq+1,pI if p = 0
−Rq,p−1 + χq+1,pI if p = q + 1
ARq,p −Rq,p−1 + χq+1,pI otherwise

χq+1,p =











































−
1

q + 1
tr (ARq,p) if p = 0

1

q + 1
tr (Rq,p−1) if p = q + 1

−
1

q + 1
tr (ARq,p −Rq,p−1) otherwise

with R0,0 = I

(23)

where I is the identity matrix of opportune dimension, and

tr (·) is the trace operator.

Define then Z ∈ R
NL×(2n+1) as an arbitrarily chosen

parameter matrix. Considering the definition of G given in

Eq. (11), the matrix Q ∈ R
(NFNL)×(2n+1) may be defined

as follows:

Q =











Z
ZG

...

ZGNF−1











(24)
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Moreover, considering the definition of χi,j given in

Eq. (23), define the matrix X ∈ R
(2n+1)×(2n+1) as follows:

X =

NF
∑

p=0

χNF ,pG
p (25)

As shown in [15, Theorem 1], assuming that matrices A and

I have no eigenvalues in common with G, then a solution for

the generalized Sylvester equation in Eq. (19a) is given by

the matrices Π and Γ defined as follows:
{

Π = ΞQ

Γ = ZX

(26a)

(26b)

A. Admissible setpoint functions

The equality in Eq. (20) represents a constraint on matrix

J , that, according to Eq. (15), implies a constraint on the

choice of the setpoint.

Considering then the definition of the setpoint functions

xs (t) given in Eq. (15), and considering the regulator equa-

tions in Eq. (19), we now introduce the following definition

of admissible setpoint functions.

Definition 1 The set of admissible setpoint functions

Sa ∈ R
NF is defined as follows:

Sa = {xs (t) = J ξ (t) such thatJ = Π} (27)

where Π is a solution of the generalized Sylvester equation

in Eq. (19a), that is Π is defined according to Eq. (26a).

We will now characterize the set of admissible setpoint

functions, defined according to Definition 1. For this purpose,

define the matrix H ∈ R
NF (2n+1)×NL(2n+1) according to the

following equation:

H [pq, :] = ḠT [q, :] (matNL×NF
(Ξ [p, :]))

T
⊗ I (28)

where I is the identity matrix of opportune dimension, and

the symbol ⊗ represents the Kronecker product.

Consider again the arbitrary parameter matrix

Z ∈ R
NL×(2n+1). The vector Λ ∈ R

NF (2n+1) may be

defined as follows:

Λ = HZ̄ (29)

where the vector Z̄ ∈ R
NL(2n+1) is defined as follows:

Z̄ = [Z [1, :] | Z [2, :] | . . . | Z [NL, :]]
T

(30)

Being Z an arbitrary parameter matrix, then the vector Λ
is arbitrarily defined in the image of H.

The following Proposition provides the main result of the

paper. Namely, we show that the image of H defines the set

of admissible setpoint functions Sa.

Proposition 1 Consider the definition of the setpoint func-

tions given in Eq. (15), and consider the definition of the

set of admissible setpoint functions Sa given in Eq. (27).

Consider also a vector Λ defined as in Eq. (29), that is a

generic vector in the image of H. Then, a matrix J defined

as follows:

J = matNF×(2n+1) (Λ) (31)

defines the set Sa according to Definition 1.

Proof: Consider the definition of matrix Π given

in Eq. (26a). According to the definition of matrix Q in

Eq. (24), then the element (p, q) of Π can be written as

follows:

Π [p, q] =

NL
∑

k=1

Z [k, :]

NF−1
∑

r=0

Ξ [p, (r + 1)NL + k]Gr [:, q]

(32)

Considering then the definition of Ḡ in Eq. (21), and the

definition of Z̄ in Eq. (30), then Eq. (32) can be rewritten

as follows:

Π [p, q] = Z̄T matNL×NF
(Ξ [p, :])⊗ IḠ [:, q] (33)

where I is the identity matrix of opportune dimension.

Since Π [p, q] ∈ R is a scalar, then it it possible to rewrite

Eq. (33) computing the transpose of the right–hand side term,

namely:

Π [p, q] = ḠT [q, :] (matNL×NF
(Ξ [p, :]))

T
⊗ I Z̄ (34)

According to Eq. (28), it is possible to rewrite Eq. (34) as

follows:

Π [p, q] = H [pq, :] Z̄ (35)

Thus, considering the definition of Λ given in Eq. (29), then

Eq. (35) can be rewritten in a compact form as follows:






Π [:, 1]
...

Π [:, NF ]






= HZ̄ = Λ (36)

Therefore, defining J according to Eq. (31), then

J = Π

Namely, the condition in Eq. (20) is satisfied, which proves

the statement.

It is worth remarking that the elements of

Z ∈ R
NL×(2n+1) can be arbitrarily defined, and represent

then NL (2n+ 1) degrees of freedom in the design of the

control system.

Proposition 1 proves that the elements of matrix Π
correspond to those of Λ. According to Eq. (29), Λ is

arbitrarily defined in the image of H. Hence, the image of H
completely defines the set of admissible setpoint functions

Sa. Specifically, matrix Π is completely determined once the

NL (2n+ 1) terms of Z have been defined. In other words,

any admissible setpoint function is defined by means of the

selection of NL (2n+ 1) free parameters. Since NL is the

number of leaders, it is possible to conclude that each leader

introduces (2n+ 1) degrees of freedom for the definition of

the setpoint function.

Clearly, the dimension of the image of H is related to

the rank of H itself. It is worth noting that matrix H is

completely determined once the topology of the networked

system has been defined, as well as the number of harmonics

n used to represent the setpoint. In fact, considering its

definition given in Eq. (28), matrix H is defined as a function

of Ḡ and Ξ:
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• According to Eqs. (11) and (21), matrix Ḡ is completely

determined once n and NF have been defined.

• According to Eqs. (22) and (23), matrix Ξ is completely

determined once matrices A and B have been defined,

that is once the topology of the graph has been defined.

Therefore, the rank of H is a function of the topology

of the network. Specifically, it is possible to demonstrate

that, based on the choice of the leaders, the dimension of

the image of H may be lower than NL (2n+ 1). In other

words, increasing the number of leaders (i.e. increasing NL)

does not always guarantee increasing the dimension of the

image of H. Optimal leader selection is out of the scope of

this paper, and then will not be analyzed. However, several

strategies can be found in the literature to solve this issue

[16], [17].

B. Definition of the control law

The solution of the regulator equations introduced in

Eq. (19), namely a pair of matrices (Π,Γ) defined as in

Eq. (26), can then be exploited to define a control law to

make the system follow an admissible setpoint.

Specifically, the control law in Eq. (18) makes the net-

worked system follow the desired setpoint function, defined

as in Eq. (15), where matrix J is defined in order to satisfy

the conditions of Proposition 1.

However, for the control law to be applicable in a decen-

tralized manner, the vector xF in Eq. (18) has to be replaced

with its estimate, computed by means of the state observer

introduced in Eq. (8).

Considering the dynamics of the networked system defined

in Eq. (7), the estimation error ê defined in Eq. (9), the state

observer defined in Eq. (8), and the control law defined in

Eq. (18), the dynamics of the closed loop system can then

be summarized as follows:




ẋF

˙̂e

ξ̇



=





A+ BF −BF B (Γ−FΠ)
O A+KlB

T
O

O O G









xF

ê

ξ





(37)

where O is a zero matrix of opportune dimension.

As is well known from basic linear control theory [13],

Eq. (37) guarantees that the state vector xF (t) tracks the

desired septoin xs (t).

IV. SIMULATIONS

Several simulations have been carried out in order to

evaluate the performance of the proposed control strategy.

In the simulations, we considered single integrator agents

moving in a three dimensional environment, namely xi ∈ R
3,

∀i = 1, . . . , N . Let (x, y, z) represent the global reference

frame.

Specifically, different graph topologies have been ex-

ploited to implement several admissible periodic setpoint

functions. Examples are represented in Figs. 1 and 2, which

show the results of simulations performed with N = 8 and

N = 15 agents, respectively. In the figures, the topology of

the communication graph is depicted (with Li indicating the

i–th leader, and Fj indicating the j–th follower), as well

as the periodic setpoint functions defined for each follower.

A complete communication graph is assumed among the

leaders, but is not depicted for clarity purpose.

In order to evaluate the performance of the proposed

control strategy, the regulation error e (t), defined according

to Eq. (16), namely

e (t) = xF (t)− xs (t)

was computed for each follower.

Specifically, Figs. 1 and 2 show the evolution of each

element of the tracking error, namely ei (t), ∀i = 1, . . . , NF .

Due to space limitations, only the component along the x–

axis of the tracking error is depicted.

As expected, Figs. 1 and 2 show that the tracking error

asymptotically vanishes, for all the follower agents. Results

of these simulations are also shown in Part 1 and Part 2

of the accompanying video clip1, respectively. In the video,

leaders are represented with green pyramids, while followers

are represented with red pyramids.

F1 F2

F3F4

F5 F6

L1

L2

# of Leaders NL = 2
# of Followers NF = 6
# of Edges M = 7

0 1 2 3 4

−100

0

100

t

x
i s
(t
)

0 2 4 6 8 10 12

−500

0

500

t

e
i
(t
)

Fig. 1. Simulation results, with N = 8 agents (setpoint and tracking error
along the x–axis)

The proposed control strategy was also validated for de-

centralized control of groups of quadrotor Unmanned Aerial

Vehicles (UAVs). Several strategies can be found in the

1A high quality extended version of the video clip is freely available at
http://www.arscontrol.unimore.it/iros13
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F1 F2

F3

F4

F5

F6

F7

F8

F9F10

L1 L2

L3

L4

L5

# of Leaders NL = 5
# of Followers NF = 10
# of Edges M = 26

0 1 2 3 4
−400

−200

0

200

400

t

x
i s
(t
)

0 2 4 6 8 10 12

−2,000

−1,000

0

1,000

t

e
i
(t
)

Fig. 2. Simulation results, with N = 15 agents (setpoint and tracking
error along the x–axis)

literature [18] to build a local controller such that the closed

loop behavior of each quadrotor UAV can be effectively

approximated with that of a single integrator kinematic agent.

Hence, the scenarios previously simulated with Matlab

were replicated with a team of UAVs. Specifically, Part 3

and Part 4 of the accompanying video clip show the move-

ments of the follower agents, with the communication graph

described as in Fig. 1 and Fig. 2 respectively.

V. CONCLUSIONS

In this paper we introduced a methodology to obtain com-

plex cooperative behaviors in networked systems. Specif-

ically, we introduced a strategy that makes it possible to

control the overall state of the networked system by directly

controlling only a subset of the networked agents, namely the

leaders. Modeling the dynamics of the networked system as

a standard LTI system, we demonstrated that it is possible

to exploit standard design methodologies, based on the

regulator equations, to make each follower agent track a

desired periodic setpoint function.

We demonstrated that, given the topology of the commu-

nication graph, it is possible to define a set of admissible

setpoint functions. Current work aims at solving the inverse

problem, namely finding a suitable graph topology such that

a given setpoint function is admissible.

Moreover, the proposed technique assumes that the com-

munication topology is fixed, which is not always reasonable

in real application scenarios, when dealing, for instance, with

mobile robots with finite communication range. Current work

aims at extending the scope of the proposed control strategy

to variable topology communication graphs.
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