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Abstract— The manipulation of objects in a hand or gripper
is typically accompanied by events such as slippage, between the
fingers and a grasped object or between the object and external
surfaces. Humans can identify such events using a combination
of superficial and deep mechanoreceptors. In robotic hands,
with more limited tactile sensing, such events can be hard to
distinguish. This paper presents a signal processing method that
can help to distinguish finger/object and object/world events
based on multidimensional coherence, which measures whether
a group of signals are sampling a single input or a group of
incoherent inputs. A simple linear model of the fingertip/object
interaction demonstrates how signal coherence can be used for
slip classification. The method is evaluated through controlled
experiments that produce similar results for two very different
tactile sensing suites.

Index Terms— tactile sensing, slip, manipulation

I. INTRODUCTION

When manipulating a grasped object, events such as

making or breaking contact, and slippage, can occur between

the fingers and the object or between the object and external

surfaces. These events are ubiquitous in human manipulation

and provide us with important information about how a

task is proceeding. In many tasks, such as when assembling

or disassembling parts, or inserting a key into a lock, one

event signals success while another indicates failure. In

order to implement manipulation strategies that react to these

events quickly and appropriately, robots must have a way to

distinguish between them.

The majority of research in robotic tactile sensing has

focused on finger/object interactions. Recent reviews include

[1], [2], [3]. Numerous methods have been proposed for

detecting slips, and the small vibrations that accompany

incipient slippage between a finger and an object, in order

to react to or control slip during manipulation [4], [5], [6],

[7]. Other related work has focused on using information

obtained by sliding a finger or instrument over a surface to

recognize different textures as part of exploration, [8], [9],

[10], [11], [12].

Humans easily distinguish between finger/object and ob-

ject/world slips because they have different effects on

mechanoreceptors in the skin. In particular, FA-I (fast-acting,

type one) mechanoreceptors are strongly responsive to lo-

calized slips produced by interactions between the dermal

papillae and the surface of an object, while deeper FA-

II mechanoreceptors are particularly receptive to vibrations

propagating through the tissues of the hand, such as those
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Fig. 1: Two BioTac fingertip sensors are mounted on op-

posing fingers of a Motion Control Hand. The fingers are

passively loaded to provide grip force on objects while

various slip conditions are produced between the BioTacs and

the held object or between the object and external stimuli.

produced by a tool interacting with the environment [13],

[14].

Our prior work on slip classification [15] used a measure

of relative power between individual tactile sensors in an

array (localized events) and the entire array as an ensemble

(large receptive field). This paper presents a new signal

processing method for tactile array sensors aimed at distin-

guishing hand/object slippage from object/world slippage for

a variety of textures, conditions, and sensor technologies.

It is motivated by additional observations from biology

concerning relative timing and phasing of neural activity:

• the coincidence of initial neural spikes from mechanore-

ceptors in the human hand encodes information about

object properties such as friction or texture [16];

• neural activity during the deformation in halteres of

flying insects is phase-locked to wing flapping [17];

• coherence of pacinian corpuscle activity encodes vibra-

tory information in a cat’s footpad [18].

The new approach is based on a multidimensional version

of the classical definition of signal coherence which indi-

cates the degree to which individual sensors are sampling

a common underlying signal (e.g. the vibration of a held

object). The applicability of the method to different sensing

technologies is investigated in experiments using two very

different sensors: a custom piezo-film-based tactile array and

the BioTacTM sensor (SynTouch LLC) [19].
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II. TACTILE SIGNAL COHERENCE

To distinguish between hand/object and object/world slip

events, we begin by considering how the vibration source

differs in the two cases, and how that difference affects the

tactile array. During hand/object slippage, vibrations are gen-

erated by complex stick-slip phenomena. These vibrations

originate first at the edge of the contact patch between the

hand and object during “incipient slip” [4] and then across

the entire contact patch during gross slip. Because the relative

timing of the individual stick slip events depends on local

contact geometry, contact pressure, surface roughness, etc.,

the sensor array measures multiple independent vibration

sources. In contrast, object/world slippage causes vibration

of the held object. This single source then excites the sensor

array.

In this section we briefly review the properties of complex

coherence and mean square coherence (a full treatment can

be found in e.g. [20]) and show how those properties can be

used in slip classification. A generalization of mean square

coherence to n signals is derived by determining how much

of the group signal content can be explained by a single

underlying signal. This derivation is consistent with the

classical definition in the n = 2 case and can be used with

practical arrays of tactile sensors (n > 2).

A. Power Spectra and Coherence

A multivariate signal x has a power spectral density

matrix Px (ω) defined for each frequency ω, with the power

spectrum of individual signals xi on the diagonal and the

cross spectral density between individual signals on the off-

diagonals. The complex coherence between two signals xi

and xj is defined as the cross spectral density normalized

with respect to each signal’s power spectrum; therefore the

entries in the complex coherence matrix, Cx (ω) are given by

Cij(ω) =
Pij(ω)

√

Pii(ω)
√

Pjj(ω)
(1)

From this definition, and because Px is a Hermitian

matrix, Cx has the following properties:

• the diagonals are 1, Cii = 1
• off diagonal magnitude is bounded, |Cij (ω) | ≤ 1
• the eigenvalues are positive reals, λ(Cx) > 0,∈ R.

In general use, “coherence” typically refers to the mean

square coherence between the signals, C2

ij , defined as |Cij |
2.

This quantity lies in the range [0, 1] and can be interpreted

as:

• the correlation between signals at each frequency,

• the constancy of relative phasing between signals at

each frequency,

• the degree to which one signal is a linearly filtered

version of the other, at each frequency.

In this analysis we make use of the following result. When

a multivariate signal y is a linearly filtered version of another

multivariate signal x, with y(t) = (H ∗ x) (t), then the

power spectral density matrix of y is given by
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Fig. 2: A full system model including motion/vibration of a

held object, the interface between that object and a finger,

and the mechanics of the finger.

Py(ω) = H(ω)Px(ω)H
H(ω) (2)

B. Two Sensor Model

We begin by constructing a simple linear model of the

world, object, hand, and sensor array system. A rigid object is

in contact with both an external, world object and a textured

tactile sensor with two embedded sensors. It is convenient

to consider the sensors as measuring surface strain because

many existing tactile sensors follow this model and strain is

additive. Formally, we make the following assumptions:

1) The held object is rigid.

2) The surface of the skin is textured and makes contact

with the object in a finite number of locations, m.

3) The variation of interface conditions (texture, contact

pressure, etc) between locations is negligible.

4) The transduction path from surface strain at contact

location i to sensor j can be modeled as a linear, time

invariant system with transfer function Fij .

5) This transduction path model, Fi,j , is not identically

zero at all frequencies; in other words both sensors are

sensitive to vibrations occurring at all m locations.

The expanded block diagram for this system is shown

in Fig. 2 with individual single-input-single-output transfer

functions shown. Vibrations caused by slip between the

object and the world generate a single signal, u, which

propagates to the m contact locations through the body

transfer functions, bi. The strain at those locations is then

added to any strain due to slippage at the object/hand

interface, vi. Finally, the finger mechanics are modeled as the

transfer functions Fij , which determine the sensor outputs.

This model can be greatly simplified using multi-input-

multi-output transfer functions, yielding

s = F
T (bu+ v) (3)
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where F ∈ C
m×2 describes the finger dynamics, b ∈ C

m

describes the coupling between object and finger, s ∈ C
2

is the array output, and u ∈ C and v ∈ C
m are the input

vibrations due to the object/world slippage and object/hand

slippage, respectively.

Next we investigate how the two slippage cases affect the

coherence between the two sensor signals.

1) Object/World Slippage: In the case where there is only

object/world slippage the v term drops out of Eqn. (3) and

we are left with s = F
T
bu. Using Eqn. (2) we can compute

the spectral density matrix for the sensor output as

Ps =
(

F
T
b

)

Pu

(

F
T
b

)H

(4)

= Pu

(

F
T
b

)(

F
T
b

)H

(5)

where we have used the fact that Pu ∈ R.

Because F
T
b ∈ C

2 we have rank (Ps) = 1; therefore

when Ps is normalized per Eqn. (1) it yields

Cs =

[

1 1
1 1

]

(6)

Cs1s2 = 1 (7)

This indicates that the two sensor signals are maximally

coherent when they are both filtered versions of a single sig-

nal. The result is entirely in keeping with the interpretations

of coherence outlined above.

2) Object/Hand Slip: When there is only object/hand

slippage the u term drops out of Eqn. (3), leaving s = Fv.

Some additional assumptions about the signals and transfer

functions are required:

• Zero Cross-Talk: The column vectors of F representing

the transfer functions from contacts to each sensor are

orthogonal; FH
1
F2 = 0.

• Identical and Independent: Each vibration signal vi is

due to independent stick-slip events subject to identical

contact conditions. Therefore each vi has the same

power spectrum but has zero coherence with any other

signal vj ; Pv = pvI.

Using these assumptions and Eqn. (2) leads to the follow-

ing expression for the sensor spectral density matrix.

Ps = F
HPvF (8)

= pvF
H
F (9)

The off-diagonals of FH
F are zero due to the zero cross-

talk assumption, such that normalizing the matrix results in

Cs =

[

1 0
0 1

]

(10)

Cs1s2 = 0 (11)

This indicates that when the sensors measure multiple inco-

herent input signals with zero crosstalk between them, the

sensor outputs are minimally coherent.

The assumptions made for this simple linear model will

be violated for any real sensor. During general manipulation

slip may occur at both interfaces at the same time, providing

both common and individual inputs, u and v respectively,

simultaneously. Soft robot fingers will undergo large strains

which violate simple linear elastic models of the transduction

paths from contact strain to sensor readings, yielding a non-

linear transduction path. The contact conditions will not be

identical at every location, nor will the vibrations generated

be completely incoherent. Finally, while zero sensor crosstalk

is always desired, it is very rarely achieved in the design of

tactile sensing arrays due to the physical coupling induced

by the finger medium.

However, this analysis does demonstrate that during ob-

ject/world slip, when there is primarily one source of vi-

bration, the coherence between sensor signals should be

large relative to that during object/hand slip, when there are

multiple sources of vibration.

C. Generalized Coherence

The preceding two-sensor example leads to a different

interpretation of mean square coherence which can be gen-

eralized to n sensors as

• the maximum fraction of normalized observed signal

power explained by a linear systems model with a single

input

In this section we derive this result in the general case

and show that it can be computed with a simple eigenvalue

analysis of the complex coherence matrix. We then verify

that it is equivalent to the classical definition in the n =
2 case and verify its results for some limiting cases. The

final result of this derivation is equivalent to the definition

proposed in [21]. However, this work provides a motivation

for this definition, as well as a physical interpretation of

the resulting group square coherence value in the context of

tactile sensing.

The n signals, si(t) are estimated by filtering a common

input signal, x:

ŝi(t) = (hi ∗ x) (t) (12)

with hi(t) being the impulse response of the ith filter. The

error signal ei(t) is given by

ei (t) = si (t)− ŝi (t) (13)

= si (t)− (hi ∗ u) (t) (14)

We seek to maximize the following objective function at

all frequencies, ω

max
u,h

J(ω) =

(

1−
1

n− 1

n
∑

i=1

Pei(ω)

Psi(ω)

)2

(15)

The terms within the summation are normalized error

powers; they are averaged by a factor of n − 1 instead

of n because there always exists a signal and filter pair

which makes one error term identically zero; e.g. x(t) =
si(t), hi(t) = δ(t) results in ei(t) = 0. This normalized

and averaged error is then subtracted from 1, leaving a
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(a)

(b)

Fig. 4: Two of the four BioTac experiments: (a) a passively

loaded manual gripper slips against the held plate and (b) a

stylus is rubbed across the held textured plate.

sensors. The Motion Control hand with attached sensors was

rigidly mounted on a stand (Figs. 1 and 4) and passively

closed on various texture plates. The following actions were

performed under two different speeds:

• passively pulled through the fingertips using added

weight;

• rubbed by an external gripper manually actuated along

a vertical slide as in Fig. 4a, with both soft and hard

interfaces;

• braced against a vertical shaft while vibrations were

produced by manually rubbing with an aluminum stylus

(Fig. 4b).

B. PVDF experiments

The second sensor system is a custom designed polyvinyli-

dene flouride (PVDF) piezoelectric system integrated into

a soft fingertip (Fig. 5). Each fingertip has an embedded

digital acquisition chip (Analog Devices AD7608) which

(a) (b)

Fig. 5: Tactile array sensor with eight embedded PVDF strips

in a) isometric view and b) profile. The sensor package can

be mounted on the benchtop slip test apparatus in Fig. 6

is capable of simultaneously sampling up to eight analog

channels at up to 250kHz. Due to bandwidth limitations

of the entire sampling system, each AD7608 is set sample

at 6.25kHz using a built-in anti-aliasing filter at 3.125kHz.

Eight separate PVDF strips are attached directly to the high

impedance inputs of the AD7608 in a voltage measurement

configuration, and arranged as shown in Fig. 5a. Up to

three fingertips are connected via SPI to a microcontroller

(Microchip dsPIC33FJ32MC304) which controls and syn-

chronizes sampling and communicates via USB to a PC for

data collection.

The PVDF-based sensor fingertips are mounted to the

bench-top test apparatus shown in Fig. 6. The apparatus

includes three engagement mechanisms arranged at 0◦, 90◦,

and 180◦ around a JR3 6-axis force/torque sensor (JR3

Inc, Woodland Ca) (Fig. 6b). Each engagement mechanism

consists of a vertical track mounted on a parallel four-bar

mechanism and is used to bring a PVDF fingertip or an

unsensorized “environment” object into contact with a “held”

object mounted to the force/torque sensor (Fig. 6b inset). A

spring loaded mechanism allows passive variations in the

generated contact force.

The data presented here are from two experiments, each

performed at two contact forces. A sensorized fingertip and

an unsensorized polyurethane blank (hardness shore 90D)

are mounted and brought into contact with a textured “held”

object. Then,

• the sensor fingertip is manually moved along the vertical

track, producing object/hand slip;

• the polyurethane blank is manually moved along the

vertical track, producing object/world slip.

The sandpaper textures (F-H) were used for the PVDF

benchtop tests. They were modified by adding a light layer of

spray-on rubber coating (PlastiDip SprayTM) to dull the sharp

edges of the sandpaper grit. This prevents excessive wear

of the sensors without significantly affecting the sample’s
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Fig. 10: Power spectral density and coherence for two-sensor

test arrays. Top: data from an object/world slip condition.

Bottom: data from an object/hand slip condition. Note the

relatively high coherence near 450Hz and 1200Hz during

both slip conditions. These frequencies correspond closely

to the bulk vibration modes of a block of silicone.

robotic systems using this method are able to take advantage

of vibrations picked up on all surfaces containing tactile

sensors that are in contact with a held object.

VI. CONCLUSIONS AND FUTURE WORK

We have presented an generalization of mean square

coherence which extends to populations of n sensors. This

generalization is a result of examining the degree to which

individual sensors can be viewed as sampling a common

underlying signal. It is consistent with the classical definition

when n = 2 and can be calculated via eigenvalue analysis

of the complex coherence matrix of the population.

Using a linear system model of the interaction between the

environment, a held object, and an array of tactile sensors

in a robot hand we have demonstrated how mean square

coherence values can be used to determine slip interface. The

efficacy of this method was investigated using two different

sensor suites and a variety of textures and slip conditions.

Results from these experiments indicate that coherence based

measures can be used to classify slip type and should

generalize well to other sensors and situations.

The bench-top testbed used with the PVDF sensors has

many additional capabilities, including a variety of witness

sensors and the ability to generate slip independently on two

fingers and a third object/world interface. Future work will

explore the ability of coherence based methods to determine

which interfaces are experiencing slip in more complex

situations, e.g. slip at one object/finger interface at the

same time as slip at the object/world interface. Additionally,

extending these methods to a real-time system will require

investigating how much data is needed to reliably classify

slip, and what delays are introduced between the onset of

slip and a reliable classification.
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