
Learning Robot Gait Stability using Neural Networks as Sensory

Feedback Function for Central Pattern Generators

Sébastien Gay1,2 José Santos-Victor2 and Auke Ijspeert1

Abstract— In this paper we present a framework to learn
a model-free feedback controller for locomotion and balance
control of a compliant quadruped robot walking on rough
terrain. Having designed an open-loop gait encoded in a Central
Pattern Generator (CPG), we use a neural network to repre-
sent sensory feedback inside the CPG dynamics. This neural
network accepts sensory inputs from a gyroscope or a camera,
and its weights are learned using Particle Swarm Optimization
(unsupervised learning). We show with a simulated compliant
quadruped robot that our controller can perform significantly
better than the open-loop one on slopes and randomized height
maps.

I. INTRODUCTION

Balance control during locomotion is critical for legged

robots to move in a rough or dynamic environment. Being

able to locomote next to a human wherever he/she goes

while ensuring the robot and human integrity is a challenge

that remains unsolved to this day. One of the precursor

of this field is the MIT LegLab which has produced self

stabilizing monopod, biped and quadruped robots([12], [14]).

The control behind this self-stabilization was composed of a

small set of simple PID-like laws. An extension of this work

has been implemented in the BigDog robot from Boston

Dynamics which achieved impressive results at walking

outdoors in rough environments. [13] This approach however

is very specific and relies strongly on powerful actuators,

precise sensors and accurate state estimation.

Another well known approach in the field is the crossing

of very rough terrains with the robot Little Dog, also from

Boston Dynamics [10]. In [5], a model of the world was

extracted from external cameras, and a footstep planner

was in charge of finding an achievable path from one end

of the terrain to the other. The robot then achieved that

path by generating motions using inverse models. The robot

was successful at crossing this kind of very rough terrain,

but its movements were basically a succession of discrete

movements for precise foot placement. The robot was always

in a statically stable posture, and had perfect knowledge of

the whole environment.

In this paper we also want to allow a four legged robot

to cross a rough terrain, but we want to do so while

keeping a dynamic gait. One popular line of work aims at

decoupling the rhythmic motion and the feedback, by using

central pattern generators (CPG), i.e. network of coupled

oscillators, as an open-loop controller, which is then modi-

fied by sensory feedback. Sensory feedback can be readily

1Biorobotics Laboratory, Ecole Polytechnique Fédérale de Lausanne
2VisLab, Institute for systems and robotics, Instituto Superior Técnico,

Lisbon

integrated in CPGs. In [11], the oscillators are decoupled

and feedback from force sensors actually generates the inter-

limb coordination. In [7], two very basic feedback loops

implementing contact feedback and phase resetting for swing

stance transitions have shown to increase the robot stability

on slopes.

In [6], robot stabilization was achieved on the Tekken

Robot controlled with a CPG by implementing a set of

reflexes inspired by biology inside the equations of the CPG.

An extension of this work, with an aim at biologically

plausible control was presented in [8]. The controller was

composed of different kinds of neurons, some responsible

for the generation of the rhythmic joint trajectories for the

legs and others responsible for shaping these trajectories

using sensory information. The feedback functions were also

inspired from biology.

Implementing feedback in CPGs has recently been in-

vestigated on the HyQ robot ([15]). In [4] the authors use

a kinematic model of the robot to adjust the foot locus

according to the robot orientation, and inverse dynamics to

stabilize it on challenging terrain. However, the feedback

is simply superimposed to the trajectories generated by the

CPG, and thus the stability properties of CPGs are not

exploited.

In [2] and [3] reflexes are integrated inside a CPG en-

hanced using virtual model control. This time kinematic

information is used to include feedback inside the CPG

dynamics. The trajectories with sensory feedback corrections

are directly generated by the CPG.

Our work is in a sense similar to these latest lines of

work. We use a central pattern generator to generate the

rhythmic motion for the legs and modify this CPG using

sensory feedback so as to stabilize the robot when walking

on rough terrain. The main difference between our approach

and the pieces of work presented before is that we do not

explicitly define the feedback functions modifying the CPG.

Instead we want the robot to learn how to modify its own

CPG using its sensors in order to maintain balance. Here

we choose to use the gyroscope velocities and the optical

flow from the camera as sensor information. As both these

sensors represent speed rather than absolute orientations, they

provide precious information about the robot dynamics. To

enable this learning of stability we choose to represent the

mapping between sensor values and perturbations applied to

the radius, phase and offset of the CPG using an artificial

neural network. The weights of this neural network are then

optimized in simulation using Particle Swarm Optimization

(PSO). The choice of CPG for the generation of rhythmic

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 194

motions was motivated by a crucial property: its global

stability (with finite time perturbations) which ensures the

smoothness of the generated trajectories. The limit cycle of

the CPG that we use is globally stable, causing a trajectory

modified by feedback for some amount of time to return

to the limit cycle when the feedback disappears. The other

main interest of CPG for this work is that it decreases the

control problem dimensionality to a small set of variables.

This means that the number of outputs of our neural network,

so the number of parameters to optimize to learn its weights

is also limited. Thus we believe that CPGs are a good basis

to learn a model-free mapping from sensory information to

joint trajectories. Moreover, we chose to learn gait stability

here rather than explicitly writing the equations for it, so as

to investigate if optimization could find different strategies

to what a researcher would implement, or even what animals

would do. To our knowledge, this work is the first to attempt

to learn a feedback controller for robot gait stability using

CPGs in such a direct way. It is also the first to link optical

flow with CPGs to control walking robot balance.

The robot used for this work is called Oncilla [17]. It

is a quadruped robot mimicking cat properties, with in-

series compliance on each knee joint. After describing the

framework used to control this robot in open-loop, we show

how to include sensory feedback to modify the gait in order

to prevent the robot from falling when the terrain is changing,

and our learning procedure. We finish by presenting experi-

ments with the robot in simulation on different terrains and

discuss the results.

II. CONTROL FRAMEWORK

In this section, we present our control framework for

learning the mapping between sensor values and central

pattern generator commands. The goal here is to adapt

an already existing open-loop gait to cope with changing

terrains. We consider two different kinds of terrains: slopes

and randomized height maps, but our control framework

could be applied to any terrain in theory. Figure 5 shows

these terrains in simulation. Our goal is to be able to cross

these terrains by slightly modifying our existing gait, and

thus keeping a dynamic rhythmic motion, rather than by

performing a series of discrete movements for careful foot

placement. Since obtaining this open-loop gait is not the

main purpose of this paper, we will only briefly describe

the methodology in Section II-A. Next we will present how

to introduce a neural network as sensory feedback function

for the CPG, and the learning procedure.

A. Open-Loop Central Pattern Generator

The robot is controlled by a network of coupled non

linear oscillators, a central pattern generator (CPG). The

unit oscillator has been modified from [16]. The general

idea of this oscillator is to be able to control the duty

factor of the gait - the ratio of the duration of the stance

phase and the total stride duration - by applying a skewed

sine wave to the protraction-retraction joint of the hips.

Furthermore the shape of the foot locus can be tuned by

applying a double peak trajectory to the knee joint, the

duration of each peak being defined by the duty factor. The

main motivation to use CPGs here is to exploit their natural

properties of robustness to perturbations and smoothness,

critical features when introducing sensory feedback. The

abduction-adduction joint of the hips is not used for the open-

loop gait, and only for discrete movements using feedback.

The main difference between the oscillator used here and

the one in [16] is that we use a Hopf-like convergence

behavior for the amplitude, which is useful when introducing

feedback. The equations of the unit oscillators used for the

hip and knee are given below:

ṙh = γ(µh − r2h)rh (1)

φ̇h = ω (2)

θh = rh cos(φL) + oh (3)

where φL is a filter applied on the phase given by:

φL =

{

φ2π

2d if φ2π < 2πd
φ2π+2π(1−2d)

2(1−d) otherwise

and φ2π = φ (mod 2π)

ṙk1 = γ(µk1 − r2k1)rk1 (4)

ṙk2 = γ(µk2 − r2k2)rk2 (5)

θk = rkΓk + ok (6)

with:

rk =

{

rk1 if φ2π < π

rk2 otherwise
(7)

Γk =

{

−16φ3N + 12φ2N if φN < 1
2

12(φN − 1
2)

3 − 12(φN − 1
2)

2 + 1 otherwise
(8)

φN =2(
φk

2π
(mod 0.5)) (9)

rh and rk are the radiuses of the hip and knee oscillators,

µh is the hip target amplitude, µk1 and µk2 the knee stance

and swing amplitudes, ω their frequency, φh and φk their

phases, oh and ok their offsets and θh and θk their outputs.

γ is a positive gain defining the speed of convergence of

the radiuses to the target amplitudes µh, µk1 and µk2. d is

the virtual duty factor, the actual duty factor depending on

the robot dynamics and on parameters of the gait. Hip and

knee are coupled so that φk = φh + ψhk, where ψhk is the

desired phase shift between hip and knee. Figure 1 shows

the commands sent to hip and knee for three different values

of the virtual duty factor.

The four hips of the robot are also phase-coupled in order

to synchronize them, to achieve different gaits. The coupling

between hip oscillators i and j is obtained by adding a term

to Equation 2 as follows:

φ̇hi = ω + wijsin(φhj − φhi − ψij) (10)

where ψij is the desired phase difference between the os-

cillators controlling hips i and j and wij is a positive gain

195

1 2 3 4
−1

−0.5

0

0.5

1

1 2 3 4
−1

−0.5

0

0.5

1

1 2 3 4
−1

−0.5

0

0.5

1

1 2 3 4
0

0.2

0.4

0.6

0.8

1

t (in s)
1 2 3 4

0

0.2

0.4

0.6

0.8

1

t (in s)
1 2 3 4

0

0.2

0.4

0.6

0.8

1

t (in s)

Fig. 1: The hip (top, blue) and knee (bottom, red) commands for different
values of the virtual duty factor: d = 0.3 (left), d = 0.5 (middle) and
d = 0.7 (right)

���� ���� ��	

���� ��
� ��	

���� ���� �
������

���� ��
� �
������

���� ���� �
��

���� ��
� �
��

��
�����
����

��
�����
����

����
���

���� ��
� �
������

����
���

Fig. 2: The CPG used for the Oncilla robot. The hip and knee joints are
controlled by the oscillators presented in Section II-A and coupled. The
ablation joints are idle in the open-loop case, and only perform discrete
movements controlled by the simple integrator described in Section II-B.
All oscillators and integrator accept sensory feedback which modify their
outputs.

defining the coupling strength. Figure 2 shows the general

structure of our CPG.

The different parameters of this CPG (amplitudes, offsets,

frequency, duty factor, coupling weights) have been tuned in

simulation using Particle Swarm Optimization, with a fitness

function aiming at minimizing the pitching and rolling angles

of the robot and maximizing the speed of locomotion. These

parameters have then been implemented on the real robot for

validation and hand-tuned. The obtained gait has then been

ported back to the simulator to carry out the work described

in this paper.

B. Including Sensory Feedback in the CPG

The main point of the paper is to use the CPG presented

in Section II-A and introduce sensory feedback to enable

the robot to adapt to changing environments. Our controller

is modular and the CPG remains fully operational if the

feedback is disabled.

We modify the equations presented in Section II-A

by introducing feedback on the radius, phase and offset

variables of the hip oscillator and on the radius and offset

of the knee oscillator (the phase being shared with the

hip). The new equations for the hip and knee are given below:

ṙh = γ(µh + κrF
r
h(S)− r2h)rh (11)

φ̇h = ω + wijsin(φj − φi − ψij) + κφF
φ
h (S) (12)

ȯh = κoF
o
h(S) (13)

ṙk1 = γ(µk1 + κrF
r1
k (S)− r2k1)rk1 (14)

ṙk2 = γ(µk1 + κrF
r2
k (S)− r2k2)rk2 (15)

ȯk = κoF
o
k (S) (16)

where Fr1
k (S) =

{

Fr
k (S) if φ2π < π

0 otherwise

and Fr2
k (S) =

{

Fr
k (S) if φ2π ≥ π

0 otherwise

The abduction/adduction joints are also used to exploit the

sensory feedback and increase the robot stability. They are

decoupled from the other joints and perform only discrete

movements given by the following equations:

ṙa = γ(κrF
r
a(S)− r2a)ra (17)

ȯa = κoF
o
a(S) (18)

Fr
h, Fφ

h , Fo
h , Fr

k , Fo
k , Fr

a , Fo
a are functions of the sensor

values S to be defined in Section II-C., and κr, κφ and κo
are positive scaling factors. As described in Section II-A, the

oscillator controlling the knee has two radiuses, rk1 for the

stance phase and rk2 for the swing phase. The feedback for

the knee radius is thus decoupled into Fr1
k (S) acting on rk1

only during the stance phase and Fr2
k (S) acting on rk2 only

during the swing phase. Figure 3 shows the effect of these

feedback functions on their respective variable and the output

of the oscillator. Here the oscillator of the hip is shown.

The feedback on the radius Fr increases or decreases

the amplitude of the oscillations temporarily. As soon as

the feedback disappears the amplitude of the oscillations

converges back to its default amplitude µ. This feedback can

be used for instance to simulate leg retraction and extension

reflexes.

The feedback on the offset Fo simply changes the setpoint

of the oscillations, and stays encoded in the system when the

feedback disappears. This feedback can be used for instance

to change the posture of the robot when the slope of the

ground changes.

The feedback on the phase Fφ temporarily increases

or decreases the oscillation frequency, by accelerating or

decelerating the phase. When the feedback disappears, the

apparent frequency of the oscillator goes back to its intrinsic

frequency (the phase increases at the same speed as before

the feedback arrived). This feedback can be used for instance

to stop, or slow down temporarily the oscillations or to

entrain the oscillator with an external signal. It is worth

noting, as shown in the bottom right graph of Figure 3,

196

197

F = ρ×ΘP ×ΘR (19)

ΘP =

(

1

1 + 1
τ

∫ τ

t=0
|θP (t)|dt

)βP

(20)

ΘR =

(

1

1 + 1
τ

∫ τ

t=0
|θR(t)|dt

)βR

(21)

where θP (t) and θR(t) are the absolute pitch and roll angle

of the robot at time t, ρ is the traveled distance and τ is

the total simulation time. βP and βR are gains used to give

less or more importance to the minimization of the angles

with respect to the maximization of the traveled distance. We

typically use βP = βR in this paper.

This fitness is expressed so as to maximize the traveled

distance but also minimize the integrated pitch and roll

angles of the robot during the simulation.

This fitness is used by the optimization process to generate

the next populations by selecting the best individuals. This

process is quite heavy computationally (typically more than

100 iterations to converge, with 100 particles per iteration).

However, once learned, the feedback controller only requires

a simple feedforward neural network computation, and is

thus much cheaper computationally than methods based on

inverse models.

III. EXPERIMENTS

In this section, we present experiments we performed

on two different terrains: a descending slope and a height

map simulating a random rough terrain. Figure 5 shows the

kinds of terrains we are considering. For all the experiments

described next, the open-loop gait is the same. We use a fre-

quency of 2.5Hz, amplitudes for the hip protraction/retraction

of 15 degrees, amplitude of the knees of 0.5 and 0.05 (unit-

less, an amplitude of 1 meaning full flexion) for the swing

and stance respectively, and a duty factor of 0.6. This gait is

used both in simulation and on the real robot, with similar

performance. It is a very dynamic gait, where the springs

are used extensively and which reaches about 40 cm/s (1.7

body-lengths/s) both in simulation and on the real Oncilla

robot. We first show the results when learning in each terrain,

and analyze the strategies found out by optimization. Then

we will investigate if the feedback functions learned on one

terrain improve the performance of the robot on the other.

All simulations are performed using a model of the Oncilla

robot in Webots ([9]), a robotics simulation software based

on the Open Dynamics Engine (ODE). A video showing the

results of this work is available with this paper and a better

quality version can be watched in [1].

A. Learning Procedure

The learning procedure is the same for each terrain. A

first population of parameters are generated where all the

weights of the neural network are close to 0, and thus the

performed gait is very similar to the open-loop gait. This

gives a first good guess to the optimization, where the robot

Fig. 5: The two worlds used for his work. Left: a slope. Right: height map

−6 −4 −2 0 2 4 6

−4

−3

−2

−1

0

1

2

3

4

roll angle (deg)

p
it
c
h

 a
n

g
le

 (
d

e
g

)

−6 −4 −2 0 2 4 6

−4

−3

−2

−1

0

1

2

3

4

roll angle (deg)

p
it
c
h

 a
n

g
le

 (
d

e
g

)

Fig. 6: Pitch vs Roll angle (in deg) over 10 seconds of simulation with the
open-loop (left) and closed-loop (right) controllers on flat ground.

at least moves forward in a stable way on the flat section

before the changing terrain. For the next generations, the

particles explore the search space as specified by the PSO

algorithm. We run the optimization for 300 iterations with

100 particles in each iteration. For each terrain we ran 2 times

this optimization procedure: first using only the gyroscope

as sensory input and then using only the camera. The camera

sampling rate was set to 50Hz, while the gyro sampling

rate was set to the control frequency: 167Hz (6ms timestep).

Here want to investigate the performance using each sensor

separately, but our idea for future works is to fuse the

different sensory inputs, by simply adding them as input to

the neural network. We repeated each optimization 3 times

for each terrain and each sensor to check that our learning

procedure is independent of initial conditions of the Particle

Swarm Optimization. Only one of these repetitions is shown

here, but qualitatively similar results (with slight differences

in the strategies found) were achieved in each case.

B. Flat ground

As a first proof of concept, we want to check if our

controller can decrease the pitch and roll angles of the

robot walking on flat ground. We run the learning procedure

described before with the fitness presented in Equation 19.

After about 150 iterations the optimization has converged

and the resulting controller is able to reduce the average

pitching and rolling angles of the robot by 32% and 89%

respectively. Figure 6 compares the pitch and roll angles of

the robot using the open-loop controller and the closed-loop

controller.

C. Slope

The robot is placed in front of a slope (Figure 5, left). For

each particle of the optimization, we repeat the simulation

with 3 different slopes of angles 0.3, 0.4 and 0.5 radians

(17, 23 and 29 degrees) . The fitness of each particle is

then computed as the average of the traveled distance on

198

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

generation

fi
tn

e
s
s

3.9

mean

max

Fig. 7: Evolution of mean, maximum and minimum fitness (the traveled
distance) of each iteration throughout the optimization, using gyro as sensory
input.

these 3 slopes, including the flat sections before and after

the slope. This corresponds as setting βP and βR to 0 in

Equation 19. We do not want to minimize the pithing and

rolling angles here, as walking on a slope with a flat trunk

is very unnatural and may not lead to the best performance.

The idea is that, after learning, the controller should be able

to generalize to any slope between these values.

The evolution of the fitness during the optimization using

the gyroscope as only sensory input is given in Figure 7.

The best individual reached a traveled distance of about 3.9

meters which is the maximal achievable fitness (it corre-

sponds to all 3 slopes being crossed). This is qualitatively

similar when using the camera, instead of gyro, although the

optimization takes longer to converge (about 220 iterations),

most likely because of the higher number of parameters (we

use 8 values for the optical flow, and only 3 values for

the gyro). The similar performance of the controller using

optical flow and gyro is an interesting result, since the gyro

provides information more than 3 times more often than

the camera. Moreover, the information provided by the gyro

(rotational speeds of the trunk) is much more explicit than

the optical flow provided by the camera, which only gives

the linear speed of the pixels. However, the optimized neural

network seems to interpret the optical flow as well as the gyro

rotational speeds.

Despite the relatively high number of parameters, (in this

case 378), the optimization converges nicely in about 100

iterations. The average fitness keeps getting better trough

the rest of the optimization and our best controller emerges

after 221 iterations.

It is hard to see what kind of feedback is learned when

looking at the data from the robot walking, since the feed-

back is basically always active. To analyze this feedback, we

actuate the robot in the air. To simulate the transitions from

flat ground to slope and back, at t = 4s we rotate the robot

around its pitch axis for 0.5s, until it reaches an angle of 0.4

radians (23 degrees). At t = 6 we rotate it back to its initial

position for 0.5s. Figure 8 shows the feedback on the radius

and offset when using gyro as sensory information, as well

as the evolution of the radius and offset and the commands

of each oscillator. The feedback learned did not make use of

the feedback on the phase.

The first thing worth noting is that even though the

feedback is not very smooth (due to noise, low sampling

frequency of the sensor etc. - Fig. 8a and 8b), the commands

4 5 6 7
−0.1

−0.05

0

0.05

0.1

time (in s)

(a) feedback on the radius

4 5 6 7
−0.2

−0.1

0

0.1

0.2

time (in s)

(b) feedback on the offset

4 5 6 7
0.24

0.26

0.28

4 5 6 7
−0.05

0

0.05

time (in s)

(c) evolution of the radius (top: hip
protraction, bottom: hip abduction)

4 5 6 7
−0.2

0

0.2

0.4

0.6

time (in s)

(d) evolution of the offsets

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time (in s)

left fore hip
left fore abduction

left fore knee

right fore hip
right fore abduction

right fore knee
left hind hip

left hind abduction
left hind knee

right hind hip

right hind abduction
right hind knee

(e) commands in radians for hips protraction and abduction, unit-less for the
knee (0: knee fully extended, 1: knee fully flexed)

Fig. 8: Data when the robot is actuated in the air, using gyro as sensory
input. At t = 4s the robot is rotated by 0.4 radians. At t = 6 it is rotated
back by -0.4 radians.

applied to the joints are (Fig. 8e). This shows the smoothing

ability of the CPGs in the presence of perturbations (here

sensory feedback). Then we notice that the robot makes good

use of both the radius and offset feedback. The robot uses the

feedback on the radius to temporarily adapt its leg positions

and lengths to compensate the forward inertia during the

transitions (Fig. 8c). Between the two transitions, a new

stable gait is reached where only the offsets are different

from the open-loop gait. Finally, let us observe that the new

stable gait found when the robot is rotated is asymmetric

(see Figure 8d). The left fore leg is placed much more

forward than the other one to prevent tipping over. This is

a strategy for the robot to keep balance that is different to

what is usually done with model-based control. Yet, it proves

effective since it allows the robot to cross a nearly 55% slope.

Figure 9 shows snapshots of the robot going down a slope,

where on can see this strategy in action.

To test whether our best controller can generalize to other

slopes, we run 100 times the simulation with random slopes

199

Fig. 9: Snapshots of the robot walking before the slop (left), on the slope
(middle) and after the slope (right). When the robot is on the slope it puts
its front left foot forward to compensate its forward inertia. After the slope,
it goes back to the normal gait.

16 18 20 22 24 26 28 30
0

1

2

3

4

5

6

slope angle (in degrees)

d
is

ta
n

c
e

 t
ra

v
e

le
d

open loop

closed loop .

Fig. 10: Test of generalization of the best learned feedback controller. The
maximum achievable distance in this world is 5m, which means any lesser
traveled distance implies that the robot has fallen.

varying from 0.3 to 0.5 radians (about 17 to 29 degrees).

To check that our feedback control is independent of the

timing at which the robot arrives on the slope, we also set

the initial position of the robot to a random value 10 cm

around the position used for the training. We also use longer

slopes than in the optimization phase (5 meters instead of

4). For each run, we compare the results to those of the

open-loop controller. The results are shown in Figure 10.

In all cases, the closed-loop controller performed equally

or better than the open-loop one. The closed-loop controller

was successful in crossing the whole slope in 85% of the

cases, while the open-loop was successful only in 26%. Note

that the open-loop controller was able to cross slopes up to

19 degrees (about 34%) in all cases, and up to 21 degrees

(about 38%) in specific cases. This performance is very good

for an open-loop controller, which shows that compliance

and finely tuned gait parameters can lead to good open-

loop performance on rough terrain. However, the closed-loop

controller was able to cross significantly steeper slopes, up

to 28 degrees (55%).

D. Height Map

We used the same optimization procedure as for the flat

and slope grounds on a random height map, with the fitness

described in Equation 19. We repeated the simulation for

each particles with 3 different randomized height maps, of

respective maximum height of 4, 5, and 6 cm, in a grid

of 10cm steps. This corresponds respectively to about 22%,

28% and 33% of the leg length of the robot, and respectively

40%, 50% and 60% maximum local slope.

Figure 11 (left) shows the evolution of the fitness through-

out the optimization. As for the slope, the optimization

converges in about 100 iterations. At iteration 80, the opti-

mization has already found a controller able to cross all three

worlds. Even after the distance traveled has been maximized,

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

generation

fi
tn

e
s
s

1.3

mean
max
max distance .

0 50 100 150 200 250 300
3

4

5

6

7

8

9

10

11

generation

a
n

g
le

s
(i
n

 d
e

g
re

e
s
)

pitch angle .
roll angle

Fig. 11: Evolution of mean and maximum fitness (left) and the mean
integrated pitch and roll angles (right) of each iteration throughout the
optimization .

0.04 0.042 0.044 0.046 0.048 0.05 0.052 0.054 0.056 0.058 0.06
0

0.5

1

1.5

2

2.5

3

3.5

slope angle (in degrees)

d
is

ta
n

c
e

 t
ra

v
e

le
d

open loop

closed loop .

Fig. 12: Test of generalization of the best learned feedback controller. The
maximum success distance is set to 2 m.

the fitness is further improved by decreasing the pitch and

roll angles of the robot, as shown in Figure 11 (right).

We ran 100 generalization tests with random height maps

of maximum heights ranging from 0.04 to 0.06. Figure 12

show the results. When setting the success distance to 2

meters, as in the learning, the success rate of the closed-loop

controller was 57% against 25% for the open-loop controller.

The closed-loop controller was better in 74% of the cases

with an average traveled distance increase of 41%. When

increasing the success distance, the absolute success rates of

both the open-loop and the closed-loop controller decrease.

However, the performance of the open-loop controller drops

faster than the closed-loop one. With a success distance of

2.6m, the performance of the closed-loop and open-loop

controllers are 49% and 13% respectively, and 40% and 9%

for 2.9m.

Thus our controller improves significantly the performance

of the open-loop controller on height-maps, but is less

efficient than on slopes. This can be explained by the fact that

the randomized height map contains much more stochasticity

than the slope. The large difference between the training and

testing set performances implies that our learning process has

overfitted to the three training worlds. Thus, repeating the

learning in only 3 different worlds might not be enough and

inscreasing the number of training worlds should increase

the generalization performance.

E. Hardware implementation

We started implementing this work on the real Oncilla

robot. For now only the open-loop gait has been imple-

mented. The robot reaches a speed of about 40 cm/s (1.7

body-lengths/s), which is comparable to what is obtained in

simulation. Faster gaits have also been tested reaching speeds

200

of up to 55 cm/s (2.3 body-lengths/s) at 3.5Hz (See movie

[1]).

IV. CONCLUSION

In this paper we have presented a framework to learn

gait stability using a neural network as sensory feedback for

central pattern generators. We have shown that by carefully

integrating feedback in the CPG, we are able to make

full use of its stability properties to generate smooth gait

modifications to achieve the considered task. By learning

the weights of the neural network, together with the con-

vergence factors of the CPG in an unsupervised matter, we

showed that the designed sensory feedback can significantly

improve the locomotion performance (i.e. better balance,

fewer falls) of the robot on rough terrain. We showed that

our feedback controller can be used seamlessly with different

sensory information, such as the rotational speeds provided

by the gyro, but also less explicit information like the

optical flow. Our controller does not need any model of the

robot, whether kinematic of dynamic, but directly learns the

mapping between sensors and gait corrections. Thus it can be

in theory applied to any robot, even robots where obtaining

a model is very hard or even impossible like deformable

or tensegrity robots. We showed good performance of the

controller with a simulated compliant quadruped robot on

a slope, both on the training test and the testing set. To

keep balance on the slope, the robot developed an original

strategy consisting in putting one leg more forward than the

others, very much unlike what is done in traditional control.

The closed-loop controller always performed better than the

open-loop gait and reached 85% success on random slopes

up to 55%, against 26% for the open-loop gait. Our controller

was not as efficient on the randomized height map than the

slope, reaching 57% success against 25% for the open-loop

controller. It still performed better in 74% on the cases than

the open-loop controller. This relatively lower performance

can be explained by the fact that the randomized height map

contains significantly more stochasticity than the slope. Our

learning process, even when repeating it in three different

worlds, may have overfitted. One solution to improve the

performance in the height map scenario could be to repeat

the learning in more different worlds. One of the strength

of our approach is the simplicity of fusing information from

different sensors and thus we are currently investigating how

fusing more sensors can further improve the performance.

For instance, including information from force sensors on the

feet of the robot could greatly help the stabilization in the

randomized height map scenario, since the controller would

be able to detect missing contacts and learn leg extension

and stumbling reflexes. Having phase-dependent feedback

could also improve the controller performance, and can be

seamlessly implemented by including the phase of one or

more oscillators of the CPG as input to the neural network.

Finally we are starting to implement our controller on the real

Oncilla robot, and comparing it to the model-based feedback

controller presented in [3].

ACKNOWLEDGMENT

This work was funded by the Portuguese Fundation for

Science and Technology (FCT) through the IST-EPFL joint

initiative, EPFL’s Biorobotics Laboratory, and the European

Commission grant AMARSI FP7-ICT-248311. The authors

would like to thank Mostafa Ajallooeian and Alexandre

Tuleu for their help in conducting this work.

REFERENCES

[1] Video: Learning robot gait stability.
. http://www.youtube.com/watch?v=ef_Z6RUc_6g.

[2] M. Ajallooeian, S. Pouya, A. Sproewitz, and A.J. Ijspeert. Central
pattern generators augmented with virtual model control for quadruped
rough terrain locomotion. In IEEE International Conference on

Robotics and Automation (ICRA 2013), 2013.
[3] Mostafa Ajallooeian, Sébastien Gay, Alexandre Tuleu, Alexander Spr,

and Auke J Ijspeert. Modular Control of Limit Cycle Locomotion
over Unperceived Rough Terrain. IEEE/RSJ International Conference

on Intelligent Robots and Systems, 2013.
[4] V. Barasuol, J. Buchli, C. Semini, M. Frigerio, E.R. De Pieri, and

D.G. Caldwell. A Reactive Controller Framework for Quadrupedal
Locomotion on Challenging Terrain. Accepted for IEEE International

Conference on Robotics and Automation (ICRA), 2013.
[5] Jonas Buchli, Mrinal Kalakrishnan, Michael Mistry, Peter Pastor, and

Stefan Schaal. Compliant quadruped locomotion over rough terrain.
2009 IEEE/RSJ International Conference on Intelligent Robots and

Systems, pages 814–820, October 2009.
[6] Avis H Cohen. Walking of a Quadruped Robot on Natural Ground

Based on Biological Concepts. The International Journal of Robotics

Research, 2010.
[7] Sarah Degallier, Ludovic Righetti, Sebastien Gay, and Auke Ijspeert.

Toward simple control for complex, autonomous robotic applications:
combining discrete and rhythmic motor primitives. Autonomous

Robots, 31:155–181, 2011.
[8] Christophe Maufroy, Hiroshi Kimura, and Kunikatsu Takase. Towards

a general neural controller for quadrupedal locomotion. Neural

networks : the official journal of the International Neural Network

Society, 21(4):667–81, May 2008.
[9] O. Michel. Webots: Professional mobile robot simulation. Journal of

Advanced Robotics Systems, 1(1):39–42, 2004.
[10] M. P. Murphy, a. Saunders, C. Moreira, a. a. Rizzi, and M. Raibert.

The LittleDog robot. The International Journal of Robotics Research,
30(2):145–149, December 2010.

[11] Dai Owaki, Takeshi Kano, Ko Nagasawa, Atsushi Tero, and Akio
Ishiguro. Simple robot suggests physical interlimb communication
is essential for quadruped walking. Journal of the Royal Society,

Interface / the Royal Society, (October), October 2012.
[12] M. Raibert, M. Chepponis, and H. Brown. Running on four legs as

though they were one. Robotics and Automation, IEEE Journal of,
2(2):70–82, 1986.

[13] Marc Raibert and Kevin Blankespoor. Bigdog, the roughterrain
quadruped robot. Proceedings of the 17th World Congress, The

International Federation of Automatic Control, pages 6–9, 2008.
[14] M.H. Raibert and J.K. Hodgins. Legged robots. In R.D. Beer, R.E.

Ritzmann, and T.M. McKenna, editors, Biological Neural Networks in

Invertebrate Neuroethology and Robotics, pages 319–354. Academic
Press, 1993.

[15] C. Semini, N.G. Tsagarakis, E. Guglielmino, M. Focchi, F. Cannella,
and D.G. Caldwell. Design of hyq a hydraulically and electrically
actuated quadruped robot. Proceedings of the Institution of Mechanical

Engineers, Part I: Journal of Systems and Control Engineering,
225(6):831–849, 2011.

[16] A. Sproewitz, A. Tuleu, M. Vespignani, M. Ajallooeian, E. Badri, and
A.J. Ijspeert. Towards dynamic trot gait locomotion – design, control,
and experiments with a compliant quadruped robot. Interational

Journal of Robotics Research (IJRR), 2012.
[17] Alexander Sproewitz, Lorenz Kuechler, Alexandre Tuleu, Mostafa

Ajallooeian, Michiel D’Haene, Rico Moeckel, and Auke Jan Ijspeert.
Oncilla robot: a light-weight bio-inspired quadruped robot for fast
locomotion in rough terrain. In Adaptive Motion in Animals and

Machines, 5th International symposium, Abstracts, 2011.

201

