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Abstract— The cerebellum is a brain structure necessary for
skilled motor behaviour and has a well understood and repeti-
tive architecture. Such an architecture inspired the Marr-Albus-
Ito theory of cerebellar learning, that provides an explanation
for the acquisition of motor skills by the cerebellum. Numerous
computational models inspired in such a theory have already
been employed in robotic tasks. Here we look into one of the
suggested roles of the cerebellum, the replacement of reflexes by
anticipatory actions and we apply it to a robot navigation task.
The acquisition of anticipatory actions has been thoroughly
studied in the field of classical conditioning. Of particular
interest is the so-called CS-intensity effect, an effect that links
the rapidity of execution of an anticipatory protective action,
the Conditioned Response (CR), to the intensity of a predictive
signal, the Conditioning Stimulus (CS). We propose that the CS-
intensity effect implements a built-in sensory-motor contingency
that allows to carry over a skill learned in a safe and easy
context, e.g., turning at slow velocity, to a more difficult one,
e.g., a turning at a faster speed. We demonstrate this hypothesis
in a series of experiments where a robot has to navigate a
track that has a turn. We show that after being trained at a
slow velocity, by means of the CS-intensity effect, the cerebellar
controller modulates the turning such that its onset anticipates
as the robot speed increases. Ultimately, through incremental
learning, this generalization allows the robot to learn to navigate
the track at its maximum speed.

I. INTRODUCTION

Since the first theories of cerebellar learning were pro-
posed [1], [2], computational models of the cerebellum have
been applied to robotic control tasks [3]. The aim of such
implementations has been not only theoretical, to validate
the functionality of cerebellar theories [4], [5], [6], [7], but
also practical, since computational models of the cerebellum
perform competitively in some domains (e.g. bipedal walking
[8], robotic arm control [9]). Competitive applications are
often obtained with models that abstract away from the
cerebellar physiology. Such models reproduce 1) the over-
all cerebellar architecture at the level of the information
pathways and 2) the error-based learning rule. However
poor attention is devoted to the fine-grained dynamics of
the cerebellar computation. We believe that as much as the
robotic community has gained from the implementation of
control systems blueprinted from the cerebellar architecture,
it will gain from reproducing the dynamics of the real
cerebellum. Here we look into the dynamics of anticipatory
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reflexes controlled by the cerebellum as studied in classical
conditioning. More concretely, we look into the CS-intensity
effect, that links the speed and amplitude of execution of an
anticipatory reflex to the intensity of the cue signal [10],
[11]. We show that the CS-intensity effect implements a
sensory-motor contingency that allows generalizing a learned
motor skill along different speeds of execution. Finally, we
demonstrate that this generalization enables to safely learn
the rapid execution of a motor action, namely, to perform a
turn at high speed avoiding collisions.

In classical conditioning the experimenter sets up a con-
tingency between a neutral Conditioning Stimulus (CS) and
a noxious Unconditioned Stimulus (US) such that the CS
becomes a predictor for an upcoming threat [12]. Initially, the
US triggers an innate and reflex-like protective Uncoditioned
Response (UR) that after training will be preceded by a
similar anticipatory action, i.e., the Conditioned Respone
(CR) . For instance, in eye-blink conditioning a usual setup
has a tone preceding a mild electric shock to the peri-orbital
area of an animal by a time interval below a second [13] that
elicits a protective eyeblink. After a number of repetitions
of such paired CS − US presentations, animals develop
an anticipatory blink, the CR, aiming to mitigate the harm
caused by the US.

Here we have translated the delay eyeblink paradigm to
a collision avoidance task. In such a task, a robot has to
traverse a track avoiding collisions. The track contains a
single turn, that is preceded by a series of stripes on the
ground. The robot is equipped with sensors through which it
detects the marks on the ground (CS) and the proximity to
the walls (US). The proximity signal triggers first a reactive
turn (URt) and, over a certain threshold, a reactive braking
(URb). Initially, the robot is tested at a velocity for which the
reactive control safely avoids collisions even though the close
proximity to the wall forces the robot to brake. Thus, firstly,
cerebellar learning will be expressed as an anticipatory and
smooth turn, the CR, preventing the robot from reducing the
velocity.

Our rationale is to apply a sensory motor contingency like
the CS-intensity effect to generalize the turn learned at the
slower and safer velocity to a faster and dangerous one, i.e., a
velocity for which the reactive controller would not prevent
the robot collision. Ultimately, this would allow the robot
to learn to navigate the track at higher velocities. In order
to map the speed into the intensity of the CS, we use the
derivative of the visual signal, i.e., aa analogous to simple
optic flow singal. Likewise a faster robot will experience a
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more intense (albeit shorter) CS.
We use an adaptive filter model of the cerebellum with

a de-correlation learning rule [14]. In accordance with this
model, the signal generated by the visual input is decom-
posed on a series of components with different temporal
profiles, we call them cortical bases. The cerebellar learning
consists then in finding the weights of the linear combination
that maps the response of cortical bases into a correct
output. In our case, a correct output is the one producing an
anticipatory turn that either allows the robot to navigate the
track without reducing the velocity or, if this is not possible,
to simply stay within the track boundaries avoiding collision.

According to this scheme, when the CS-intensity is in-
creased, the variation of the CR learned at a given intensity
depends on the response of the cortical bases to the new
CS. For instance, if doubling the intensity of the stimulus
only doubles the response of the cortical bases, but does not
alter their temporal profile, the cerebellar output will only be
scaled in amplitude but not shifted in time. Thus, in practical
terms, the reponse of cortical bases responses has to be non-
linear. To achieve this, we implement in our model the signal
transduction mechanism that is applied in the input stage of
the cerebellar cortex, i.e., at the granular layer [15]. Namely,
we assume that the granule cells, the cells that code the
cortical bases, act as linear thresholded filters [16] and that
their output results from the interaction of a fast excitatory
component minus a slow inhibitory one [17].

To summarize, we propose that the CS-intensity effect
allows to generalize a sensory motor association learned
at one speed of execution to different onesand that this
generalization can help a robot to master the execution
of skilled behaviour at high speeds through incremental
training. In order to reproduce the CS-intensity effect in
the computational model of the cerebellum, we generate
the cortical bases mimicking the fast excitation followed by
slow inhibition signal transduction of the cerebellar cortex.
Finally, we validate this proposal with a series of robotic
experiments where a robot navigates a track at gradually
increasing velocities.

II. METHODS

A. Computational architecture

The computational architecture implemented two layers of
control. The reactive controller maps the proximity signals
at both sides of the robot (USl and USr) into reflex-like
avoidance turns (URtl and URtr) and braking actions (URbl

and URbr). In addition, an adaptive controller, implemented
as a cerebellar analysis-synthesis adaptive filter controller
([14]), will eventually acquire an anticipatory turn after the
CS and ahead of the UR. In these experiments, since the
tracks included just a single right turn, we only implemented
a controller to anticipate the turn to the right. However, we
mounted reactive controllers in both sides, to ensure that the
robot stayed on the track even when the anticipatory turn
was overshooting.
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Fig. 1. Computational architecture with the reactive and adaptive
controllers. CS, conditioning stimulus (visual input); US, unconditioned
stimulus (proximity signal); CR, conditioned response (anticipatory turn);
URt, unconditioned response (reactive turn); URb, unconditioned response
(reactive brake); CER, cerebellar controller; Rturn, reactive turn controller;
Rbrake, reactive brake controller; θbrake, threshold for braking; knoi, gain
of the Nucleo-olivary inhibition; kturn, gain of the turning command;
kbrake, gain of the braking command.

B. Cerebellar model

The neurobiological assumptions underpinning this model
have been decribed elsewhere [4]. We just highlight that
this model implements the Nucleo-Olivary Inhibition (NOI),
through which the cerebellum can compare its output signal
with the sensory signal carrying the US information, and
adjust its mapping until the mismatch is minimized. Addi-
tionally, here we add a slow inhibitory components to the
computation of each basis computation, that allows for more
precise responses.

To generate the signal of the cortical bases we produce
two components for each basis: a fast excitatory and a slow
inhibitory one. Each component consists of a double expo-
nential convolution. The time constants of the convolutions
for the excitatory and inhibitory component are randomly
drawn from two flat probability distributions ranging from
0.05 to 0.1 seconds, and from 0.2 to 5.5 seconds, respectively.
These values are significantly over the physiological time
constants of the synaptic currents found in the cerebellar
cortex, but they are appropriated for the current experimental
setup. The value obtained after the two convolutions is then
thresholded and scaled for each basis. The whole computa-
tion is formalized as follows:

erj(t) = γrj e
r
j(t− 1) + CS(t)

edj (t) = γdj e
d
j (t− 1) + erj(t)

ej(t) = σj [e
d
j (t) − θj ]

+

where j indexes a particular basis. erj and edj compute a
convolution and, informally, each one governs the rise and
decay of the ej basis, respectively. They are controlled by
the persistence factors γrj and γdj , which generate the appro-
priated exponential decay. The third equation adds a non-
linearity (a threshold θj) that in the current implementation
is critical for obtaining the response latency modulation by
the CS intensity (note that [x]+ = max(x, 0)). I.e., without
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such a threshold the computational model would act as a
linear filter. For each cortical basis an inhibitory component,
ij is generated with the exact same process, only using time
constants 10 times larger.

The final value of the basis, pj , is computed as follows:

pj(t) = [ej(t) − ij(t)]
+

The output of the cerebellar controller is given by:

CR(t) = [p(t)Tw(t)]+

where w(t) is the vector of weights and p(t), the vector of
bases.

The weights are updated using the de-correlation learning
rule:

∆wj(t) = β E(t) pj(t− δ)

where β is the learning rate and E(t) is the error signal,
computed by the inferior olive output (see below). δ provides
the latency of the NOI. The value of δ determines how much
the adaptive action anticipates the reactive one and has to
exceed the feedack delay [18]. In our experiments we used
a β of 0.01 and a δ of 1.0 s. We estimated that the feedback
delay in our system was in the order of 0.2 seconds.

Finally, the error signal for the cerebellar system is com-
puted as the difference between the scaled cerebellar output
and the US signal as follows:

E(t) = US(t) − knoiCR(t− δ) (1)

The factor scaling the CR is the gain of the NOI, knoi.
Note that through this computation, the error signal for the
cerebellum is suppressed before the sensory US is com-
pletely prevented, for which a fraction of the initial reactive
response, UR, still prevails after training. The amplitude
of this residual UR depends on the knoi value and has
functional implications (see [4]). In short, with a knoi of 1 the
final amplitude of both actions would be similar whereas with
a knoi equal to 0 the adaptive response would completely
replace the reactive one. In this setup we use a value of 0.4,
obtaining a CR that is bigger than the UR at the end of
training.

C. Experimental setup

The setup consists of an epuck robot [19] and a Mixed-
Reality Robot Arena (MRRA) [20]. The robot navigates a
track back-projected onto the table displaying the CS signal
as a series of green stripes. A tracking system captures the
position and direction of the robot in order to compute the
sensory data, proximity and visual signals. These virtual
sensory signals are provided to the controller system, that
then issues the appropriated motor commands to the epuck
robot via a bluetooth connection. In summary this setup
mixes the constraints of controlling a real robot with the
versatility of generating a virtual scenario.

Fig. 2. Experimental setup. Mixed reality environment with the back-
projected arena and the physical robot (e-puck).

Stimuli: The robot is equipped with virtual sensors.
Namely, a camera and proximity sensors. The camera allows
to detect the green stripes displayed on the ground of the
track. From this input, we compute the proportion of the
visual field occupied by CS stimulus (the green stripes).
The CS is then computed as the differential of the previous
signal. With this procedure, the intensity of the CS signal
is linked to the speed of the robot, since the instantenous
variation in the visual field is proportional to the robot
velocity. The proximity sensors are mounted at each side,
frontally and 15 degrees away from the forward direction.
They have a range of 6 cm, and are normalized such that at
maximum proximity their value is 1.

Motor commands: The motor of each wheel is con-
trolled independently, with a signal that blends the output of
all controllers as follows:

Ml = Minit + kturn(CR+ URtl − URtr)
−kbrake(URbl + URbr)

Mr = Minit + kturn(CR− URtl + URtr)
−kbrake(URbl + URbr)

Ml and Mr denote the left and right commands, re-
spectively. Minit sets the initial velocity, that is maintained
constant for each trial. We use values ranging from 8 cm/s
(corresponding to a Minit equal to 20 units) to 20 cm/s
(corresponding to a Minit equal to 50 units). The reactive
turns (URtl and URtr), that convey the same value as their
contra-lateral US signals, are added to the anticipatory turn
(CR) and multiplied by the motor gain for the turn kturn.
Each brake command is computed as follows:

URbl = (1 − θbrake)[(USr − θbrake)]
+

In short, each URb is computed as the proximity signal
exceeding the θbrake threshold, normalized. Both braking
actions are then added and multiplied by the corresponding
motor gain (kbrake). In our experiment we set kturn and
kbrake to values of 8 and 20, respectively, and set the braking
threshold to 0.5, what corresponds approximately to a 3 cm
distance from the wall.
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Fig. 3. Evolution of the responses. (Left). Reactive commands at the first
trial (turning [thin line] and braking [thin dashed line]) and at last trial
(reactive turning [thick solid line], there is no braking at the last trial). The
cue signals are deisplayed near the onset of the trial [grey dotted lines].
(Right). Evolution of the adaptive command. Darker color indicates higher
amplitude of the response.

Fig. 4. Integration of the reactive and adaptive responses. (Left). Total
command in an early trial (thin lines) and at the end of learning (thick lines).
The dashed lines separate the adaptive (below) and reactive components of
the response (above). (Right). Trajectory of the robot for the same two trials

III. RESULTS

A. Experiment 1

The goal of this experiment is to train the robot to acquire
a predictive turn allowing it to traverse the track without
decreasing the initial velocity. The training session lasts 100
trials. We set up an initial velocity of 8 cm/s. This speed
is sufficiently slow to prevent the robot from hitting the
wall under sole reactive control. However, even at this slow
velocity the proximity signal reaches the braking level (Fig.
3 left). As training progresses we observe the acquisition of a
predictive turn that slowly grows in amplitude and becomes
more accurately timed (Fig. 3 right). Note that at the end of
the training the reactive response is not completely erased:
the proximity signal still grows over the threshold causing a
reactive turn, but stays below the braking threshold (Fig. 3
left). Thus, once successfully trained, the robot balances the
predictive and the reactive actions such that it can traverse
the track as fast as possible preserving the initial speed.

Concerning the relative timing of both actions, δnoi de-
termines how much the adaptive response will anticipate
the reactive one (Fig. 5). We set up this parameter to 1 s,
obtaining an optimal merge of both actions (Fig. 4). Namely,
the adaptive response peaks at the onset of the reactive one,
which is the textbook definition of adaptive timing in the
classical eye-blink conditioning paradigm. This merge results
in a final trajectory where the robot displays a single turn
different from the trajectory during the early trials, where
both turns can be singled out (Fig. 4).

Fig. 5. Quantification of the responses during training. (Left). Timings
relative to the CS onset. Onset (gray markers) and peak (black) of the
adaptive response and peak of the reactive one (empty marker). Mean
and standard deviations computed every five trials. (Right). Maximum
amplitudes of both responses.

B. Experiment 2

With the second experiment we assess how well the
response acquired at the initial safe velocity generalizes to
faster velocities. For this, we applied the cerebellar controller
that we trained in the previous experiment and we froze its
memory by setting the learning rate to 0. Afterwards, we
increased the initial velocity every five trials by a step of
0.8 cm/s. In this way, at the trained velocity the cerebellar
controller outputs the same response acquired during the
training, but the response at higher velocities depends on
how the increased intensity of the CS is translated into the
response.

We first evaluate the experiment in behavioral terms. For
this we test which is the maximum speed that the robot can
achieve before colliding with the walls. We observe that after
having only been trained at a velocity of 8 cm/s, the robot
can safely navigate the track at speeds up to 17.6 cm/s. Note
that the highest safe speed with sole reactive control was of
14.4 cm/s (see supplementary video). Therefore, even though
the robot cannot learn from scratch to traverse the track at a
speed of 17.6 cm/s, because it will crash with the wall in the
first trial, it can traverse the track at such a velocity if it is
initially trained at the safe velocity of 8 cm/s. This suggests
that, in principle, we can use this controller to train the robot
optimally navigate this track at the speed of 17.6 if we first
train it at 8 cm/s.

Now, we examine the output of the cerebellar controller to
assess whether the navigation of the track at higher velocities
is achieved, 1) because the exact response that was learned
at the initial training speed is triggered at higher velocities
but still facilitates the turning, or 2) because the learned
response is generalized in congruence with the requirements
of the increased velocity. Note that as the velocity increases,
the interval between the CS and the collision shortens and
that, given the dynamics of the motor plant, the amplitude
of the turning command also increases (i.e., reproducing the
same curvature at a higher speed requires a higher control
signal). Thus, to generalize from the previous learned motor
command, the cerebellum has, 1) to anticipate the adaptive
response such that the robot turns earlier and 2) increase the
amplitude of the motor command. We recall here that the
speed of the robot is implicitly coded in the intensity of the
CS.
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Fig. 6. Quantification of the responses during generalization. (Left).
Timings relative to the CS onset. Peak of the adaptive response (black)
and peak of the reactive one (empty marker). Mean and standard deviations
computed every five trials. (Right). Maximum amplitudes of both responses.

18

16

14

12

10

20

ve
l (

cm
/s

)

m
o
to

r 
co

m
m

a
n
d

velocity (cm/s)
10 12 14 16 18 20

Fig. 7. Quantification of the responses during continuous learning. (Left).
Timings relative to the CS onset. Peak of the adaptive response (black)
and of the reactive one (empty marker). For comparison, the peak of
the CRs obtained in the previous experiment are also displayed (gray).
Mean and standard deviations computed every five trials. (Right). Maximum
amplitudes of both responses.

We obtain that as the velocity increases (as the intensity
of the CS stimulus increases) the timing of the adaptive
response is anticipated. The anticipation is such that at all
the velocities tested the adaptive response still peaks ahead
of the reactive one (Fig. 6 left). The adaptive turn remains
anticipatory even when the increase of speed triggers an
earlier reactive turn. However, we do not obtain an increase
in the amplitude of the response together with the increased
velocity (Fig. 6 right). This lack of generalization of the
amplitude may be the reason why, even though the learned
response remains anticipatory, at some point it becomes
insufficient to keep the robot on the track.

C. Experiment 3

Finally, we want to find out whether the controller allows
the robot to traverse the track at its maximum velocity (20
cm/s). For this we run an experiment in which the robot is
incrementally trained at higher velocities. As in the previous
experiment we depart from a cerebellar controller already
trained during 100 trials at the initial velocity of 8 cm/s.
Whenever the robot navigates the track without braking for
5 consecutive trials or after performing 10 trials at the same
velocity, we increase the velocity by a step of 0.8 cm/s.
Our hypothesis is that, since the controller generalizes the
response learned at a slower velocity to a higher one, learning
to perform a correct turn at an increased speed would only
require a fine-tuning of the initial acquired CR.

We obtain that the robot is able to navigate the track at
the maximum velocity, even though it cannot avoid brak-
ing for speeds above 17.6 cm/s. To assess how much the
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Fig. 8. Time to navigate the track at different velocities with continuous
learning (dark) or only training at the slowest speed (gray). Mean and
standard deviation of the last five trials in each condition.

generalization from slower to higher velocities facilitates the
learning, we compare the results from experiment 2, that
were generalized from a single initially trained velocity, with
the commands learned in this experiment, where the learning
proceeds at each velocity step, assuming that a major similar-
ity implies a better generalization. We observe that having
learned to perform the turn at the velocity of 8 cm/s, the
controller correctly generalizes the timing at the velocities up
to 17.6 cm/s, i.e., there is no systematic difference between
the timing of the generalized and the learned commands
(Fig. 7 left). However, both commands are very different in
amplitude (Fig. 7 right). As our controller did not reproduce
the amplitude component of the generalization, the learned
commands have a bigger amplitude than the generalized
ones. Finally, besides delaying the collision with the wall,
that in the current experiment did not occur even at the
maximum velocity of the robot, learning a more precise
response allows the robot to navigate the track faster (Fig
8).

In conclusion, we observe that the correct generalization
of the timing of the CR to higher velocities allows the robot
to learn to navigate the track at its maximum velocity.

IV. CONCLUSIONS

We have presented a control architecture inspired by the
cerebellum that allows a robot to navigate a track avoid-
ing collisions. Such controller learns to transform a purely
reactive avoidance response into a more complex response
that includes both anticipatory and reactive components, i.e.,
the CR and the UR, respectively. We have also shown that
even if the robot is only trained at the slowest velocity, the
generalized response is still adaptive for higher velocities,
with the CR correctly anticipating the US onset. In addition,
we show that this generalization facilitates the process of
learning to navigate the track at velocities much higher that
the ones that could be safely handled by the reactive control
alone.

To achieve this result we have extended previously existing
computational models of the cerebellum [4], [14] with a
method for generating the cortical bases inspired by the
cerebellar physiology. More concretely, here we added two
features that mimic the computation of the cerebellar granule
cells: the interplay between fast excitation and slow inhi-
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bition [17] and the non-linearity of their responses [16].
The first modification allows the system to acquire precise
responses and the second, the non-linearity of the bases,
namely, the addition of a threshold to the currents, is nec-
essary for achieving the modulation of the CR latency by
the intensity of the CS. Since in our set-up the intensity of
the CS is linked to the velocity of the robot, this means
that as the velocity of the robot increased the latency of the
response was correctly advanced.

This addition allowed us to explore the generalization
of an avoidance action over different speeds of execution,
a feature not studied in other previous studies that used
cerebellar controllers for collision avoidance [7], [5].

With this controller the reactive turn, the UR, is not
completely suppressed by the CR. The amount of the final
response transferred to the adaptive controller is determined
by the gain of the NOI (knoi) ([4]). The residual UR is the
only means for the controller architecture to know that the
CR is necessary. For instance, if we remove the US of the
current set-up (removing the turn while keeping the CS) this
controller would gradually extinguish the CR. Thus thanks
to the comparison between cerebellar output and sensory
input performed via the NOI this controller can manage the
acquisition and extinction of an anticipatory adaptive reflex
in a totally autonomous way.

The proposed controller architecture is not task specific
and, in general, it could be applied to scenarios having a
feedback signal that has to be kept under a certain safety
level. An interesting suggestion is that this type of cotroller
could be involved safe limb control in soft robots [21]. In that
case, the cerebellar controller would take care of avoiding the
limbs to too strongly collide with the robot’s own limbs or
external objects. The major difference then in that case is
that the signal playing the role of the CS in be internally
generated, reflecting the robot’s intent to move move the
limb.

Regarding the delay of the NOI, some questions remain
open. First, how can this parameter be learned? And sec-
ondly, can it also be modulated? In partucular, the second
question has a functional relevance in our scenario, because
even though the CS-CR interval is learned by the system,
the CR-UR is fixed. In other words, the CR always antic-
ipates de UR by the same fixed time interval, even if it it
would be more effective for this time interval to be adjusted
according to the velocity.

Thus, to conclude we have presented an controller for
the acquisition of anticipatory reflexes that besides being
completely autonomous, it includes a built-in sensory motor
contingency that modulates the timing of the protective
action according to the intensity of the predictive cue. For
the first time we have implemented this controller with a
real robot. The next step will be to apply this controller with
more complex motor plants to validate whether this built-
in sensory motor contingency facilitates learning the rapid
execution of motor actions when the dynamics are more
complex.

V. ACKNOWLEDGMENTS

This work was supported by eSMC FP7-ICT- 270212.

REFERENCES

[1] J. Albus, “A theory of cerebellar function,” Mathematical Biosciences,
vol. 10, no. 1-2, pp. 25–61, 1971.

[2] D. Marr, “A theory of cerebellar cortex,” The journal of physiology,
vol. 202, no. 2, p. 437, 1969.

[3] J. S. Albus et al., “A new approach to manipulator control: The
cerebellar model articulation controller (cmac),” Journal of dynamic
systems, measurement and control, vol. 97, no. 3, pp. 220–227, 1975.

[4] I. Herreros and P. Verschure, “Nucleo-olivary inhibition balances the
interaction between the reactive and adaptive layers in motor control,”
Neural Networks, no. 0, 2013.

[5] J. L. McKinstry, G. M. Edelman, and J. L. Krichmar, “A cerebellar
model for predictive motor control tested in a brain-based device,”
Proceedings of the National Academy of Sciences of the United States
of America, vol. 103, no. 9, pp. 3387–3392, 2006.

[6] N. R. Luque, J. A. Garrido, R. R. Carrillo, S. Tolu, and E. Ros,
“Adaptive cerebellar spiking model embedded in the control loop:
Context switching and robustness against noise,” International Journal
of Neural Systems, vol. 21, no. 05, pp. 385–401, 2011.

[7] C. Hofstoetter, M. Mintz, and P. F. Verschure, “The cerebellum
in action: a simulation and robotics study,” European Journal of
Neuroscience, vol. 16, no. 7, pp. 1361–1376, 2002.

[8] C. Sabourin and O. Bruneau, “Robustness of the dynamic walk of
a biped robot subjected to disturbing external forces by using cmac
neural networks,” Robotics and Autonomous Systems, vol. 51, no. 2,
pp. 81–99, 2005.

[9] A. H. Fag, N. Sitkoff, J. C. Houk, and A. G. Barto, “Cerebellar
Learning for Control of a Two-Link Arm in Muscle Space,” Robotics
and Automation, IEEE Intemational Conference, no. April, pp. 2638–
2644, 1997.

[10] P. Svensson, D.-A. Jirenhed, F. Bengtsson, and G. Hesslow, “Effect
of conditioned stimulus parameters on timing of conditioned purkinje
cell responses,” Journal of neurophysiology, vol. 103, no. 3, pp. 1329–
1336, 2010.

[11] P. Svensson, M. Ivarsson, and G. Hesslow, “Effect of varying the
intensity and train frequency of forelimb and cerebellar mossy fiber
conditioned stimuli on the latency of conditioned eye-blink responses
in decerebrate ferrets.” Learning & Memory, vol. 4, no. 1, pp. 105–
115, 1997.

[12] I. Pavlov and G. Anrep, Conditioned reflexes. Dover Pubns, 1927.
[13] I. Gormezano, W. Prokasy, and R. Thompson, Classical conditioning.

Lawrence Erlbaum, 1987.
[14] P. Dean, J. Porrill, C. Ekerot, and H. Jörntell, “The cerebellar micro-

circuit as an adaptive filter: experimental and computational evidence,”
Nature Reviews Neuroscience, vol. 11, no. 1, pp. 30–43, 2010.

[15] J. Eccles, M. Ito, and J. Szentágothai, The cerebellum as a neuronal
machine. Springer Berlin, 1967.

[16] A. Spanne and H. Jörntell, “Processing of multi-dimensional senso-
rimotor information in the spinal and cerebellar neuronal circuitry:
A new hypothesis,” PLoS computational biology, vol. 9, no. 3, p.
e1002979, 2013.

[17] J. Crowley, D. Fioravante, and W. Regehr, “Dynamics of fast and slow
inhibition from cerebellar Golgi cells allow flexible control of synaptic
integration,” Neuron, vol. 63, no. 6, pp. 843–853, 2009.

[18] R. Miall, D. Weir, D. Wolpert, and J. Stein, “Is the cerebellum a smith
predictor?” Journal of motor behavior, vol. 25, pp. 203–203, 1993.

[19] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz,
S. Magnenat, J.-C. Zufferey, D. Floreano, and A. Martinoli, “The
e-puck, a robot designed for education in engineering,” pp. 59–65,
—2009—.

[20] M. S. Fibla, U. Bernardet, and P. F. Verschure, “Allostatic control
for robot behaviour regulation: An extension to path planning,” in
Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International
Conference on. IEEE, 2010, pp. 1935–1942.

[21] P. Dean, S. Anderson, J. Porrill, and H. Jörntell, “An adaptive-filter
model of cerebellar zone c3 as a basis for safe limb control?” The
Journal of physiology, 2013.

368


