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Abstract— We present a real-time algorithm that segments
unstructured and highly cluttered scenes. The algorithm ro-
bustly separates objects of unknown shape in congested scenes
of stacked and occluded objects. The model-free approach
finds smooth surface patches, using a depth image from a
Kinect camera, which are subsequently combined to form
highly probable object hypotheses. Coplanarity and curvature
matching is used to recombine surfaces separated by occlusion.

The real-time capabilities are proven and the quality of the
algorithm is evaluated on a benchmark database. Advantages
compared to existing approaches as well as weaknesses are
discussed.

I. INTRODUCTION

Realtime segmentation is one of the most important tasks

in visual perception for real-world robot interaction. For

example, robust shape and pose estimation of individual

objects is a major prerequisite for automomous grasping from

a pile of unknown objects [1], [2].

Many of the current state-of-the-art segmentation algo-

rithms can be classified into two categories: (1) simultaneous

recognition and segmentation of learned objects and (2)

support plane extraction and model-fitting.

For simultaneous recognition and segmentation, found im-

age features are matched to a database of known objects. Var-

ious feature extraction methods have been proposed, includ-

ing 3D-augmented SIFT features [3], [4] and features directly

obtained from range images such as a viewpoint feature

histogram [5], depth-encoded hough voting [6], point pair

features [7], and iterative clustering-estimation [8]. These

approaches robustly recognize partially occluded objects and

correctly estimate their pose from stored 3D models, but

are always restricted to the known set of previously learned

objects.

In [9], [10], [11], [12] table-top scenarios are segmented

based on an initial clustering into horizontal support planes.

Point clusters supported by these planes, i.e. lying above

the plane and within its 2D bounding box after projection,

are considered as objects. While [9] focuses on cylindric

and box-like objects for grasp planning, in [10] subse-

quently hybrid object models comprising primitive shape

models (planes, cylinders, spheres, cones fitted into the data

points) and surface meshes (modelling residual points) are

determined. The algorithm in [11] is tuned towards real-

time performance, achieving frame rates of 30Hz on images

sized 160×120 for plane segmentation. [12] adds support
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Fig. 1. Raw depth image (left), color image (middle) and resulting 3D
object segmentation (right).

for arbitrary rotational surfaces. This class of algorithms is

good for spatially separated objects but becomes slow if

object blobs must be decomposed by costly model-fitting

operations.

Other approaches using multi sensor fusion [13], active

exploration [4], [14], depth augmented color segmentation

[15] or relation learning algorithms [16], [17]. In [13] RGB-

stereo, time-of-flight, and thermal cameras are fused to

segment kitchen objects in a table-top setup. The addition of

other sensor modalities, such as temperature, improves the

segmentation accuracy and enables the method to segment

shiny and translucent object. [4], [14] improve the segmenta-

tion by active exploration. While [14] uses an active camera

system to explore the scene, [4] manipulates the objects in

the scene. A spatio-temporal depth-supported color segmen-

tation of video streams is presented in [15]. The algorithm

segments object surfaces und tracks object movement in

realtime, but does not combine found surfaces to an object

hypothesis. Instead of learning individual object models, [16]

employ learned relations of planes to recognize objects like

boxes or stairs. Again, training is necessary and problems

with cluttered scenes with occlusion can emerge. The com-

bined approach in [17], [18] first executes a presegmentation

and surface detection using NURBS and subsequently groups

the found patches using a SVM, trained with complex object

relations. This algorithm yields very good segmentation

results, however, at the cost of a high computational effort

(1-8s per frame), which (currently) disqualifies for real-

time application. The fixation-based segmentation approach

presented in [19], attempts to determine the overall object

boundary combining depth and color cues. However, while

the idea of extracting object edges arised simultaneously

to our work [20], this approach cannot deal with complex

scenes of stacked objects.

In the present work we extend our model-free and real-

time capable segmentation approach presented in [20], [21]

to a general probabilistic framework, which considers multi-

modal cues in a uniform manner. The algorithm combines

two segmentation methods: the identification of smooth ob-

ject surfaces and the composition of these surfaces into sensi-
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ble object hypotheses. While the idea of the pre-segmentation

introduced in [20] remains the same, the algorithm was

refined in [21] by adding smoothing and filtering resulting in

thinner edges and by parallelizing the algorithm. In this work,

we replace region growing by connected component analysis

and implement motion sensitive temporal smoothing to avoid

the motion blur effect of our previous work. While the high-

level segmentation of our first work extracted support planes

and decomposed the remaining blobs using binary space

partitioning, the second contribution introduced the idea of

composing cutfree neighboring surfaces. In contrast to our

last work which used a greedy composition considering adja-

cency only, in the current work we are employing graph-cut

on a probabilistically weighted similarity graph considering

adjacency, curvature and coplanarity of found surface patches

to enable the method to handle occluded and open curved

objects. Additionally, the algorithms are further optimized

for real-time challenges.

The main advantage of our method, in contrast to existing

ones, is the capability to separate unknown, stacked, nearby,

and occluded objects in a model-free manner as shown in

Fig. 1. Naturally, this approach has its limitations compared

to model-based approaches, especially if very complex object

shapes are to be considered. However, it provides a mean-

ingful initial object hypothesis in arbitrary situations, which

can be refined by active exploration [4] or fed as input to

model-based adaptive methods. The probabilistic nature of

our method allows to focus these methods to selectively

disambiguate uncertain object hypotheses.

The algorithm operates in real-time facilitating interactive

usage in human-robot-cooperation tasks.

The remaining paper is organized as follows: The next

section introduces the segmentation algorithm in detail. In

sec. III we evaluate the robustness and quality of the obtained

segmentation results. Finally, we give a short conclusion and

mention possible future work.

II. 3D SCENE SEGMENTATION METHOD

Before introducing the details of the process flow, we

outline the overall structure of the algorithm. It can be split

into two main parts: the determination of surface patches and

object edges, and a subsequent combination of these low-

level segments into high-level object segments. In contrast

to the commonly employed segmentation method provided

by the Point Cloud Library [22], which aims to fit specific

object models, the proposed approach is model-free and can

successfully handle unknown, stacked, and nearby objects.

The raw depth images, obtained from the Kinect camera,

provide low-noise depth information (see Fig. 1). Hence,

we decided to solely focus on depth images, ignoring color

for now, and thus diminishing the impeding influence of

strong textures giving rise to oversegmentation. Looking

more closely at the depth image, we can identify two

situations, exposing object edges: (i) discontinuous jumps of

depth values, and (ii) sudden changes of the surface normal

direction, e.g. when an object is lying on the table. Conse-

quently, at the core of our algorithm is the determination of

Fig. 2. Overview of the segmentation algorithm.

those “surface normal edges”, which are used as the basis to

segment the image – in a first step – into connected surface

patches and separating edges using a region growing method.

The second part of the algorithm subsequently com-

bines found surface patches into meaningful object seg-

ments. To this end, we create a weighted graph describing

the adjacency-, coplanarity- and curvature-relations between

found surfaces. This graph is decomposed using a graph cut

algorithm to achieve highly probable object hypotheses.

Figure 2 illustrates the structure of the segmentation

algorithm.

A. Pre-Segmentation

The objective of the first processing step is to segment

the depth image into regions of (smoothly curved) surfaces,

continuously enclosed by sharp object edges. Additionally,

we transform the raw depth image into a 3D point cloud,

which is represented w.r.t. a robot-defined coordinate frame.

In contrast to our previous publication [21], we changed the

temporal smoothing to be motion sensitive and replaced the

region growing algorithm by a faster connected component

analysis algorithm.

a) Determination of Surface Normals: As a basis for

computing “surface normal edges”, we first determine sur-

face normals for every image point. To this end, we simply

determine the surface normals from the plane spanned by

three points in the 3 × 3 neighbourhood of the considered

central image point using the classical cross product. In our

previous work, we evaluated more accurate methods based

on principal component analysis [20]. However, they did not

provide better segmentation results and were much slower.

Note, that the determination of surface normals is directly

performed on the raw depth image, instead of the 3D point

cloud. That is, the 2D image coordinates are augmented by

the depth value to yield valid three-dimensional vectors. This

procedure yields much more distinct changes of the normal

direction at the boundary of objects, because the smoothing

effect due to 3D projection is avoided.

In order to reduce sensor noise and to obtain smooth

and stable surface normal estimations, we apply a three-

stage smoothing procedure. First a 3 × 3 median filter is

applied to the raw depth image. Secondly, we apply a motion-

sensitive temporal smoothing, averaging depth values of all
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individual image pixels within the last n = 6 frames, if the

difference of the depth values is smaller than d = 10. Finally,

the calculated normals are smoothed applying a convolution

using a 5 × 5 Gaussian kernel. Fig. 3 shows the resulting

surface normals for the image in Fig. 1, mapping xyz normal

directions to the RGB color space.

In contrast to our previous method, we now restrict

temporal smoothing to points moderately varying over time,

thus effectively avoiding motion blur, while tremendously

reducing sensor noise if no motion is present.

b) Detection of Surface Normal Edges: The next step

is the fast detection of surface normal edges, which is based

on the computation of the scalar product of adjacent surface

normals n1, n2. To obtain clear, uninterrupted edges, suitable

for subsequent application of a region growing algorithm,

we look for edges in all eight directions defined by the

neighboring pixels of a point, i.e. north (N), east (E), south

(S), west (W), as well as NE, SE, SW, NW. The final

result of the edge filter is obtained from averaging the

results of all eight scalar products. While large values, close

to one, correspond to flat surfaces, smaller values indicate

increasingly sharp object edges.

Finally, binarizing the obtained edge image by employing

a threshold value θmax = 0.85 (31, 8◦), we can easily sepa-

rate edges from smoothly curved surfaces. Fig. 3 illustrates

the result of this processing step: Object edges are clearly

visible as bold lines, while smooth and large surfaces form

homogeneous white regions. A considerable number of false

edges are still detected due to noise. However those regions

are small and disjointed and thus can be easily filtered out

in subsequent processing steps. Note, that small or narrow

objects are often represented by edges only, while smooth

surfaces are separated by a relatively thin edge.

c) Segmentation into Surface Patches: Finally, we ap-

ply a fast connected component analysis algorithm, replacing

the region growing from our previous work, to the binarized

edge image in order to associate each surface point with a

unique patch ID as shown in Fig. 4.

The fast surface patch segmentation based on normal

edges already provides a detailed segmentation of the scene

into surface patches, and is then employed in the subsequent

object segmentation step, introduced next.

B. High-Level Object Segmentation

In the second processing block, we ultimately aim for

segmentation on an object level, which means that the

previously found surface patches need to be combined to

form proper object regions. We determine a weighted graph,

modeling the probability of two surface patches belonging to

the same object region. Subsequently this graph structure is

analyzed to find the most probable segmentation into object

regions using a graph cut algorithm. As an extension to

our previous work [21], we also employ co-planarity and

curvature cues to successfully combine objects patches which

are separated due to occlusion.

d) Adjacency Matrix and Assignment of Edge Points:

An initial adjacency matrix representing the basic connec-

Fig. 3. Left: Result of the edge detection (binarized version). White surface
patches are properly enclosed by black, uninterrupted object edges. Right:
Point normals (XYZ direction mapped onto RGB colors).

tivity of surface patches is determined as follows: For every

edge point pr all neighboring surface points pi within a

radius r in image space are considered, which have an

Euclidean distance ‖pr − pi‖ smaller than a threshold dmax.

All possible surface pairs obtained from this list are marked

as adjacent. For example, consider Fig. 5: Here surfaces 2

and 10 are neighbors in image space, but not in 3D space

and therefore aren’t considered adjacent. Faces 7,9,11 fulfill

the conditions and become connected in the graph.

Simultaneously, the edge point pr is assigned to the nearest

surface patch – measured in Euclidean space (cf. Fig. 4).

Edge points, which are part of very bold edges or are too

distant from neighboring surfaces, such that no adjacent

surface points are found, are not yet assigned to a face. These

points probably belong to a separate, but small object, and

are processed in a later stage. If the search radius r and

the distance threshold dmax were not restricted, such small

objects would be absorbed by their supporting surface.

e) Cutfree Neighbors: To further improve the adjacency

matrix, we apply a plausible heuristic check already pro-

posed in our previous work [20]: Two neighboring surfaces

presumably do not belong to a common object – and thus

should be removed from the adjacency matrix – if one surface

cuts the other, such that a considerable amount of points are

lying on both sides of the former surface. For illustration,

consider surfaces 4 and 12 in Fig. 5. While all points of face

4 are on top of the supporting face 12, the plane fitted into

surface 4 cuts surface 12. Hence this surface combination

is disregarded. On the other hand surfaces 7,9,11 are all

pairwise cut-free.

To speed up the cutting test, we approximate surfaces

by a set of 20 planes fitted using parallelized RANSAC

[23]. If most of these planes are cut-free with an adjacent

surface (up to a small tolerance to account for outliers), the

corresponding surface pair is kept for further consideration.

The result of this processing step is a non-directed graph

representing the topology of neighboring surfaces, modeled

by a symmetric, boolean adjacency matrix.

f) Improving the Adjacency Matrix: In case of occlu-

sion, a single face of an object is separated into two parts,

which will not have a link in the adjacency matrix. Con-

sequently, our previous approach was not able to properly

recombine those parts into a single object hypothesis [21].

To overcome this limitation, we extend our approach and

add further links to the matrix based on additional cues,
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Fig. 4. Results of the first segmentation into surface patches and edges
(left), and after assignment of edge points to closest surfaces (right).

namely co-planarity of flat faces and similar curvature of

curved surfaces.

In both cases, we have to ensure, that surfaces became

separated by occlusion. For illustration, consider Fig. 5.

Here surfaces 3 and 8 as well as 4 and 7 are coplanar.

However, only the former pair should be considered for

combination, because they are separated by occlusion, while

the other pair is separated by background. In order to check

that two surface patches are separated by occlusion, but not

background, we check whether image points in the area

between the two surfaces are closer to the camera or not, i.e.

have smaller depth value than expected or not. This condition

is checked along selected lines connecting points from both

surface patches. The predicted depth values along a line are

calculated using linear interpolation.

Two flat surfaces are considered co-planar, if they span a

common plane. To assess this condition, we first compute

the mean normal and its variance for each surface. A face

is considered flat resp. curved, if the variance – measured as

the mean angular deviation of all surface normals from their

mean – becomes small resp. large.

g) Co-Planarity: To check for co-planarity of two flat

surfaces we proceed in two steps: If both surfaces have

similar mean normals (up to a small noise margin), we

check whether the faces are aligned, i.e. indeed span a

common plane. In this case, any plane spanned by three

points from both surfaces should have a similar normal as

the two original mean normals. Because the normal of the

spanned plane may crucially depend on the actual selection

of points, this criterion is checked for a set of 50 randomly

selected triples of points. If any of the calculated normals

deviate too much, the two surfaces are not considered co-

planar. Otherwise, the above described occlusion check is

carried out, along several lines connecting two randomly

selected points from both surfaces. If this check is passed as

well, a corresponding link in the connectivity matrix is added

for the given pair of surfaces. Figure 5 shows the resulting

graphs before and after co-planarity extension. While the first

graph results in four final objects, the second graph correctly

results in three objects.

h) Curvature Matching: In order to handle curved

surface patches in a similar fashion, we compare their cur-

vatures. To this end, we compute a curvature histogram for

every curved surface, representing the distribution of surface

normals within the surface. The 2D histogram of 11×11

bins describes the relative frequency of observing surface

Fig. 5. Illustration of the coplanarity and the probabilistic composition.
Coplanar surfaces separated by occlusion (green bounding box) shall be
combined, coplanar surfaces separated by background (red bounding box)
shall not be combined. Left graph without coplanarity (occluded box is
separated into two parts), right graph with coplanarity (correct composition
of the two box parts). Red line in the graph illustrates the cut in the subgraph.

normals with given x and y components. Note, that the

associated frequency of z components is determined by the

fact, that normals are normalized to magnitude one. As can

be seen from Fig. 6 these histograms are compact fingerprints

of the shape and orientation of the corresponding surface

patches. While the first two, very similar histograms belong

to the two separated pieces of the lying cylinder, the other

two histograms belong to two different objects: the standing

bottle and the sphere. To measure the distance of histograms

we estimate the mutual overlap of their distributions:

D(A,B) =
∑

ij |aij − bij | (1)

Exploiting the normalization of histograms and the fact:

min(a, b) = 1

2
(a+ b)− 1

2
|a− b| (2)

we more efficiently compute the similarity index:

S(A,B) = 1− 1

2
D(A,B) =

∑
ij min(aij , bij) (3)

which is a score between 0 and 1. Surface pairs with a score

larger than Θh = 0.5 are considered for recombination.

In the following, we differentiate between open curved

objects and occluded curved objects. To recombine the inner

and outer surfaces of an open object (like a cup or bowl),

two conditions must be fulfilled: (1) both surfaces are neigh-

boring in image space and (2) the surfaces are concave and

convex respectively. The first condition considers the fact,

that the calculation of the initial adjacency matrix is restricted

to neighbored surfaces in Euclidean space. However, the

inner and outer surface of a cup, are typically quite distant in

Euclidean space and thus became separated in our previous

work [21]. The second condition simply checks for presence

of an open object.

To assess the convexity / concavity of a surface, we again

consider the curvature histogram, namely the two extremal

bins hmin and hmax along the major axis of the histogram

blob. Back-projecting these bins into the image space, we

yield point sets Pmin and Pmax, whose normals are mapped

onto the corresponding bins. These point sets typically are
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Fig. 6. Normal histograms of four surfaces: The first two histograms belong
to the two parts of the lying cylinder, the other two to the standing bottle
and the sphere. The segmentation image also emphasizes all image points
whose normals are mapped to the peak bin in the histogram as well as the
fitted line employed for the alignment and occlusion tests.

located at the boundary of the surface patch (assuming

smoothly curved objects). In case of cylinders they form lines

along its axis, in case of spherical objects they form smaller

regions (cf. Fig. 7).

To proceed, we compute the mean image coordinates p̄min

and p̄max of these point sets. The crucial point now is, that

p̄min and p̄max are located on different object sides depending

on the convexity of the object as illustrated in the rightmost

figure of Fig. 7. Accordingly, we can assess convexity by

considering the scalar product

(p̄max − p̄min) · (hmax − hmin) (4)

between the directional vectors formed by the extremal

points in image vs. histogram coordinates. If this value is

positive, i.e. both vectors pointing into a similar direction,

the surface is convex, otherwise it is concave.

Secondly, we consider the case of non-neighboring, sim-

ilarly curved surfaces, which are separated by occlusion.

As for co-planarity we have to check for similarity and

alignment of both surface patches as well as for occlusion.

Similarity is again assessed using the similarity index Eq. (3).

To judge alignment, we consider the bins with maximal

density in both histograms. Back-projecting into the image

space, we yield a common point set P describing the major

axis of the object as illustrated in Fig. 6 for the two parts of

the cylinder. If we fit a line through these 3D points using

linear regression, we can exploit the regression coefficient

as a quality measure of alignment of both surfaces. Finally,

the occlusion check as described above is executed along the

fitted line.

i) Probabilistic Object Composition (Graph Cut): The

result of the previous steps is an adjacency matrix repre-

senting a graph with edges for all possible surface combi-

nations arising from cutfree neighborhood, co-planarity and

curvature matching. This graph is turned into a weighted

graph, such that edge weights represent the strength of

connectivity between two connected nodes. Finally, the graph

is partitioned into sub graphs of high internal connectivity

using a graph cut algorithm. These sub graphs represent the

final object hypotheses. In contrast to our previous work [21]

Fig. 7. Curvature histograms of the inner and outer surfaces of a cup. The
rightmost subfigure visualizes the points contributing to the extremal bins
in the histogram blobs, their means p̄min, p̄max and the associated surface
normals. As can be seen from this figure, the directional vector from p̄max

to p̄min has opposite directions for convex vs. concave surfaces.

where we used a greedy strategy to compose complete sub

graphs, the graph cut algorithm achieves better composition

results, especially on partially occluded objects.

To determine the connectivity weights, we initially assign

a common weight wij = 1/n to all edges (i, j) originating

from node i. Here, n denotes the number of nodes adjacent to

node i. This results in a directed graph, where all outgoing

edges of a node have the same weight and thus the same

probability for composition with this node. To create an

undirected graph, we average the weights of incoming and

outgoing edges:

Wsym = 1

2
(W +W t).

Figure 5 shows the resulting graph for an example scene.

The higher the connectivity of two nodes, the higher their

connecting weight. Graphs obtained without/with consider-

ing co-planarity are shown.

Exploiting the weighted graph, we apply a very simple

graph cut algorithm. In contrast to the popular min-cut

algorithm we do not need to find the minimal cut, but simply

all cuts smaller than a given threshold Θc = 0.5. This

threshold balances between under- and over-segmentation. A

very small value, close to zero, generates a single segment for

every initially connected subgraph, while a very high value

generates an individual segment for every surface node. The

threshold of 0.5 achieves the optimal segmentation for most

of the scenes, while an adjustment of the threshold allows

to balance the granularity of the segmentation.

Starting with individual nodes, the algorithm calculates

all connected sub graphs in ascending size and their corre-

sponding cuts. A cut is the set of all edges outgoing from

the sub graph and the associated costs is the sum of the

corresponding edge weights. If the costs are smaller than

Θc, a cut is found and the sub graph is extracted as a single

object. If the subgraph exceeds n/2 in size, the algorithm

aborts, because all potential cuts were considered.

In the example of Fig. 5 five segments on the left resp.

four segments on the right are found. The partitioning cut is

illustrated with a red line.

j) Remaining Edge Points: In the final processing step,

all remaining edge points have to be processed to obtain

the final segmentation result shown in Fig. 1. Firstly, the

remaining points are segmented using a region growing al-

gorithm working in the image plane and using the Euclidean

distance as the criterion of uniformity. These segments are

then processed according to the following rules:
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Fig. 8. Evaluation results of the Object Segmentation Database [24].
Comparison of our previous work [21] (red), the current work (green) and
selected test-sets with optimized parameters (orange).

• If a segment has no neighboring faces (caused by miss-

ing depth information), it becomes a separate object.

• If a segment has one neighboring face and comprises

very few points only, they are assigned to this neighbor.

• If a segment is completely enclosed by a single neigh-

boring face, it becomes a new object. If it is not

completely enclosed, all points are assigned to the single

neighboring region.

• If a segment has more than one neighbor and all

neighbors are part of a common object, it will be

assigned to this object.

• If a segment has more than one neighbor corresponding

to different objects, all points are assigned to the best

matching neighboring plane using RANSAC.

III. EVALUATION

A. Quantitative Results

In this section, we present quantitative segmentation re-

sults for data taken from the Object Segmentation Database

[24], which provides a huge set of table-top scenes, including

a color image, point cloud data, and a reference segmentation

for each scene. To employ the database for our algorithm

(which works on raw depth images), we back-projected

the PCL point cloud to a depth image. Using the labeled

segmentation results, we evaluate the segmentation quality

of our algorithm. To this end, we consider the set Ri,

comprising all points of the reference segmentation of object

i and the set Si, comprising all points of our segmentation

result. TPi = Ri ∩ Si shall denote the overlap of both sets,

i.e. the set of correctly segmented points (true positives).

FPi = Si \ TPi and FNi = Ri \ TPi shall denote the sets

of false positive and false negative points, which are only

assigned to one of the sets resp. The equations

tp =
1

n

n∑

i=1

|TPi|

|Ri|
, fp =

1

n

n∑

i=1

|FPi|

|Si|
, fn =

1

n

n∑

i=1

|FNi|

|Ri|

calculate the average scores, where n is the number of object

segments for an individual image of the database.

The results of all test scenes in the database are illustrated

in Fig. 8. The graph shows the true positive and false positive

TABLE I

QUANTITATIVE SEGMENTATION RESULTS (IN %).

true positive false positive false negative

old algorithm

Mean 92.3 1.9 7.7

Std. deviation 7.3 3.3 7.3

new algorithm

Mean 96.3 2.5 3.7

Std. deviation 4.1 4.5 4.1

optimized parameters

Mean 96.4 2.0 3.6

Std. deviation 3.5 3.8 3.5

Fig. 9. Segmentation results for scenes 46, 50 and 65 of the OSD [24]

scores obtained from our previous (red) and the presented

(green) algorithm. The false negative score is not illustrated

in the graph, because it is simply 1− tp. Table I shows the

mean scores and standard deviations obtained by averaging

over all test scenes in the database. Three test scenes were

segmented with an optimized cut threshold Θc as discussed

below. All other scenes were segmented with the standard

value of Θc =
1

2
.

The true positive score of the new algorithm is noticeable

higher than the score from the old algorithm, especially for

highly occluded scenes in the database. The new algorithm

has a slightly higher tendency to under-segmentation (false

positive) in very complex scenes, what can be compensated

by an adjustment of Θc. More segmentation results are

available at the project website [25]. Figure 9 shows three

example scenes from the Object Segmentation Database and

the segmentation results of the introduced approach.

In [18] a correlation-learning based algorithm is evaluated

against the OSD using one ore two SVMs. While with one

SVM, the algorithm is slightly weaker than our algorithm in

both, under- and over-segmentation, two SVMs let the algo-

rithm slightly outperform our approach in the true positive

score, but with the cost of much higher under-segmentation.

In addition, our algorithm does not need prior training and

is real-time capable. Table II shows the comparison of this

algorithm with the presented approach.

B. Runtime Performance

In this section we evaluate the efficiency of the proposed

approach, report on the runtimes of the algorithm and show

some qualitative results. Fig. 10 shows three example scenes.

The algorithm robustly segments table top scenes as well as
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TABLE II

COMPARISON OF [18] AND OUR APPROACH (IN %).

current work [18]
opt. one SVM two SVMs

tp fp tp fp tp fp tp fp

Boxes 98.6 0.1 98.6 0.1 96.5 0.4 97.8 2.3

St. boxes 97.9 0.6 97.9 0.6 97.7 4.6 99.3 4.7

Occl. obj. 95.3 0.2 98.4 0.2 81.4 1.5 94.1 1.0

Cylinders 97.5 1.3 97.5 1.3 97.8 0.8 98.6 12.7

Mixed 96.6 5.3 95.2 2.9 97.7 5.7 98.2 7.9

Complex 90.6 7.1 90.6 7.1 93.0 4.9 93.8 4.9

Total 96.3 2.5 96.4 2.0 94.9 2.8 97.2 5.8

Std. dev. 4.1 4.5 3.5 3.8 7.2 5.6 4.8 10.3

Fig. 10. Three complex scenes and their corresponding segmentation result.

other indoor environments, e.g. offices. It is applicable to

scenes of different complexity with objects of various size

and shape. Table III shows the runtimes for these scenes.

The runtime is composed of the motion sensitive tem-

poral smoothing filter, the 3D point cloud projection, edge

detection (including median filtering, normal calculation,

smoothing, edge calculation and binarization), region grow-

ing, determination of the adjacency matrix (including assign-

ment of edge points), the identification of cut-free surface

pairs, coplanarity check, curvature matching, graph cut, the

assignment of the remaining points, and the point cloud

visualization.

The determination of the adjacency matrix, the assignment

of remaining edge points, the coplanarity and curvature

check, the graph cut and the cut-free testing vary with the

complexity of the scene, whereby the framerate is at least

TABLE III

RUNTIME (MS) OF ALGORITHMIC STAGES FOR SCENES SHOWN IN

FIG. 10.

scene 1 scene 2 scene 3

temporal smoothing 0.5 0.5 0.5

edge detection 1.1 1.1 1.1

region growing 1.4 1.4 1.4

pointcloud 1.2 1.2 1.2

point assignment 7.5 6.7 10.5

cutfree pairs 3.2 2.2 3.8

coplanarity 3.2 2.4 2.1

curvature 8.2 2.8 3.9

graphcut 0.7 0.6 5.2

remaining points 4.2 2.5 2.4

visualization 2.5 2.5 2.5

overall time (Hz) 33.7 (29.7) 23.9 (41.8*) 34.6 (28.9)

Fig. 11. Weak points of the previous algorithm: (1) open curved objects, (2)
object split by complete occlusion, (3) staicase, and the correct segmentation
of the current approach.

28 fps. Most parts of the algorithm are parallelized using

a nVidia GTX560 graphics card. The remaining parts are

processed on a single core of a XEON 2.53 GHz processor.

Faster hardware can ensure full 30 Hz, even on highly

complex scenes. The algorithm always operates on QVGA

resolution (320× 240).

C. Strengths and Weaknesses

The presented real-time segmentation algorithm works

very well with a huge number of complex scenes and solves

some issues of our previous work [21]. These problems are

illustrated in Fig. 11 in comparison with the segmentation

results of the current approach. Firstly, the inner and outer

part of open, curved containers, like cups, were decomposed

into separate object regions. Using curvature matching these

surfaces are now correctly recombined.

Secondly, surfaces which were separated due to occlusion

by another object, were not recombined by the previous

approach. In the current work, we add edges to the adjacency

graph using co-planarity checks and thus are capable to

recombine occluded object parts.

Finally, objects, whose surfaces are perfectly aligned (like

steps of a staircase), were separated into multiple segments

in the previous approach but in a strange manner. Even if the

two books should be separated (what is hard without world

knowledge) the segmentation as a single staircase-like object

is to favor.

The two thresholds Θc for the composition using the

graph cut algorithm and Θh for curvature matching yield

correct results with their default value of 0.5 for most of the

scenes. However, in some cases, an adjustment increases the

segmentation quality. Figure 12 shows three OSD scenes,

which were treated with specially tuned parameters. The

resulting scores are visualized in Fig. 8 with orange markers.

The bottle in the first image remains decomposed using

Θh = 0.5, because the two surfaces parts are considered as

non-aligned. By decreasing the matching threshold Θh, the

bottle is correctly recombined. The two other images show a

cluttered scene, where a box is separated into multiple small

surface patches through occlusion. The result is a highly

connected graph with cut costs higher than Θc = 0.5. By

increasing the threshold, the under-segmented part turns into

an over-segmented part, which is preferable in this case.
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Fig. 12. Parameter optimization for better segmentation: (1) decrease Θh

due to different surface orientations, (2)+(3) increase Θc due to under-
segmentation. The examples are the test scenes 26, 45 and 49 of the OSD
[24], marked as opt. in figure 8.

D. Human-Robot Interaction

We used the segmentation approach for autonomous grasp-

ing with the 24-DOF Shadow Robot Hand employing our

biologically inspired grasping strategy [1]. To obtain a coarse

shape model of the object – which is required to select a

grasp prototype, i.e. power, precision, or pincer grasp based

on object size, and to correctly align the hand to the object

– we fit a superquadrics model [26] to the 3D points of a

selected object blob obtained by our segmentation algorithm.

This model determines the position and orientation as well as

the coarse size and shape of the object. With this information,

we can apply our grasping strategy. In the human-robot

interaction experiment, shown in the accompanying video,

the user selects an object with a pointing gesture. The robot

grasps the object and hands it over to the human.

IV. CONCLUSION AND FUTURE WORK

In this paper, we extended our model-free segmentation

algorithm for cluttered scenes which is not restricted by a

given set of object models, world knowledge, or the ability

to extract supporting planes, which represents the current

state-of-the-art. A fast algorithm to determine object edges

using edge detection on surface normals was combined with

a novel graph-based method to combine surface patches to

form highly probable object hypotheses. Coplanarity checks

and curvature matching were added to handle occluded and

open curved objects. A graph cut algorithm for more flexible

composition replaced the greedy strategy of our previous

work and the runtimes were tuned towards the maximal fram-

erate of the sensor employing optimized parallel algorithms.

The algorithm can deal with stacked, nearby, and occluded

objects, which is achieved by finding object edges in depth

images and the novel idea to identify adjacent and cut-free

surface patches, as well as coplanar surfaces, separated by

occlusion, which can be combined to form object regions.

The algorithm was evaluated w.r.t. real-time capabilities and

segmentation quality.

To allow direct interaction with users, a distinction of

objects from the human hand would be desirable. To this end,

color histograms could be used. Employing color matching

algorithms to enrich the adjacency matrix by similarly col-

ored surface connections turned out to be counter-productive.

However, color can still be a useful cue for the assignment

of edge points and the separation of the human hand from

objects. The obtained segmentation result should be consid-

ered as an initial, high-quality hypothesis for the structure of

a scene which can be further refined by active exploration

[4], or model-rich approaches.
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