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Abstract— It is widely known that the problem of con-
trolling a rigid bilateral teleoperator with time-delays has
been effectively addressed since the late 80’s. However, the
control of flexible joint manipulators in a bilateral teleoperation
scenario, with dynamic gravity compensation, remains an open
problem. This work aims at filling this gap by presenting a
new controller for bilateral teleoperators composed of a rigid
local manipulator and a flexible-joint remote manipulator with
dynamic gravity compensation and asymmetric variable time-
delays in the communication channel. In order to dynamically
compensate the gravity term, in the flexible joint manipulator,
a change of coordinates which accounts for the joint and link
gravity position drift is used. The rest of the controller is a
simple PD scheme. Assuming that the human operator and
the environment define passive maps from velocity to force, it
is proved that velocities and local and remote position errors
are bounded. Additionally, if the human operator and remote
environment forces are zero then velocities asymptotically
converge to zero and position tracking is established. Some
simulations are presented in order to show the performance of
the proposed controllers.

I. INTRODUCTION

Commonly, bilateral teleoperators are composed of the

following five systems: i) the human operator; ii) the local

manipulator; iii) the communication channel; iv) the remote

manipulator and v) the remote environment. Generally speak-

ing, the main objective of such a scheme is to extend the

human manipulation capabilities to a remote environment.

On one hand, the physical interaction between the human

operator and the environment with the local and the remote

manipulators, respectively, is mechanical, i.e., the human

grasps the local manipulator and the remote manipulator con-

tacts/grasps the environment. On the other hand, the local and

the remote manipulators exchange control signals through the

communication channel such that the bilateral teleoperator

can be rendered as transparent as possible. Controlling these

systems has become a highly active research field. For a

recent historical survey on this research line the reader may

refer to [1], for a teleoperators control tutorial, to [2] and,

for an experimental evaluation comparison, to [3].

Passivity based control, via the scattering transformation

originally proposed by Anderson and Spong in [4], has been
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one of most outstanding breakthroughs in the control of

teleoperators with time-delays. Niemeyer and Slotine [5] in-

troduced the wave variables, following the former scattering

approach, and proved that by matching the impedances of

the local and remote robot controllers with the impedance of

the virtual transmission line, wave reflections are avoided.

However, one of the main drawbacks of these schemes is

position drift (an exception is [6]). In order to improve

performance, in scattering based schemes, several approaches

have been reported: transmitting wave integrals [7], [8],

wave filtering [9], wave prediction [10], power scaling [11],

amongst others. Recently, without the use of the scattering

transformation, Chopra et al. [12] have proposed the use of

adaptive schemes to overcome the effects of position drift.

Along the same line Nuño et al. [13] report a different

adaptive scheme that is capable of synchronizing the local

and remote positions despite constant time-delays. Recently,

similar to [14], [15], based on the small gain theorem and

assuming that the physical parameters are known, [16] has

proposed a controller for the asymptotical stabilization of a

cooperative teleoperation system with variable time-delays.

The use of simple PD controllers, in the local and the remote

manipulators, has been proposed in [6], [17], [18] for the case

of constant time-delays. Later, in [19], Nuño et al. show that

these proportional plus damping controllers are capable of

providing position tracking for bilateral teleoperators with

variable time-delays.

All these previous developments deal with bilateral tele-

operators composed by rigid joints manipulators. Never-

theless, it should be underscored that in diverse applica-

tions, including space and surgical telerobotics, the use of

thin, lightweight and cable-driven manipulators is increasing.

These manipulators are known to exhibit link and/or joint

flexibility ([20] shows that the lumped (linear) dynamics

of a flexible link is identical to the (linear) dynamics of

a flexible joint). To the authors knowledge, most of the

previous schemes deal with rigid manipulators and only

few exceptions treat the problem of joint flexibility, but

for linearized teleoperators and without time-delays, [20],

[21], [22], [23], [24]. In this scenario, the control problem

increases in difficulty, since joint flexibility (caused by

transmission elements such as harmonic drives, belts, cables

or long shafts) is a major source of oscillatory behaviors

in robot manipulators. Joint flexibility is modeled using the

motor rotor and the link positions and velocities, hence, the

order of the model is twice the size of the corresponding

rigid joint manipulators.

The present work, reports a new controller for nonlinear
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teleoperators with joint flexibility and variable time-delays.

Unlike the authors’ previous work along this line, i.e., [25],

this paper does not assume the absence of gravity or its

compensation in the flexible joint manipulator dynamics.

Instead, the idea of the exact gravity compensation scheme is

borrowed from the fundamental work of De Luca and Flacco

[26], [27]. In this way, once the flexible joint dynamics are

transformed, by using a proportional plus damping controller,

and assuming that the human operator and the environment

behave as passive systems, it is proved that all velocity

and position error signals are bounded. Moreover, if the

human operator and the environment do not inject forces

on the local and on the remote manipulators, the velocities

and the position errors are shown to be asymptotically

convergent to zero. The proposed scheme is proved to be

robust to variable time-delays provided that the local and

remote damping is sufficiently large. The paper also presents

some numerical simulations to show the effectiveness of the

proposed dynamic gravity compensation controller.

The following notation is used throughout the paper. R :=
(−∞,∞), R>0 := (0,∞), R≥0 := [0,∞). ||A|| denotes

the matrix-induced 2-norm of matrix A. |x| stands for the

standard Euclidean norm of vector x. For any function f :
R≥0 → R

n, the L∞-norm is defined as ‖f‖∞ := sup
t≥0

|f(t)|,

and the square of the L2-norm as ‖f‖22 :=
∫∞

0
|f(t)|2dt. The

L∞ and L2 spaces are defined as the sets {f : R≥0 → R
n :

‖f‖∞ < ∞} and {f : R≥0 → R
n : ‖f‖2 < ∞}, respectively.

II. MODELING THE TELEOPERATOR WITH REMOTE

MANIPULATOR FLEXIBILITY

The local manipulator is modeled as a rigid n–degree of

freedom (DOF) manipulator composed by revolute joints. Its

nonlinear dynamic behavior is given by

Ml(ql)q̈l +Cl(ql, q̇l)q̇l + gl(ql) = τh − τ l. (1)

The remote manipulator is assumed to be a n–DOF manipu-
lator with revolute flexible joints, whose dynamical behavior
is governed by

Mr(qr)q̈r +Cr(qr, q̇r)q̇r + gr(qr) + Sr(qr − θr) = −τ e

Irθ̈r + Sr(θr − qr) = τ r (2)

where, using the subindex i ∈ {l, r} for local and remote

manipulators, respectively, qi ∈ R
n is the link position

and θr ∈ R
n is the remote joint (motor) angular position.

Mi(qi) ∈ R
n×n is the inertia matrix, Ci(qi, q̇i) ∈ R

n×n

is the Coriolis and centrifugal effects matrix, defined via

the Christoffel symbols of the first kind, gi(qi) ∈ R
n is

the gravity vector force, Ir ∈ R
n×n is a symmetric and

positive definite matrix corresponding to the remote actuator

inertia, Sr ∈ R
n×n is a diagonal and positive definite

matrix that contains the remote joint stiffness, τ i ∈ R
n is

the control signal and τh ∈ R
n, τ e ∈ R

n are the joint

torques corresponding to the forces exerted by the human

operator and the environment interaction, respectively. Note

that, unlike the authors’ previous work [25], this paper does

not assume that gravity is absent from (2).

Throughout the paper, the following standard assumption

is made: Mi(qi) is symmetric positive definite and bounded

for all qi. Further, it is well-known that dynamics (1) and

(2) enjoy the following properties [28], [29], [19]:

P1. Matrix Ṁi(qi)− 2Ci(qi, q̇i) is skew-symmetric.

P2. For all qi, q̇i ∈ R
n, there exists kci ∈ R>0 such that

|Ci(qi, q̇i)q̇i| ≤ kci|q̇i|
2.

P3. For all qi ∈ R
n, there exist kgi, k

′
gi ∈ R>0 such that

|gi(qi)| ≤ kgi and

∥

∥

∥

∂gi(qi)
∂qi

∥

∥

∥
≤ k′gi.

P4. If q̇i, q̈i ∈ L∞ then d
dt
Ci(qi, q̇i) is a bounded operator.

Regarding the interconnection time-delays, the human op-

erator and the environment, this paper employs the following

standard assumptions:

A1. The variable time-delay Ti(t) has a known upper

bound ∗Ti, i.e., 0 ≤ Ti(t) ≤ ∗Ti < ∞, and its first

and second time-derivatives are bounded.

A2. The human operator and the environment define pas-

sive (velocity to force) maps, that is, there exists ǫi ∈
R≥0 such that, for all t ≥ 0,

−

∫ t

0

q̇⊤
l (σ)τh(σ)dσ + ǫl ≥ 0, (3a)

∫ t

0

q̇⊤
r (σ)τ e(σ)dσ + ǫr ≥ 0. (3b)

III. PROPOSED CONTROLLER WITH DYNAMIC GRAVITY

COMPENSATION

Before presenting the teleoperator controllers, inspired by

the gravity compensation scheme of De Luca and Flacco

[26], [27], let us define a new variable xr ∈ R
n as

xr := θr − S−1
r gr(qr). (4)

Using this change of coordinates, the flexible–joint robot

manipulator dynamics (2) can be written as

Mr(qr)q̈r +Cr(qr, q̇r)q̇r + Sr(qr − xr) = −τ e

Irẍr + Sr(xr − qr) = τ r − gr(qr)− IrS
−1
r g̈r(qr).

Hence, defining the remote controller as

τ r = τ̄ r + gr(qr) + IrS
−1
r g̈r(qr)− drẋr, (5)

where dr ∈ R>0 is the damping injection gain and τ̄ r ∈ R
n

is a local-remote interconnection term that will be defined

later, yields the remote closed-loop system

Mr(qr)q̈r +Cr(qr, q̇r)q̇r + Sr(qr − xr) = −τ e

Irẍr + drẋr + Sr(xr − qr) = τ̄ r.
(6)

Note that, by using (4), the transformed dynamics (6) does

not explicitly contain any gravity term.

Now, in order to achieve the desired local and remote

position tracking objective, let us define τ̄ r as

τ̄ r = −kr(xr − ql(t− Tl(t))) (7)

where kr > 0 is the proportional local-remote interconnec-

tion gain. The local controller follows the simple P+d scheme

proposed in [18], [19] and it is given by

τ l = kl(ql − xr(t− Tr(t))) + dlq̇l − gl(ql), (8)
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where kl, dl ∈ R>0 are the local controller gains.

The complete closed-loop system (1), (2), (8), (5) and (7),

is given by

q̈l = M−1
l [τh − (Cl + dl)q̇l − kl(ql − xr(t− Tr(t)))]

q̈r = M−1
r [Sr(xr − qr)−Crq̇r − τ e]

ẍr = I−1
r [Sr(qr − xr)− drẋr − kr(xr − ql(t− Tl(t)))]

(9)

The kinetic energy of the local rigid-joint manipulator is

given by

Kl(q̇l) =
1

2
q̇⊤
l Ml(ql)q̇l, (10)

and the kinetic energy of the remote (transformed) flexible-

joint manipulator is

Kr(q̇r,xr) =
1

2
q̇⊤
r Mr(qr)q̇r +

1

2
ẋ⊤
r Irẋr. (11)

Moreover, the potential energy stored in the xr-coordinate

and the remote link virtual spring, is

Ur(qr,xr) =
1

2
(xr − qr)

⊤Sr(xr − qr), (12)

and the potential energy stored in the local-remote intercon-

nection fulfills

Ulr(ql,qr) =
1

2
|ql − xr|

2. (13)

Defining the (scaled) total energy as

E = Kl +
kl

kr
(Kr + Ur) + klUlr

and evaluating Ė along (9) and using Property P1, yields

Ė = q̇⊤
l τh −

kl

kr
q̇⊤
r τ e − dl|q̇l|

2 −
kldr

kr
|ẋr|

2 (14)

− klq̇
⊤
l (xr − xr(t− Tr(t)))− klẋ

⊤
r (ql − ql(t− Tl(t)))

= q̇⊤
l τh − dl|q̇l|

2 −
kl

kr
q̇⊤
r τ e −

kldr

kr
|ẋr|

2

− klq̇
⊤
l

∫ t

t−Tr(t)

ẋr(σ)dσ − klẋ
⊤
r

∫ t

t−Tl(t)

q̇l(σ)dσ

Before going further, let us borrow from [19] a lemma

that is instrumental in the stability proof.

Lemma 1: [19] For any vector signals y, z ∈ R
n, any

variable time-delay 0 ≤ T (t) ≤ ∗T < ∞ and any constant

α > 0, the following inequality holds

−

∫ t

0

y⊤(θ)

∫ θ

θ−T (θ)

z(σ)dσdθ ≤
α

2
‖y‖22 +

∗T 2

2α
‖z‖22.

♦

Proposition 1: Consider the teleoperator (1)–(2), con-

trolled by (8), (5) and (7). Suppose that Assumption A1 holds

and that τh, τ e verify (3). Set the control gains such that

4dldr > (∗Tl +
∗Tr)

2klkr (15)

Then:

I. Joint and link velocities and position errors are

bounded, i.e., q̇i, θ̇r, |qr − θr|, |ql − qr| ∈ L∞.

Moreover, q̇l, ẋr ∈ L2 and |ẍr|, |ẋr| → 0 as t → ∞.

II. If the human and the environment do not inject any

forces on the local and the remote manipulators, re-

spectively, i.e. τh = τ e = 0, the local and remote link

position error asymptotically converges to zero, i.e.,

lim
t→∞

|ql(t) − qr(t)| = 0 and the remote transformed

coordinate xr satisfies lim
t→∞

|xr(t)−qr(t)| = 0. More-

over, all velocities asymptotically converge to zero.

Proof: Let us start by integrating, from 0 to t, (14).

This yields

E(t)− E(0) =

∫ t

0

(

q̇⊤
l (σ)τh(σ)−

kl

kr
q̇⊤
r (σ)τ e(σ)

)

dσ −

−dl

∫ t

0

|q̇l(σ)|
2dσ − kl

∫ t

0

q̇⊤
l (θ)

t
∫

θ−Tr(θ)

ẋr(σ)dσdθ −

−
kldr

kr

∫ t

0

|ẋr(σ)|
2dσ − kl

∫ t

0

ẋ⊤
r (θ)

t
∫

θ−Tl(θ)

q̇l(σ)dσdθ

Using (3) and invoking Lemma 1, to the double integral

terms with αl and αr, respectively, yields

E(t) + λl||q̇l||
2
2 + λr||ẋr||

2
2 ≤ E(0) + ǫl +

kl

kr
ǫl, (16)

where λl := dl − kl

2

(

αl +
∗T 2

l

αr

)

and λr := kldr

kr

−

kl

2

(

αr +
∗T 2

r

αl

)

. Solving, simultaneously for λi > 0, it holds

that
2drαl − kr

∗T 2
r

krαl

> αr >
kl

∗T 2
l

2dl − klαl

which yields the inequality aα2
l + bαl + c < 0, where a :=

2drkl, b := klkr(
∗T 2

l + ∗T 2
r ) − 4dldr and c := 2dlkr

∗T 2
r .

Solving for aα2
l + bαl + c = 0 ensures that the inequality

holds, and if −b > 0 then there is, at least, one positive

solution for αl. However, first we need to check if real solu-

tions do exist by establishing positivity of the discriminant,

i.e., b2 − 4ac > 0. After some algebraic manipulations we

get that if (15) holds then b2 − 4ac > 0. Moreover, since

4dldr > (∗Tl +
∗Tr)

2klkr > (∗T 2
l + ∗T 2

r )klkr then −b is

positive. Hence, setting the controller gains such that (15)

holds, λl and λr are strictly positive.

Further, E is proper (positive definite and radially un-

bounded) with respect to q̇i, ẋr, |xr−qr| and |ql−xl|. This

last, Assumption A2, the fact that λi > 0 and (16) prove that

q̇i, ẋr, |xr − qr|, |ql − xr| ∈ L∞ and that q̇l, ẋr ∈ L2.

Using Property P3, the fact that ẋr = θ̇r−S−1
r

∂gr(qr)
∂qr

q̇r,

and boundedness of ẋr, q̇r it is proved that θ̇r ∈ L∞.

Moreover, Property P3 and |xr − qr|, |ql − xr| ∈ L∞ also

show that |θr − qr|, |ql − qr| ∈ L∞.

Now, |ql − xr| ∈ L∞, q̇l ∈ L2 and

xr − ql(t− Tl(t)) = xr − ql +

∫ t

t−Tl(t)

q̇l(σ)dσ,

ensure that |xr − ql(t− Tl(t))| ∈ L∞. This last, bounded-

ness of ẋr and |xr−qr| support the claim that, from (9), ẍr ∈
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L∞. Thus, Barbǎlat’s Lemma ensures that lim
t→∞

ẋr(t) = 0.

This, in turn, shows that

lim
t→∞

∫ t

0

ẍr(σ)dσ = lim
t→∞

ẋr(t)− ẋr(0) = −ẋr(0).

Hence, if d
dt
ẍr ∈ L∞ then, by Barbǎlat’s Lemma,

lim
t→∞

ẍr(t) = 0. Note that

d

dt
ẍr = − I−1

r [Sr(ẋr − q̇r)− drẍr]− (17)

− krI
−1
r

[

ẋr − (1− Ṫl(t))q̇l(t− Tl(t))
]

,

thus, Assumption A1 and boundedness of q̇i, ẋr and ẍr

ensures that d
dt
ẍr ∈ L∞ as required. This completes Part I

of the proof.

For the proof of Part II, assume τh = τ e = 0. From (9),

that q̇l, |ql − xr| ∈ L∞ and q̇l ∈ L2 imply that q̈l ∈ L∞.

Thus, invoking Barbǎlat’s Lemma with q̇l ∈ L∞ ∩ L2 and

q̈l ∈ L∞ it is proved that lim
t→∞

q̇l(t) = 0. Hence

lim
t→∞

∫ t

0

q̈l(σ)dσ = lim
t→∞

q̇l(t)− q̇l(0) = −q̇l(0).

Furthermore, q̇r, |xr − qr| ∈ L∞ imply, from (9), that

q̈r ∈ L∞ and Assumption A1, Property P4 together with

q̈l, q̇l, ẋr ∈ L∞ support the fact that d
dt
q̈l ∈ L∞. Hence

lim
t→∞

q̈l(t) = 0.

At this point, note that all the terms in the right hand side

of (17) converge to zero, except for q̇r. Hence, if it is proved

that d
dt
ẍr converges to zero, then lim

t→∞
q̇r(t) = 0. For, since

lim
t→∞

ẍr(t) = 0, it suffices to prove that d2

dt2
ẍr ∈ L∞. Which

indeed is bounded due to Assumption A1 and boundedness

of d
dt
ẍr, ẍr, q̈i ∈ L∞. Thus, |q̇r| → 0 as t → ∞. From

(4), that convergence to zero of q̇r and ẋr ensure that θ̇r

asymptotically converges to zero.

Similar to the convergence proof of q̈l it can be easily

established that lim
t→∞

q̈r(t) = 0 and, from the closed–loop

system, this implies that lim
t→∞

|xr(t)− qr(t)| = 0. This last

and the fact that the signals q̈l, q̇l, ẍr, ẋr converge to zero

ensure the claim that lim
t→∞

|ql(t) − qr(t)| = 0, as required.

This completes the proof.

Remark 1: If the local manipulator has joint flexibility, the

local controller can be easily extended using similar terms

as in (5) and (7). In such a case, the local kinetic energy

(10) transforms to

Kl(q̇l) =
1

2
q̇⊤
l Ml(ql)q̇l +

1

2
ẋ⊤
l Jlẋl,

and a new potential energy term arises, i.e.,

Ul(ql,xl) =
1

2
(xl − ql)

⊤Sl(xl − ql).

The boundedness and convergence proofs are established

following verbatim the proof of Proposition 1.

Remark 2: Interestingly, but not surprisingly, the stability

condition (15) is the same as that for bilateral teleoperators

with rigid joints, see [19], [2]. This fact may be due to the

passive interconnection between the actuated and the non-

actuated parts of the flexible joint manipulators.

IV. SIMULATIONS

By means of some numerical simulations, this section
shows the effectiveness of the gravity compensation scheme
for bilateral teleoperators with joint flexibility. The local
manipulator contains only rigid joints and the remote ma-
nipulators only flexible joints. Both manipulators have two
revolute DOF. Their corresponding nonlinear dynamics are
modeled by (1) and (2). The inertia matrix, the Coriolis and
centrifugal effects matrix and the gravity vector are given
by

Mi(qi) =

[

αi + 2βici2 δi + βici2
δi + βici2 δi

]

,

Ci(qi, q̇i) =

[

−2βisi2 q̇i2
−βisi2 q̇i2

βisi1 q̇i2
0

]

and gi(qi) = col(g1i, g2i), respectively, where g1i :=
li1(mi1+mi2)ci1+gli2mi2ci12 ; g2i := gli2mi2ci12); cik , sik
are the short notation for cos(qik) and sin(qik); ci12 stands

for cos(qi1+qi2); qik represents the angular position of link k

of manipulator i, with k ∈ 1, 2; αi = l2i2mi2+l2i1(mi1+mi2),
βi = li1 li2mi2 and δi = l2i2mi2 , where lik and mik are the

respective lengths and masses of each link and g = 9.81 is

the acceleration of gravity constant.

The remote motor inertia is Ir = diag(0.39, 0.39) and the

stiffness of the remote flexible joints is Sr = diag(200). The

rest of the physical parameters for both manipulators are:

the length of the links, li1 = li2 = 0.38 and, the masses,

ml1 = 3.5, ml2 = 0.5, mr1 = 0.5 and mr2 = 0.35 (all

units are in the SI). The initial conditions have been set to

q̇i(0) = θ̇r(0) = 0, ql(0) =
[

−1
8 π, 1

8π
]⊤

and qr(0) =

θr(0) =
[

1
5π,

−1
2 π

]⊤
.

0 5 10 15 20 25 30

−1

−0.5

0

0.5

1

1.5

Time (s)

qh1

qh2

Fig. 1. Desired trajectory of the human operator.

The human operator is modeled as a spring-damper system

τh = Kh(qh − ql) +Bhq̇l, where qh is the desired human

link position, shown in Fig. 1. Kh and Bh are the spring and

damper gains, respectively, and have been set to Kh = 10
and Bh = 2.

For simplicity, the variable time-delays are the same in

both directions, i.e., Tl(t) = Tr(t). Fig. 2 shows such delays

and a sinusoidal signal sent through the communication

channel and received with this delay. This delay aims at

emulating the behavior of Internet-based communications.

Their upper bound is ∗Ti = 0.42s. The controller gains are

set to dl = 2, kl = 6, dr = 9 and kr = 11. Easy calculations

show that the controllers gains satisfy (15).
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Fig. 2. Variable time-delays.

The first set of simulations presents the results when the

human operator injects forces to the local manipulator and

the remote manipulator moves freely in space, i.e., τ e = 0.

Fig. 3 shows the local and remote joint positions together

with the local and remote position error. Despite the presence

of time-delays and the fact that both have different initial

positions, when time evolves, position error asymptotically

converges to zero. Fig. 4 depicts the tracking results in

Cartesian coordinates.
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Fig. 3. Articular position and error for the local and remote manipulator.

In the second set of simulations, the human manipulator

injects forces to the local manipulator and the remote ma-

nipulator comes into contact with a stiff wall. This wall is

modeled as a stiff spring-damper system with stiffness equal

to 10, 000Nm, and damping equal to 200 Nms, and it is

located at 0.5m in the y-coordinate. The local and remote

joint positions, together with the position error can be seen

in Fig. 5. Fig. 6 shows the position evolution in Cartesian

coordinates. From these figures, it can be seen that, around

second 4, even when the remote manipulator comes into

contact with the wall, position tracking is established and

hence the position error asymptotically converges to zero

when the human and environment forces become zero. The

controller torques are shown in Fig. 7.
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Fig. 5. Local and remote articular position and error when interacting with
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0

0.2

0.4

0.6

0.8

x
(m

)

−0.5

0

0.5

1

y
(m

)

0 5 10 15 20 25 30
−0.5

0

0.5

E
rr

or
(m

)

Time (s)

xl

yl

xr

yr

xl-xr

yl-yr

Fig. 6. Cartesian local and remote positions and Cartesian position error
when interacting with a stiff wall.

5443



−20

−15

−10

−5

0

5

10
τ 1

(N
m

)

0 5 10 15 20 25 30
−5

0

5

10

15

20

τ 2
(N

m
)

Time (s)

τl

τl

τr

τr

Fig. 7. Local and remote controller torques when interacting with a stiff
wall.

V. CONCLUSIONS

This paper reports a new controller which dynamically

compensates the gravity drift effects in bilateral teleoperators

composed of flexible joint robot manipulators with variable

time-delays in the communications. The solution to this

long-lasting control problem consists of using a propor-

tional plus damping controller together with an exact gravity

compensation term inspired in the work of De Lucca and

Flacco [26], [27]. Assuming that the human operator and

the environment are passive, it is shown that (joint and link)

velocities and position errors are bounded. Furthermore, if

the human operator and the environment forces are zero,

asymptotic convergence to zero of (joint and link) velocities

and local and remote position error is ensured provided that

sufficiently large damping is injected in the system. The

theoretical results are supported by simulations with a rigid

local manipulator and a flexible joint remote manipulator

which interacts with a stiff wall.

The next working steps are the real implementation of the

controllers using two 3-DOF manipulators and the extension

to the more general case of synchronization and consensus

of networks with multiple flexible joint manipulators.
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[2] E. Nuño, L. Basañez, and R. Ortega. Passivity-based control for
bilateral teleoperation: A tutorial. Automatica, 47(3):485–495, 2011.

[3] E.J. Rodriguez-Seda, D.J. Lee, and M.W. Spong. Experimental
comparison study of control architectures for bilateral teleoperators.
IEEE Transactions on Robotics, 25(6):1304–1318, 2009.

[4] R.J. Anderson and M.W. Spong. Bilateral control of teleoperators with
time delay. IEEE Trans. Automatic Control, 34(5):494–501, 1989.

[5] G. Niemeyer and J.J. Slotine. Stable adaptive teleoperation. IEEE

Journal of Oceanic Engineering, 16(1):152–162, Jan 1991.
[6] N. Chopra, M.W. Spong, R. Ortega, and N. Barbanov. On tracking

preformance in bilateral teleoperation. IEEE Trans. on Robotics,
22(4):844–847, Aug. 2006.

[7] R. Ortega, N. Chopra, and M.W. Spong. A new passivity formulation
for bilateral teleoperation with time delays. In Proc. of the CNRS-NSF

Workshop: Advances in time-delay systems, Paris, Jan. 2003.
[8] G. Niemeyer and J.J. Slotine. Telemanipulation with time delays. Int.

Journal of Robotics Research, 23(9):873–890, Sept. 2004.
[9] N.A. Tanner and G. Niemeyer. Improving perception in time-delayed

telerobotics. Int. Journal of Robotics Research, 24(8):631–644, 2005.
[10] S. Munir and W.J. Book. Internet-based teleoperation using wave

variables with prediction. IEEE/ASME Trans. on Mechatronics,
7(2):124–133, June 2002.

[11] C. Secchi, S. Stramigioli, and C. Fantuzzi. Advances in Telerobotics,
chapter Power scaling in port-Hamiltonian telemanipulation over
packet switched networks, pages 233–256. Springer, 2007.

[12] N. Chopra, M.W. Spong, and R. Lozano. Synchronization of bilateral
teleoperators with time delay. Automatica, 44(8):2142–2148, 2008.

[13] E. Nuño, R. Ortega, and L. Basañez. An adaptive controller for
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