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Abstract— In this work, we consider the optimal path of a
fixed-wing unmanned aerial vehicle (UAV) tracking a mobile
surface target. One of the limitations of fixed-wing UAVs in
tracking mobile targets is the lack of hovering capability when
the target moves much slower than the minimum UAV speed,
requiring the UAV maintain an orbit about the target. In this
paper, we propose a method to find the optimal policy for fixed-
wing UAVs to minimize the location uncertainty of a mobile
target. Using a grid-based Markov Decision Process (MDP), we
use an off-line policy iteration algorithm to find an optimal UAV
path in a coarse discretized state space, followed by an on-line
policy iteration algorithm that applies a finer grid MDP to the
region of interest to find the final optimal UAV trajectory. We
validate the proposed algorithm using computer simulations.
Comparing the simulation results with other methods, we show
that the proposed method has up to 13% decrease in error
uncertainty than ones resulted using conventional methods.

I. INTRODUCTION

Over the last few decades, engineers and researchers have

made remarkable progress toward the development of robust

unmanned aerial vehicles (UAVs) in both civil and military

applications including intelligence collection, surveillance,

reconnaissance, and environmental monitoring, to name a

few. For such applications, ground or water surface target

tracking is a fundamental and challenging task. Since the

sensing capabilities of UAVs are constrained by the UAV

dynamics and the onboard sensor capabilities, intelligent path

planning for UAVs to maximize target localization accuracy

is an important area of research.

Unlike rotary-wing UAVs, capable of hovering over a

mobile surface target, fixed-wing UAVs must maintain a

minimum speed to produce enough lift force and plan ahead

when tracking targets that move slower than UAVs. The

optimal path of a fixed-wing UAV following a target would

be one of the paths shown in Fig. 1, depending on target

speeds. If the target speed, V t, is greater than the minimum

UAV speed, V u
min, and less than the maximum UAV speed,

V u
max, the simplest way to follow the target is to match the

UAV speed with the target speed as shown in Fig. 1a. For
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Fig. 1: The paths of a fixed-wing UAV following a target

traveling at the speed of (a) V u
min ≤ V t ≤ V u

max, (b) V t <
V u
min, (c) V t << V u

min (d) V t = 0, where V t is the target

speed and V u is the UAV speed.

V t < V u
min, the UAV can no longer maintain a straight

path to follow the target. Instead, the UAV path must be

a sinusoidal path as shown in Fig. 1b. As V t becomes much

less than V u
min, a suitable path will be an orbital motion

about the target. As an extreme case where the target is not

moving, the optimal path will be a circular path about the

target. In this paper, we propose a method to find in real-time

the optimal path of a fixed-wing UAV following a target at

various velocities, and we demonstrate the optimal path is

indeed very close to one of the aforementioned paths.

A number of engineers have introduced a variety of

path planning algorithms for target tracking. Beard et al.

proposed a system architecture for assigning and intercepting

targets using cooperative UAV systems [3]. In their method,

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 2955



coordination and negotiation between UAVs were made,

considering estimated time for a UAV to reach a target

(arrival time at target) and available threats from scattered

obstacles. Tisdale et al. reported practical UAV control strate-

gies for fixed-wing aircraft using adaptable receding-horizon

control [11]. In their paper, an increasing horizon planner

was proposed to find appropriate optimization strategies for

different situations. He et al. suggested a quardrotor path

planning approach based on a belief network for tracking

ground targets in an urban-like (road networked) environ-

ment [6]. The belief of each target’s pose was modeled with

a multi-modal Gaussian distribution.

Compared to estimating all feasible and continuous UAV

paths to acquire the optimal UAV path, it is often more

efficient to discretize a continuous state space into a state

space with a fixed number of discrete states. Additionally,

the nonholonomic motion of fixed-wing UAVs reduces the

number of available choices for the next UAV states. Lavis

et al. proposed a search and tracking approach for moving

targets by dynamically changing the size of the search space

to contain only the high-probability target locations. This

improves the computational efficiency and allows targets

to be tracked beyond the original search area [7]. Their

approach used recursive Bayesian estimation, maintaining

two different probabilistic density functions for the update

and prediction stages. Another method developed by Yu et

al. suggests a cooperative target tracking approach using dy-

namic occupancy grids of the estimated target locations [13].

To model occupancy grids for probabilistic path planning,

they used a Bayesian filter and a second-order Markov chain.

Among discretized approaches, the Markov Decision Pro-

cess (MDP) [4] is a powerful method for finding optimal

solutions. Akselrod et al. applied a decentralized MDP

approach to solve a multiple target tracking assignment prob-

lem with multiple UAVs [1]. In their modified decentralized

MDP method, the transitions and observations of each agent

are considered independent to obtain the polynomial algo-

rithm. Yeow et al. proposed a hierarchical MDP for multiple

target tracking in wireless sensor networks [12]. By using the

clustered sensor network, an energy efficient and distributed

multiple target tracking network can be constructed. Al-

Sabban et al. [2] demonstrated a path planning algorithm

for a UAV using MDP to minimize energy consumption by

exploiting wind-energy distributed in grid cells.

In this paper, we propose an optimal UAV path planning

technique while maintaining appropriate target detectability

with sequential decision processes. In order to acquire the

optimal path, an MDP with grid-based discretization is

applied to estimate costs for each UAV path decision. The

main contributions of this work are 1) a computationally

efficient state space reduction technique, 2) an MDP design

for the optimal path planning of a fixed-wing UAV tracking

a mobile target, and 3) a real-time algorithm to compute the

optimal policy.
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Fig. 2: A model of a UAV following a surface target in (a)

a world coordinate frame and (b) a target-fixed coordinate

frame

II. DYNAMIC MODEL

The path planning approach used in this paper is built

on the assumption of a target traveling at a constant speed

and heading. However, because we continuously refine our

estimates of the target’s velocity, our approach allows us

to track any moving target. Although it is simple, the

“almost constant velocity” method has been shown to be

quite effective in many applications, and our experiments

demonstrate that the approach works well at tracking targets

which change their speed and heading.

The coordinate system that we use in our planning al-

gorithms is fixed to a moving target. To build an intuitive

understanding of how our approach can handle uncertainty in

both target and UAV motion, in this section, we briefly derive

the uncertainty of a UAV in the coordinate frame of a moving

target based upon the uncertainties in a fixed reference frame.

Suppose in a world-fixed Cartesian reference frame

(xw, yw), shown in Fig. 2a, the target is located at x
t
w ∈

R
2 and moving with velocity v

t
w ∈ R

2.1 Suppose further

that we are able to produce estimates of the UAV location

and velocity, respectively, x̂u
w ∼ N (xu

w , P
u
w,x) and v̂

u
w ∼

N (vu
w , P

u
w,v). Similarly, we have estimates of the targets lo-

cation x̂
t
w ∼ N (xt

w , P
t
w,x) and velocity v̂

t
w ∼ N (vt

w , P
t
w,v).

1We assume the motion of the UAV is constrained in 2D space, i.e., the
altitude of the UAV is constant. This assumption is valid since we plan to
extend our method to multiple UAVs tracking multiple targets, and we plan
to have each UAV maintain its altitude to avoid collisions.
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We now define a second coordinate system (x, y), whose

origin is fixed to the target shown in Fig. 2b. Since we

will use this coordinate system throughout the remainder

of the paper, we use no prefix for simplicity. We set the

transformation from world-fixed coordinate frame to target-

fixed coordinates to be

x̂
u = R̂x̂

u
w − x̂

t
w,

v̂
u = R̂ v̂

u
w,

where matrix R̂ rotates v̂
t
w to lie along the x-axis of the

target coordinate frame. Although the position and heading of

the target are known perfectly in the target coordinate frame,

R̂ and x̂
t
w propagate the uncertainty of the target position and

heading into x̂
u and v̂

u. In general, x̂u and v̂
u will not be

normally distributed, but they will be unimodal. Therefore,

we can approximate them by a Gaussian distribution as

illustrated by the larger circles in Fig. 2.

We use a coordinated-flight model of fixed-wing UAV

motion. In this model, the UAV flies with a constant velocity

v and can roll up to its maximum bank angle φ, giving it a

minimum turning radius

R =
v2

g tanφ
,

where g is the gravitational acceleration. Based upon these

parameters, in the time period T , the UAV will change its

heading by a maximum of

θmax =
vT

R
=

Tg tanφ

v
,

where θmax is measured in radians. We model the UAV to as-

sume a fixed roll over each time-step, a common assumption

for high-level coordinated-turn planning models.2

III. GRID-BASED PATH PLANNING

We use a Markov Decision Process (MDP) to find the

optimal path of a UAV based on the current states of the

UAV and the target. The path planning problem is to select

a sequence of waypoints for the UAV that minimizes the

uncertainty of target localization. With an onboard sensor,

we assume that the location uncertainty is proportional to

the distance from the UAV to the target.

We use a grid-based discretization for a discrete state space

MDP. The main goal of discretization is to reduce the number

of states for the MDP while the discretized state space

adequately represents the continuous state space. The system

of a UAV and a target in a 2 dimensional space has 8 degrees

of freedom — the positions and velocities of both UAV and

target. For a discretized system, we transform the (xw, yw)
vector space into the (x, y) vector space as discussed in

the previous section. Also, we assume the target is always

located at the origin for each time step and moving along

the x axis, and the UAV is located at a vertex of the grid in

2In reality, a UAV’s minimum speed is dependent upon what roll (bank)
angle it uses. For the sake of simplicity, we assume that we use the minimum
speed required to maintain the maximum bank angle selected for the control
algorithm.
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Fig. 3: Discretized MDP state space in a grid.

the discrete state space as illustrated in Fig. 3. The UAV’s

heading angle is defined with respect to the target velocity

vector. As the granularity of the grid becomes finer, we have

a better approximation of continuous state space system, but

with a large number of states, it is computationally expensive.

This is the main reason that an online path planning using

MDP has not been considered in most UAV target tracking

algorithms. In the following subsections we propose a new

algorithm using MDP to overcome aforementioned exponen-

tially growing computation issue.

A. Markov Decision Process

The infinite horizon MDP used in this work is defined as

M = {S,A, T ,R} representing a random and sequential

decision process. The parameters of MDP are defined as:

• S is the finite set of possible states representing the mo-

tion of the UAV with respect to the target. A state s ∈ S
is denoted by s = (x, y, θ, v), where q := (x, y) ∈ Z

2 is

the grid position of the UAV with respect to the current

position of the target, θ ∈ {2π/m, 2 · 2π/m, ..., 2π} is

one of the m-discretized heading angles of the UAV

with respect to the velocity vector of the target, and

v is the target speed. For each time step, we estimate

the speed of a target using the previous and current

locations of the target, and the target is assumed to move

at the estimated velocity. Based on this assumption, we

determine the best policy for each state to attain the

infinite horizon optimal path.

• A is the finite set of actions available from each state.

An action, a ∈ A, is defined by the change of UAV

heading from the current heading of the UAV. We

assume that the UAV can move in a finite number of

directions, e.g., a ∈ {−2 · 2π/m,−2π/m, 0, 2π/m, 2 ·
2π/m}, where m is the number of discretized heading

angles as defined earlier and 2 · 2π/m is the maximum

turning angle, θmax, at the minimum UAV speed.

• T : S ×A×S → [0, 1] is the state transition model for

the discretized state space, and it is the probability of the

next state s′, given action a in state s, P (s′|s, a). The

state transition of continuous state space in the (x̄, ȳ)
vector space is defined by
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Fig. 4: State transition of a discrete state space MDP in a

grid. The probability distribution of the discretized states at

k + 1 is inversely proportional to the distance from vertices

and the expected location of the UAV at k + 1.

θt+1 = θt + at + wθ

xt+1 = xt +∆Tut cosφ−∆T vt + wx

yt+1 = yt +∆Tut sinφ+ wy

vt+1 = vt + wv

where ut is the speed of the UAV at time t, vt is the

speed of the target, at ∈ A is the input steering angle,

∆T is the time duration for a single time step, φ =
θt+at is the expected heading angle at t+1, and w’s are

the zero mean Gaussian random noises. For the discrete

state transition, we first take the expectation of the next

continuous state and find the probability distribution

based on the distance between the nearest four vertices

and the expected location of the UAV as shown in Fig. 4.

The probability of the next grid location, q′ ∈ Z
2, is

given by the inverse of the distance between q′ and the

expected location of the UAV divided by the sum of the

inverse of distances between the nearest four vertices

and the estimated UAV location, i.e.,

P (q′i+m,j+n|ζi,j) =
d−1

i+m,j+n
∑

k,l∈{0,1} d
−1

i+k,j+l

(1)

for m,n ∈ {0, 1}, where di,j is the distance3 between

the expected UAV location, (E[xt+1],E[yt+1]) , and the

vertex at (i, j) and

ζi,j = (⌊E[xt+1]/gw⌋, ⌊E[yt+1]/gh⌋) (2)

where gw and gh are, respectively, the grid cell width

and height and ⌊c⌋ is the largest integer not greater than

c. The probability distribution of the next heading angle

3To avoid singularity when the distance is zero, we added a small value
ǫ ≈ 0.0001 to the distance.

θ′ is defined by

P (θ′ = θ + a|s, a) = p

P (θ′ = θ + a+
2π

m
|s, a) =

1− p

2

P (θ′ = θ + a−
2π

m
|s, a) =

1− p

2

where p ∈ [0, 1] is the probability of the next heading

angle without disturbances. In other words, the resulting

orientation of the UAV will be the same as the intended

orientation with probability of p. Since we consider the

target is moving at a constant speed for each iteration

of MDP, the state transition of target speed is

P (vk+1 = vk|s, a) = 1 (3)

• R : S → R is the expected reward for each state

transition. In general, the reward of an MDP is a

function of the current state, the action applied to the

current state, and the next state. For this work, however,

the reward is just a function of the current state, i.e., the

proximity of the UAV to the target, (xk, yk), defined by

r(s) = Cmax − (x2
k + y2k)

1

2 , (4)

where Cmax is the maximum range of the gimbaled

camera onboard the UAV. Equation (4) implies a neg-

ative reward for the target not in the UAV’s sensor

range. The maximum distance to the target, Cmax

is determined by the camera specification. Since we

assume that we use a gimbaled camera, we can change

the orientation from the sensor to the target so that the

camera sees the target at all times. However, allowable

field of view (FOV) and pixel size of the target to

recognize the ground target should be an important

factor to determine the value of Cmax. Let us assume

the allowable FOV angle to be αf , the resolution (width

or height) of image plane as P , the expected target size

on the ground to be tact, and the minimum size of the

target in the image plane as tpix, then we can have the

following relation:

Target Pixel Size

Image Size
=

Target Size

Ground Coverage
(5)

If we express the above relation approximately with

variables,

tpix
P

=
tact

Cmax · 2 tan(αf/2)
(6)

Then Cmax is estimated as

Cmax =
P

2 tan(αf/2)
·
tact
tpix

(7)

B. Policy Iteration

In MDP, the value of a state s ∈ S under a policy π(s) ∈
A, denoted by V π(s), is the expected return when starting
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v

Fig. 5: Fine-grained grid for an MDP covering the area

(depicted in gray) near the optimal path obtained from the

lookup table generated by the policy iteration algorithm using

a coarse-grained grid.

in s and following π thereafter, as defined in [10]

V π(s) = Eπ

[

rt+1 + γrt+2 + γ2rt+3 + ...
∣

∣st = s
]

= Eπ

[

rt+1 + γrV π(st+1)
∣

∣st = s
]

=
∑

a

ξ(s, a)
∑

s′

T (s, a, s′)[r(s) + γV π(s′)] (8)

where s′ is the next state followed by the current state s
when action a is applied, ξ(s, a) is the probability of taking

action a in state s under policy π, and the discount factor

0 ≤ γ ≤ 1 modulates the effect of future rewards on present

decisions. Equation (8) is called the state-value function for

policy π, and this policy can be evaluated iteratively by

V π
k+1(s)←

∑

s′

T (s, π(s), s′)[r(s) + γV π
k (s′)], (9)

where Vk is the state-value function at the k-th iteration. Each

policy evaluation defined by (9) is started with the value

function for the previous policy. Using this updated state-

value function Vk, we obtain a better policy using policy

improvement given by

π′(s) = argmax
a

∑

s′

T (s, a, s′)[r(s) + γV π
k (s′)], (10)

where π′(s) is the new greedy policy. Starting from V0(s) =
0 and arbitrarilyπ(s) ∀s ∈ S, we repeat (9) followed by

(10) until π(s) converges to the optimal policy π∗ [5]. The

pseudocode for the policy iteration algorithm can be found

in [9], [10].

Using the policy iteration, we find the optimal policy for

all discrete states. One of the problems in this algorithm,

however, is that it is computationally very expensive. As a

consequence, it is impractical to be used in real time by a

small UAV. The method we developed, however, uses the

algorithm offline for a number of fixed target velocities and

uses the computed optimal policy as a lookup table in real-

time. This lookup table method works well for a constant

target speed, but sometimes it is susceptible to varying target

speed with observation noise.

TABLE I: Specifications of offline and online policy itera-

tions

Offline Online

Grid size 700 m × 700 m Area of interest

Grid cell size 12 m × 12 m 3 m × 3 m

Max Sensor Range (Cmax) 300 m 300 m

# of orientation angles 64 64

# of possible input angles 5 5

Minimum turning radius 60 m 60 m

Target speeds {0, 1, ...,12} m/s [0, Vmax]

discount (γ) 0.95 0.95

In addition to the lookup table method, we have developed

an algorithm that uses the lookup table results to improve

the optimal trajectory. For a given state, we create a fine-

grained grid for an MDP covering the area near the optimal

path obtained from the lookup table as shown in Fig. 5.

The number of states required is now much less than the

offline MDP because we only need to cover a small region

(an example is depicted in gray in Fig. 5). For this new

MDP, we set a large reward for the goal states (depicted

in dark gray in Fig. 5) and process online policy iteration.

Since the initial policy is already near optimal, the policy

π converges to the optimal policy π∗ much faster than the

offline algorithm.

IV. RESULTS AND ANALYSIS

We processed the offline policy iteration for target speeds

of 0, 1, ..., 12 m/s using the specifications listed on Table I.

For each target speed, the process took approximately 40

hours.4 Figure 6 shows UAV paths following targets with

constant speeds. For a target moving much slower than the

UAV (the speed ratio of the UAV to the target α is less

than approximately 0.25), the optimal path of the UAV is

a spiral motion as shown in Fig. 6a. As an extreme case,

the UAV path becomes a circular orbit about the target as

the target speed approaches zero. On the other hand, the

optimal UAV path following a target slightly slower than the

UAV (α >∼ 0.5) is a sinusoidal path as shown in Fig. 6c.

Fig 6b shows the optimal path for the UAV following the

target when ∼ 0.25 < α <∼ 0.5. As a rather simple case,

if a target moves at a speed greater than the minimum UAV

speed but less than the maximum UAV speed, the optimal

path would be linear. As we expected, these results agree

with the predicted paths shown in Fig. 1.

For the online simulations as specified on Table I, we first

estimated the target velocity and selected the optimal policy

and path from the offline results based on the rounded target

speed. Then, we generated a new MDP for the estimated

target speed with the cell size of 3 m × 3 m. Although we

had a finer granularity, the total number of states was orders

of magnitude smaller than the offline MDP. The average time

of computation was approximately 1 second for each time

step.

4We used Matlab on an Intel i7 microprocessor to run the algorithm.
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Fig. 6: The optimal paths of 12 m/s UAV tracking a target

moving at the speed of (a) 1.3 m/s, (b) 4.0 m/s, and (c) 11.0

m/s.

We have generated a number of target paths with their

target velocities varying along the paths. The UAV with

online policy iteration algorithm follows the target based on

the noisy observations of the target locations with the noise

variance of 5 meters in both x and y directions.

A cycloid path of a target shown in Fig. 7 has target

velocities from 0 to 11.0 m/s and it changes its direction by

180◦ once each period. At the beginning of target tracking,

the UAV tries to make a spiral path for the slow motion of the

target. As the UAV finds the target speed increasing, the UAV
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Fig. 7: UAV following a target on a cycloid path. The target

velocity varies from 0 to 11 m/s. The sampling time of the

path is 1 second, but the intervals between dots are 5 seconds

for high visibility.
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Fig. 8: UAV following a target on a cycloid path. The target

velocity varies from 1.1 to 13.0 m/s.

path becomes oscillatory until the target speed reaches the

minimum UAV speed. As the target slows down its speed and

changes its heading direction at the end of one full cycle of

the cycloid path, the UAV makes a couple of spiral motions

until it makes another oscillatory path to follow the target.

The average root mean square error (RMSE) of distance

between the UAV and the target is 87.68 meters.

An arrowhead path shown in Fig. 8 is also interesting. The

path has straight lines, sharp turns, and a slight turn with the

velocity varying from 1.1 to 13.0 m/s. The target starts from

the origin and moves toward the positive x direction at the

beginning. As the target rapidly slows down to make a sharp

turn, the UAV happens to fly away from the target, but it soon

catches up with the target. The average RMSE between the

UAV and the target is 72.15 meters.

The zigzag path shown in Fig. 9 is not a realistic path

since there are 90◦ turns with constant velocity. The zigzag

path, however, is a good example to test overshoot behaviors.

The average RMSE between the UAV and the target is 64.77

meters for the zigzag path.

We compared the results with those generated using other

methods. Rafi et al. [8] proposed a simple technique for
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Fig. 9: UAV following a target on a zigzag path with 90◦

turns. The target velocity is 10.5 m/s.

TABLE II: Root Mean Square Errors (meters)

Lookup tablea Onlineb Rafi c Heuristic

Cycloid 103.23 87.68 110.89 100.95

Arrowhead 111.21 72.15 76.38 77.13

Zigzag 94.75 64.77 82.44 107.69

Computational Timed ∼1 µs ∼1 sec ∼35 µs ∼35 µs

aGenerated by the offline policy iteration
bOnline policy iteration based on the policy from the offline

policy iteration
cRafi et al. [8]
dUsing Matlab on an Intel i7 microprocessor

short-term path planning to minimize the long-term distance

from the target. Rather than approaching the target directly,

UAVs approach a tangent line to a minimum-radius orbit

around the predicted target location. When already inside

the orbit, they fly straight ahead.

We also developed a heuristic method that a UAV tries to

keep the distance of the minimum orbital radius from the

target. We also assumed that the UAV had five choices of

yaw angle deviation at each time as discussed before. Among

the UAV motion choices, the UAV selected the motion that

made the distance between the estimated UAV location and

the predicted target location closest to the desired (minimum)

orbital radius. The predicted target location at time t+1 were

determined by x̂
t
k+1

= x
t
k +∆t(x

t
k − x

t
k−1

).

Fig. 10 shows the simulation results of the Rafi and the

heuristic methods. The results in Table II show that our

optimal solution is superior to the two methods. For the

cycloid path, our approach has performed with approximately

13% decrease in error. Although the computational time5 of

offline policy iteration lookup table method is small, that of

online policy iteration method is much greater than the other

methods. We are currently working toward both reducing

RMSE for offline policy iteration method and decreasing the

computational time for online policy iteration method.

5Since it is difficult to compare the computational costs with big O
notations, we provide with the computational time for reader to get a sense
of computational costs.

0 500 1000 1500 2000 2500 3000

0

100

200

300

400

500

600

 

 

lateral displacement (m)

lo
n

g
it

u
d

in
al

d
is

p
la

ce
m

en
t

(m
)

Observed

Rafi

Heuristic

(a)

−500 0 500

−600

−400

−200

0

200

 

 

lateral displacement (m)

lo
n

g
it

u
d

in
al

d
is

p
la

ce
m

en
t

(m
) Observed

Rafi

Heuristic

(b)

0 500 1000 1500
−200

0

200

400

600

800

1000

1200

1400

 

 

lateral displacement (m)

lo
n

g
it

u
d

in
al

d
is

p
la

ce
m

en
t

(m
) Observed

Rafi

Heuristic

(c)

Fig. 10: The paths generated by the Rafi’s method and the

heuristic method for (a) a cycloid path and (b) an arrowhead

path (c) a zigzag path.

V. CONCLUSION AND FUTURE WORK

In this paper, we have shown a new optimal UAV path

planning method to track a mobile target. Our method uses

the theory of Markov Decision Processes to select an optimal

sequence of UAV waypoints to follow the surface target

while minimizing target localization uncertainties. Through

policy iterations, we compute the globally optimal policy of-

fline, and using an online policy iteration algorithm, we find

the optimal UAV path in real-time to find the optimal path.

The simulation results show how our method automatically
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changes between various tracking regimes such as sinusoidal

slaloming or spiral orbiting as the target velocity changes.

In the future, we plan to develop more accurate models

for target motion and use them for intelligent UAV path

planning. To this end, we are currently working on state

reduction methods to decrease the number of discretized

states as well as function approximation techniques to reduce

the computation costs. Along with these improvements in our

algorithm, we plan to verify the algorithm using hardware-in-

the-loop flight simulations and to perform flight tests using

UAVs currently available at our facility.
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