
Design of Nonlinear H∞ Optimal Impedance Controllers

Min Jun Kim and Wan Kyun Chung

Abstract— In this paper, nonlinear H∞ optimal design of
impedance controllers is proposed based on the nonlinear
robust internal-loop compensator (NRIC) framework. Simply
adding PD-type auxiliary input to the original control law,
the robust performance and the robust stability are achieved.
Nonlinear H∞ optimality is guaranteed by solving Hamilton-
Jacobi-Isaacs (HJI) equation and the disturbance input-to-state
stability (ISS) is guaranteed by finding ISS-Lyapunov function.
Moreover, it is shown that the proposed method preserves the
passivity of the impedance controllers. The proposed method
can be applied to various types of impedance controllers in a
unified way. Through simulations and experimental studies, the
proposed method is verified.

I. INTRODUCTION

Impedance control has been extensively and intensively
studied since it was firstly proposed in [1]. Especially in
recent years, impedance control methods are gathering more
and more interests with growing interest of force control
and/or safety robotics [2], [3]. The goal of the impedance
control is to realize a desired impedance behavior of the end-
effector. Conceptually, as long as the perfect robot model
is available, the impedance control is able to render the
end-effector dynamics into the desired impedance behavior
exactly. When implementing an impedance controller to
a real robot, however, the performance is sometimes not
satisfactory.

The main causes of this problem are disturbances such
as modeling uncertainty, joint friction/damping from var-
ious sources, etc. One typical source is high reduction
ratio transmission which causes high friction. Moreover, the
highly reduced transmission makes an electric motor far
from being an ideal torque source since it amplifies all the
negative effects in the motor-side such as back-emf effects,
frictions, etc. Equipment of the gear transmission, however, is
usually unavoidable due to the limited performance of elec-
tric motors, especially for the light-weight-oriented robots.
Therefore, it can be said that the ideal performance of the
impedance controllers is no longer guaranteed when applied
to real robots due to the disturbances from various sources
of which identification/compensation is difficult in practice.

To deal with robustness problems, several methods have
been proposed to implement robust impedance controllers
by many. For example, adaptive law is incorporated in [4],
[5]. However, adaptive methods are sensitive to unmodeled
dynamics. In [6], sliding mode control scheme is applied.
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This method, however, requires information about modeling-
parameter error bounds which are unknown in practice.
The error bounds are treated as control gains in the im-
plementation and make it difficult. One interesting recent
result is [7] which is a method based on the internal model
control. However, extension to a general redundant robots
seems not clear. One of the state-of-the-art is [8] which uses
the joint torque measurement feedback in order to reshape
motor-side inertia and reduce adverse effects of the motor-
side dynamics. This approach, however, requires joint torque
sensors which many of current robot systems usually are not
equipped with.

As a solution to the robustness issues, this paper proposes
robust impedance controllers based on the nonlinear H∞
optimal control technique. The proposed method can be
applied to redundant robots and does not necessarily require
joint torque measurements. Furthermore, aforementioned dis-
turbances can be treated in a systematic way; H∞ control
approach is attractive since it successfully brings the dis-
turbance into the formulation. For this reason, H∞ optimal
control methods are widely adopted in the linear control
systems. However, it is well-known that solving nonlinear
H∞ control problems is very difficult since we have to deal
with a multi-variable partial differential equation which is
known as Hamilton-Jacobi-Isaacs (HJI) equation [9], [10].

Fortunately, recently developed nonlinear robust internal-
loop compensator (NRIC) framework provides a somewhat
general method to deliver the nonlinear H∞ optimality to a
controller [11]. Thus, using the NRIC framework, it is pos-
sible to incorporate nonlinear H∞ optimality to impedance
controllers. The key idea is to find an auxiliary input that
attenuates the difference between real and nominal plant in
the sense of nonlinear H∞ optimality. The resulting auxiliary
input is given in a simple PD-type form. Simply adding
the auxiliary input to the existing impedance control inputs,
the robust performance and robust stability can be achieved.
Moreover, it is shown that the proposed method preserves
the passivity of the impedance controllers by finding a
proper storage function. It should also be mentioned that
the proposed method is not restricted to a specific type of
impedance controller. In other words, it can be applied to
various types of impedance controllers in a unified way.

This paper is organized as follows. In the section 2, classi-
cal impedance controllers are revisited. Section 3 introduces
the design of nonlinear H∞ optimal impedance controllers
based on the NRIC framework. Optimality, stability, and pas-
sivity analysis are provided. Section 4 verifies the proposed
method through simulation and experimental studies. Finally,
section 5 concludes the paper.
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II. DESIGN OF IMPEDANCE CONTROLLERS

This section introduces design of classical impedance con-
trollers. Starting from (kinematically) non-redundant case,
two solutions for redundancy problem are introduced. The
details of derivation are omitted since the contents in this
section are already well-established results.

A. Non-redundant Case

Robot kinematics and dynamics are described by:

ṗ = J(q)q̇ (1)
τ + τext = M(q)q̈ + C(q, q̇)q̇ + g(q) (2)

with known notations. Moreover, the transpose of the Jaco-
bian matrix, J(q)T , defines relation between joint torque and
force at the end-effector:

τ = J(q)T f (3)

The purpose of impedance control is to render the end-
effector behavior into a desired impedance behavior. To
this end, it is sometimes convenient to describe the robot
dynamics in the operational space instead of joint space.
Substituting (1) into (2), the operational space dynamics is
obtained as:

f + fext = Λ(q)p̈+ Γ(q, q̇)ṗ+ ζ(q) (4)

where, Λ, Γ, and ζ represent operational space Inertia, Cori-
olis/centrifugal force, gravity matrices/vector, respectively.
Now, it is clear that the control input fc = −(Dṗ+Kep) +
Γṗ+ ζ renders (4) into the desired impedance behavior

fext = Λp̈+Dṗ+Kep (5)

where, ep = p − pD and subscript D stands for desired.
Using the relation (3), the resulting impedance control law
is τc = J(q)T fc. This control law, however, is valid only for
the non-redundant robots. Therefore, the following sections
describe methods that deal with redundancy issue.

B. Redundant Case: Null-space Projection Method

One of the most common approach to deal with redun-
dancy is projecting damping to the null-space [12]. In the
redundant case, Jacobian matrix J(q) is no longer square
(i.e., non-invertible) and therefore weighted pseudo-inverse
J†
W = W−1JT (JW−1JT )−1 is usually adopted instead of

J−1. Furthermore, (3) is extended as

τ = J(q)T f + (I − J(q)TJ(q)†TW )ξ (6)

where ξ is an arbitrary vector. Note that, letting W (q) =
M(q) gives the dynamically consistent generalized inverse
[13].

Under the redundant situation, the control law τc =
J(q)T fc is still a stabilizing controller, but the asymptotic
stability is not guaranteed anymore. By properly selecting
ξ, the asymptotic stability can be guaranteed. One specific
example of null-space control vector is ξc = Dq̇, where D
is a positive definite matrix [13].

Consequently, the impedance control law for redundant
robot is

τc = J(q)T fc + (I − J(q)TJ(q)†TW )ξc (7)

C. Redundant Case: Null-space Parameterization Method

Sometimes, it is useful to express null-space explicitly
rather than simply projecting joint damping to the null-space
[14]–[16]. Minimal parameterization of the null-space can be
done by incorporating the null-space basis matrix Z(q) [17],
[18]. The forward kinematics (1) can be extended as1(

ṗ
ṅ

)
=

[
J(q)

Z(q)W (q)

]
q̇ (8)

Using (8), operational space dynamics can be expressed as(
f + fext
η + ηext

)
=

[
ΛW,pp ΛW,pn

ΛW,np ΛW,nn

](
p̈
n̈

)
+

[
ΓW,pp ΓW,pn

ΓW,np ΓW,nn

](
ṗ
ṅ

)
+

(
ζW,p

ζW,n

) (9)

Again, by letting W (q) = M(q), we arrive at the dynami-
cally decoupled property, i.e., ΛW,pn = ΛW,np = 0, which
is consistent to the null-space projection method [19].

Various control strategies can be implemented using (9).
This paper, for example, considers null-space suppression
control by letting the null-space control input as ηc =
ΛW,nn(n̈+ knv ėn + knpen) + ΓW,npṗ+ ΓW,nnṅ+ ζW,n.

Consequently, the resulting control input is

τc = J(q)T fc +W (q)Z(q)T ηc (10)

D. Miscellaneous Notes

The impedance control laws (7), (10) both guarantee the
globally asymptotically stability of the equilibrium point.
Therefore, by the converse Lyapunov theorem, a Lyapunov
function that satisfies the following conditions can be found
(Theorem 23 and definitions (viii), (x) in [20]).

V (x,t) > 0 (11)
V (x, t) → ∞ as ∥x∥ → ∞ (12)

V̇ (x, t) ≤− γ(∥x∥) (13)

It should also be mentioned that the impedance control
laws can be easily modified to the passive version. Since
the skew-symmetricity of Ṁ − 2C(q, q̇) plays a key role
in the passivity analysis, if we do not cancel out the Cori-
olis/centrifugal forces in the control law, it automatically
becomes a passive impedance controller.

The performance and the stability, however, are sometimes
not satisfactory when implemented to real robots due to the
various kinds of disturbances. The source of the disturbance
can be anything, e.g., modeling uncertainty, joint friction,
joint damping, and so on. Thus, the following sections
describe a method to overcome the robustness problem using
nonlinear H∞ optimal control technique.

1Using Z(q)W (q), not Z(q), in the forward kinematics (8) is to establish
kinematically decoupled relation. Namely, (ZW )J†

W ṗ ≡ 0 and JZ#ṅ ≡
0, where Z# = ZT (ZWZT )−1 is a pseudo-inverse of Z(q)W (q).

1973



Fig. 1. The structure of NRIC.

III. INCORPORATING NONLINEAR H∞ OPTIMALITY

In this section, the nonlinear H∞ optimality will be
brought into the impedance controllers.

Before going further, several notations used in this paper
must be defined. In the Fig. 1, subscript D denotes de-
sired signal, subscript R denotes real (measured) signal and
subscript N denotes nominal signal which is the expected
signal from the nominal plant under the control input τc.
Thus, for example, qD is a desired displacement vector, qR
is a displacement vector of the real plant and qN is that
of a nominal plant. Furthermore, error-related quantities are
defined as

eRN = qR − qN (14)
eDN = qD − qN (15)
eDR = qD − qR (16)

Also, x(·) is a state related to (·). For example, xRN is a
state related to eRN , i.e., xRN =

[
eTRN ėTRN

]T
.

A. Nonlinear Robust Internal-loop Compensator Framework

In order to incorporate nonlinear H∞ optimality, so called
nonlinear robust internal-loop compensator (NRIC) frame-
work is applied whose structure is shown in the Fig. 1. As
can be seen in the Fig. 1, a nominal plant is augmented to
a real one. Therefore, the number of states and equations is
increased. From the figure, the closed loop dynamics of real
plant and nominal plant is given as

τext + τc + τa + d = MRq̈R + CRq̇R + gR (17)

τext + τc = M̂N q̈N + ĈN q̇N + ĝN (18)

where, M , C, g are known notations and (̂·) represents esti-
mated (nominal) parameter of (·). Moreover, MR represents
an inertia matrix of which variable is qR, i.e., MR ≜ M(qR).
Likewise, MN , M̂R, CR, etc can be defined in a similar way.
Note that any kinds of disturbances could be contained in d.

In the framework, instead of nominal plant equation (17),
the difference between real and nominal plant is used.
Subtracting (18) from (17), we obtain the difference system
as follows

τa + w = MRṡ+ CRs (19)

where, s ≜ ėRN +KP eRN and KP is a symmetric positive
definite matrix. w is treated as an extended disturbance and

can be expressed as follows after some algebraic manipula-
tion.

w = MR

(
(M−1

R − M̂−1
N )τc +KP ėRN

)
+ CR

(
(I − C−1

R MRM̂
−1
N ĈR)ėDN

+KP eRN

)
+ (MRM̂

−1
N ĝN − gR) + (MRM̂

−1
N ĈN − CR)q̇D + d

(20)

The extended disturbance w contains modeling uncertainty
as well as disturbance d.

As a result, the equations describing the whole system are
(18) and (19). The states describing the system are xRN and
xDN .

Also, note that the state-space form of (19) can be ex-
pressed as follows.

ẋRN = AxRN +Bw +Bτa (21)

where,

A =

[
0 I

−M−1
R CRKP −M−1

R CR −KP

]
(22)

and

B =

[
0

M−1
R

]
(23)

Please note that A, B are functions of state variables which
are omitted for the simplicity.

The purpose of the NRIC framework is to find an auxiliary
input τa that attenuates the difference between real and
nominal plant. To tell the result first, the auxiliary input τa
is given as

τa = −(K +
1

γ2
)(ėRN +KP eRN ) (24)

In the following sections, optimality, stability, and the
passivity analysis are investigated.

B. Optimality

The nonlinear H∞ control problem is to find a control in-
put that satisfies the following nonlinear L2-gain attenuation
requirement.∫ t

0

(xT
RNQ(xRN )xRN + τTa R(xRN )τa)dt ≤ γ2

∫ t

0

wTwdt

(25)

To solve the nonlinear H∞ optimal control problem, it is
sufficient to solve the Hamilton-Jacobi-Isaacs (HJI) equality:
Let γ > 0 and if there exists a continuously differentiable
solution V (xRN , t) ≥ 0 with V (0, t) = 0 satisfies

HJIγ(x,t;V ) ≜ Vt + VxAxRN − 1

2
Vx

[
BR−1BT

− 1

γ2
BBT

]
V T
x +

1

2
xT
RNQxRN = 0

(26)

where Vt, Vx represent partial differentiation of V with
respect to t and xRN , respectively. Then, the control input

τa = −R−1BTV T
x (27)

1974



satisfies the nonlinear L2-gain attenuation requirement (25)
for the L2-gain γ > 0.

However, dealing with the HJI equation is not easy since
it is a multi-variable partial differential inequality problem.
Therefore, this paper takes the inverse solution approach
[10], [21].

Let V (xRN , t), R as

V (xRN , t) =
1

2
xT
RNPxRN , R =

(
K +

1

γ2
I
)−1

(28)

where,

P =

[
KPMRKP +KPK KPMR

MRKP MR

]
(29)

Using (28), HJIγ = 0 is reduced to the differential Riccati
equation:

Ṗ +ATP + PA− PB
(
R−1 − 1

γ2
I
)
BTP +Q = 0 (30)

Now, Q can be obtained from (30):

Q =

[
K2

PK 0
0 K

]
(31)

As a result, with given weightings Q and R, we can
conclude that V = 1

2x
T
RNPxRN is a solution of HJIγ =

0. Therefore, τa = −R−1BTV T
x = −(K + 1

γ2 )(ėRN +
KP eRN ), provided in (24), is a solution of nonlinear H∞
optimal control problem.

C. Stability

In this section, the extended disturbance w input-to-state
stability (ISS) is investigated (see appendix if not familiar
with ISS). To this end, before investigating the stability of
the overall system, the stability of nominal system and the
difference system are investigated separately2.

Firstly, for the nominal system (18), recall that there
exists a Lyapunov function VDN (xDN , t) that satisfies (11)-
(13) since the control input is made using nominal states.
Secondly, if we consider only xRN as a variable in (19),
V = 1

2x
T
RNPxRN is an ISS-Lyapunov function of the

difference system (19): V is positive definite and radially
unbounded since V can be rewritten as

V =
1

2
xT
RNPxRN

=
1

2
sTMRs+

1

2
eTRN (KPK)eRN

(32)

Furthermore, the derivative along the trajectory is

V̇ =Vt + VxAxRN + VxBτa + VxBw

=
1

2
xT
RN (Ṗ +ATP + PA)xRN

− xT
RNPBR−1BTPxRN + xT

RNPw

=− 1

2
xT
RN (Q+ PBKBTP )xRN + γ2∥w∥2

(33)

2By means of ”separately”, only xRN is considered as a variable of
(19) even though both xRN and xDN show up in the (19). Then, we can
consider (18) and (19) as separate systems that have no relation to each
other. Note that only xDN shows up in the (18), which means that only
xDN is a variable of (18) from the beginning.

(a) (b)

Fig. 2. (a) the 3-DOF planar arm used in the simulation. (b) forces applied
at the end-effector.

where, τa = −R−1BTV T
x , HJIγ = 0 (30), and Young’s

inequality xT
RNPBw ≤ 1

γ2 ∥xT
RNPB∥2 + γ2∥w∥2 are used.

Therefore, we conclude that V = 1
2x

T
RNPxRN is an ISS-

Lyapunov function of (19).
However, when we consider both xRN , xDN as variables

at the same time, P matrix in (29) is a function of both
xRN and xDN since MR contained in P can be written
as MR = M(qR) = M(eRN − eDN + qD). Now, letting
VRN (xRN , xDN , t) = xT

RNP (xRN , xDN , t)xRN , the fol-
lowing properties can be derived.

VRN (xRN , xDN , t) > 0 (34)
VRN (xRN , xDN , t) → ∞ as ∥xRN∥ → ∞ (35)

but,
VRN (xRN , xDN , t) ↛ ∞ as ∥xDN∥ → ∞ (36)

V̇RN (xRN , xDN , t) ≤ −γRN (∥xRN∥) + γw(∥w∥) (37)

Finally, to establish the extended disturbance w ISS for
the overall system, define an ISS-Lyapunov function as
Vo(xRN , xDN , t) = VRN (xRN , xDN , t) + VDN (xDN , t).
Then, combining (11)-(13) and (34)-(37), it is clear that the
overall system is extended disturbance w ISS.

D. Passivity

This section provides the passivity property of the overall
system. First, we assume that the impedance controller is
designed as a passive one. In other words, there exists a
storage function SDN that satisfies ṠDN ≤ τTextq̇N . Now, let
us define a storage function for the overall system as

So(xRN , xDN , t) =
1

2
sTMRs+ SDN (xDN , t) (38)

Then, the differentiation along the trajectory is

So(xRN , xDN , t) ≤ wT s+ τTextq̇N =

(
w
τext

)T (
s
q̇N

)
(39)

Therefore, it can be said that the system is passive from
the extended disturbance and external force input to proper
output.
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Fig. 3. Simulation results. Comparison between ideal and actual impedance
behaviors are shown.

IV. SIMULATIONS AND EXPERIMENTS

A. Simulations

In this section, the proposed method is verified through
the simulation studies. The control law (10) is applied to
planar 3-DOF manipulator shown in the Fig. 2 (a). It is
a redundant manipulator since it moves only in the x-y
plane. The control law is implemented in 1KHz control
frequency using Robotics Lab which is a commercialized
robot simulation software [22]. The selected target actuator
model is Kollmorgen RBE01811 motor. The values of inertia,
back-emf constant, frictions, etc are referenced from the
catalog.

The desired impedance behavior of the end-effector is (5)
with D = diag{30, 300}, and K = diag{50, 1000} 3. The
desired position of the end-effector is fixed (i.e., constant)
while the external force is applied at the end-effector in a
sinusoidal form as shown in the Fig. 2 (b). The simulation is
to see if the desired impedance behavior is realized or not.
To this end, the comparison between the ideal impedance

3In this paper, unit of stiffness is N/m, and that of damping is N·s/m.

behavior4 and the actual behavior is made.
The results are summarized in the Fig. 3. In the first

simulation, the perfect robot model is assumed to be known
and the actuators are considered as ideal torque source.
Under this assumption, the desired impedance behavior is
realized without help of NRIC framework (Fig. 3 (a)). The
ideal impedance behavior (solid black line), the behavior
of impedance controller itself (solid blue line), and that of
impedance controller with NRIC (dotted red line) are almost
identical. Second simulation considers motor model and
some amount of joint friction/damping is added. Stick-slip
friction, back-emf constant, and motor inertia are modeled
and the gear ratio is set as 100:1. As shown in the Fig.
3 (b), the impedance control law itself cannot realize the
desired impedance behavior. The resulting stiffness is much
higher than the desired one. On the other hand, fortunately,
when NRIC is applied to the impedance controller, NRIC
input successfully compensates disturbances and the desired
impedance behavior is recovered.

B. Experiments
In this section, the control law (7) is implemented for the

Schunk 7-DOF light weight arm 3 (LWA3) shown in the Fig.
4. The controller is implemented in a real-time OS (RTX) and
runs in about 333Hz of control frequency. LWA3 has very
high reduction ratio (from 300:1 to 600:1, roughly) in order
to realize its light-weight specification. Two experiments are
performed to verify the proposed method.

In the first experiment, similar to the simulation sce-
nario, desired impedance behavior is defined as D =
diag{30, 300, 300}, and K = diag{50, 1000, 1000} and the
desired position of LWA3 is fixed. Human operator grasps
the end-effector and moves it in a sinusoidal motion (Fig. 4
(b)). Fig. 5 shows the comparison between the ideal behavior
of the end-effector and the actual behavior. Ideal behavior
is calculated using the measured force at the end-effector
and the Fig. 5 (a) shows an example of the measured force.
Fig. 5 (b) shows the result of impedance controller alone
(without NRIC). High reduction ratio of LWA3 results huge
disturbances and the desired behavior is not realized. On
the other hand, when NRIC is applied with the impedance
controller, disturbance effects are successfully compensated
and the resulting actual end-effector behavior is close to the
ideal one as shown in the Fig. 5 (c).

The realization of the zero stiffness is shown in the second
experiment. The desired impedance behavior is defined as
D = diag{30, 300, 300} and K = diag{0, 1000, 1000}.
Therefore, the end-effector of LWA3 keeps same position in
the y-, z-directions due to the high stiffness but changes its
neutral position along the x-direction. The measured forces
and positions are shown in the Fig. 6. As can be seen in
the figure, LWA3 shows very stiff behavior in the y-, z-
directions and zero stiffness is realized along the x-direction.

4The ideal impedance behavior is calculated from (5). None of the other
effects (e.g., friction) are considered in calculating the ideal impedance
behavior. The only difference is that the Inertia Λ is considered as constant
during the motion. Also, note that even though desired stiffness is in the
linear shape, the ideal behavior has hysteresis-like shape due to the damping.
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(a) (b)

Fig. 4. 7-DOF Schunk manipulator used in the experiment.
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(b) Position and force in x-direction: Impedance control only.
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(c) Position and force in x-direction: Impedance control with NRIC.

Fig. 5. Human operator moves the end-effector in a sinusoidal motion.
(a) shows an example of the exerted force. In (b) and (c), the comparison
between the ideal and actual impedance behavior for without-NRIC and
with-NRIC cases, respectively
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Fig. 6. Zero stiffness is realized in x-direction and high stiffness in y-, z-
directions. Applied force and position are shown together for each joints.
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V. CONCLUSION

In this paper, to overcome the robustness and the perfor-
mance limitations of the impedance controllers, we proposed
a nonlinear H∞ optimal impedance control methods. Non-
linear H∞ optimality is realized using the NRIC framework.
Consequently, the optimality is achieved by simply adding
PD-type auxiliary input to existing impedance control laws.
Moreover, the extended disturbance input-to-stability (ISS)
is guaranteed and the passivity of the impedance controller
is preserved. The proposed method is general in some
sense since it can be applied to various types of impedance
controllers in a unified way. More specifically, the proposed
method is applicable as long as given controller is globally
(uniformly) asymptotically stable one. Through simulations
and experiments, the proposed method is verified. It is shown
that the desired impedance behavior is successfully realized.

APPENDIX

In the appendix, the definition and one central theorem
for the input-to-state stability (ISS) are introduced. First,
consider the system

ẋ = f(x, t) + g(x, t)w (40)

The system (40) is said to be (disturbance w) ISS if there
exist a class KL function β and a class K function γ such
that the solution for the (40) exists ∀t ≥ 0 and satisfies

∥x(t)∥ ≤ β(∥x(0)∥, t) + γ( sup
0≤τ≤t

∥w(τ)∥) (41)

x(0) is an initial state vector and w is piecewise continuous
and bounded on [0,∞).

One useful theorem for the ISS is: the system is ISS if
and only if there exist a smooth positive definite radially
unbounded function V (x, t), a class K∞ function γ1, and
a class K function γ2 such that the following dissipativity
inequality is satisfied:

V̇ ≤ −γ1(∥x∥) + γ2(∥w∥) (42)

Here, V (x, t) is called as an ISS-Lyapunov function.
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