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Abstract— In this paper we base upon capacitive tactile
proximity sensor modules developed in a previous work to
demonstrate applications for safe human-robot-interaction. Ar-
ranged as a matrix, the modules can be used to model events in
the near proximity of the robot surface, closing the near field
perception gap in robotics. The central application investigated
here is object tracking. Several results are shown: the tracking
of two human hands as well as the handling of occlusions and
the prediction of collision for object trajectories. These results
are important for novel pretouch- and touch-based human-
robot interaction strategies and for assessing and implementing
safety capabilities with these sensor systems.

I. INTRODUCTION

Research in robotics has long been focused on a system
that on the one hand is able to interact autonomously with
the environment and on the other hand guarantees a safe
interaction with the human. It is a current research goal
that the functionality and efficiency of the robotic system is
hindered to the least possible degree by safety concerns. For
their perception of the environment and implementation of
safety features robots of any kind, humanoids, service robots
and industrial robots are equipped with many sensors. In this
paper we present methods for modular tactile proximity sen-
sors that strengthen the perception in the near proximity of
the robot and its endeffector or gripper. This type of sensing
is one of the most neglected ones but is of utmost importance
for safety because it closes a still existing perception gap.

Typical sensors employed for implementing a safety aware
robotic system are 2D and 3D camera systems as well as
tactile sensors of various designs and working principles.
But, these sensors are inadequate for the detection and
modeling of events in the near proximity of the robot: the
perception of camera systems is encumbered by occlusions,
extraneous light influence and shadows. Using cameras to
increase safety is therefore problematic. Tactile perception
on the other hand can only detect the presence of obstacles
when the contact has already occurred. To react appropriately
to unforeseen events it is necessary to restrict the robot’s
velocity at the cost of the time efficiency in which tasks can
be executed.

To close the above mentioned perception gap a dual-
mode tactile proximity sensor with a capacitive working
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Fig. 1. A matrix arrangement of capacitive tactile proximity sensors
modules can be used to increase safety and for combined pretouch- and
touch-based interaction of the human with the robot. Here an arrangement
of 3 × 16 is shown including the electronics for signal processing in the
background.

principle was developed in a previous work [1]. Sensor
identification for the tactile mode and further sensor designs
where presented in [2]. Of special importance to the present
paper is a modular unit that can be used to create an
intelligent skin for a robot arm. Using an array of 3× 16 of
these modules, as shown in Fig. 1, the paper has contributions
in two main aspects: we show how tracking in the proximity
mode is enabling for 2-hand interaction and that a robust halt-
and contact-prediction can be implemented. These features
can be very useful for a robot system to avoid collisions
by correcting its path according to the predicted situation,
instead of an emergency halt. At a signal processing level we
also present an improvement to the demodulation algorithms
that leads to better framerates compared to the previous
design. The remainder of the paper is structured as follows:
in section II we review related work from the field, in
section III we discuss the working principle of the sensor,
the design of the modules used and the algorithms we used
and developed. The results of our experiments for halt-
and contact-prediction are shown in sec. IV and finally,
conclusions are given in sec. V.

II. RELATED WORK

Many physical effects have been utilized to build tactile
sensors such as capacitive [1], resistive [3] or optical ap-
proaches [4]. Proximity sensing is commonly implemented
via optical [5] or capacitive measurement [6]. However,
most of current approaches are only able to sense either
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tactile influence or object proximity but not both in a
single sensor. Optical proximity sensors have the advan-
tages of good precision and low circuit complexity [5]. As
shown in [7], when integrating optical proximity sensors
into a robotic gripper spatial resolution can be achieved,
as well as for 360◦ sensing around a mobile platform [5].
Similar to cameras, optical sensing principles are prone to
changing illumination, visibility conditions, mirroring effects
and translucence. Thus, their application in safety critical
environments is problematic. Capacitive proximity sensors
show strong non-linear signal behavior, due to dependency
on object size, its material and its grounding state. Therefore,
the identification of object-sensor-distance is challenging. On
the other hand, using multiple sensors can help to improve
distance estimations. Also, capacitive sensors are insensible
to optical conditions and can determine additional object
properties, e.g. fluid level in a translucent object. Due to
this robustness, the scope of application is broader than with
optical counterparts.

Application wise, proximity sensors can support and allow
for robust gripping tasks. In the works [7] and [6], IR
and capacitive sensing principles are respectively exploited
to take object-gripper-distance into account. Thus, robust
gripping can be achieved without prior exact object location
information. Tactile information can be used to evaluate
the stability of a grip, as shown in [8], [9]. Moreover,
slip detection of a grip can be accomplished using tactile
sensing, e.g. [10]. In [11] robust tracking of objects within
the proximity of a gripper-like end-effector that has four
IR proximity sensors is demonstrated. Multi-object tracking
seems feasible in principle, but is restricted by the number
of sensors.

Another field of application is the interaction of robots
with their environment. Especially the avoidance of collisions
during robot motion is important. In [12], distance sensing
laser range finders are used to avoid dynamic obstacles
with a mobile platform. Similarily the proximity sensor
network of [5] is used for the same task. In [13], concepts
for safeguarding human-robot cooperation in commercial
robotics applications are presented, which are based on
capacitive proximity sensors and haptic input devices. This
bandwith of applications for proximity and tactile sensing
clearly demonstrates the usefullness of integrated multi-
modal sensors.

III. SYSTEM DESCRIPTION

A. Sensor Platform

The basic working principle for tactile proximity sensor
illustrated in fig. 2(a) was first presented in [1]. In tactile
mode the capacitance between layer A and layer B is
measured. The guard electrode is switched to ground to keep
layer A capacitive coupled to ground. A force on the sensor
decreases the distance between both layers and therefore
changes the capacitance. In proximity mode layer B and
the environment are capacitive coupled. The guard electrode
is switched to the same potential as layer B to shield it
from the ground layer. Objects in proximity will increase

(a) Schematic structure of the tactile proximity
sensor.

(b) Big area module.

Fig. 2. Overview of the tactile proximity sensor module used in this work.

the coupling. In order to measure capacitance a direct digital
synthesizer (DDS) generates a signal of approx. 100kHz
which is routed to the capacitor plates. A simple measuring
resistor in each circuit measures the current flow through the
capacitors. The sensor modules shown in 2(b) used in this
work were described in detail in our previous work [2]. Each
module has a footprint of 4 × 4cm and can detect objects
in the proximity of about 10cm. It is designed to be used
for reveting a robot arm, up to 16 modules can be connected
together to form a stripe that is connected to one channel on
the signal processing board. Therefore the signal processing
board with 10 channels is able to drive up to 10× 16 sensor
modules. Signal processing in the digital domain (filtering,
demodulation) is further implemented on an FPGA-board.
Enough modules were built to implement an array 3 × 16
sensors for this work.

1) Signal Demodulation: The amplitude of the measured
current is proportional to the capacitance value. Therefore
a demodulation algorithm needs to be implemented in the
FPGA in order to obtain the amplitude value. The A/D-
converter uses a sample rate of approx. 400kHz, exactly
four times higher than the signal frequency generated by
the DDS. The current layout of the electronics does not
allow the triggering of the A/D-converter, only specify its
frequency, meaning the phase shift between sampling and
signal generation is unknown. Therefore the old demodu-
lation implementation (pictured by the blue part in Fig. 3)
used a phase control algorithm to tune the phase to zero at
the A/D-converter by manipulating the phase of the signal
from the DDS. Up to 16 modules are multiplexed to a single
A/D-converter and therefore the controller needed time to
tune itself after each switching operation at the multiplexer.
With this implementation a framerate approx. 10 fps was
achieved. Furthemore, because of the signal processing path
including filtering and communication via TCP/IP to Matlab
a delay of about 0.5 seconds is introduced to the signal.

The relation of A/D conversion frequency to the signal
frequency by exactly factor of 4 enables a new approach for
demodulation (shown as the green part in Fig.: 3) using a
simplified DFT in order to optain the amplitude value.

DFT : X(k) =

N−1∑
n=0

x(n)e−i2πkn/N (1)

The DFT provides the amplitude independently from the
phase of the signal. In this case we only need X(k = 1)
with N = 4 (the relating factor between sampling and signal
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Fig. 3. Schematic structure of the signal demodulation path. The blue
area is part of the first implementation, the green area is part of the new
implementation.

frequency) to be calculated which simplifies the calculation
to:

e−i2π0/4 = 1 (2)

e−i2π1/4 = i (3)

e−i2π2/4 = −1 (4)

e−i2π3/4 = −i (5)
DFT :

X(1) = x(0)− x(3) + i(x(1)− x(4)) (6)

The amplitude A is the absolute value of X(1):

A = abs(X(1)) =
√

[x(0)− x(3)]2 + [x(1)− x(4)]2 (7)

This can be easily implemented in the existing FPGA by
using two additional multipliers. The new method avoids the
use of a PI-controller for the phase and allows shorter waiting
times after switching between each module. Depending on
the configurations of the band- and low-pass filters a fram-
erate of approx. 25 fps can be achieved.

B. Image Processing

As the data of the proximity-/tactile-sensor matrix corre-
sponds to a two-dimensional planar image, we can analyze
these images using moments up to the 2nd order [14]. The
two-dimensional (p+ q)th order moment mp,q of an image
is defined as the following double sum over all image pixels
(x, y) and their values f(x, y):

mp,q =
∑
x

∑
y

xpyqf(x, y) p, q ≥ 0 . (8)

The features used in this work are the area and the centroid
of the foreground portion in the image.

C. Tracking

It is worth noting again that the proximity signal mea-
sured depends (at least) on size and distance of the object,
making different sized objects indistiguishable to the sensor
array if only a single snapshot is available. Also, spatial

Fig. 4. Tracking enables to distinguish two hands even if the separation
in sensor data is not evident.

Fig. 5. Tracking enables to handle occlusions in the proximity sensing.

resolution is very low compared to vision sensors, making
it essential to gain information from time series about the
objets. A tracking scheme allows for smoothing of the noisy
position and trajectories of objects being perceived. Higher-
level features can be extracted from the trajectories to allow
interaction with the robot, for instance through gestures. A
robust estimation of the object’s dynamics is necessary for
the tasks of halt or contact prediction. When more than
one object is present, the tracking algorithm allows to find
the correct correspondence of object instances in case of
occlusions, as illustrated by fig. 5. Also, when objects get
closely together the correspondence of measurement on the
sensor to the objects cannot be readily determined. Through
tracking, the correspondence can be traced back to the time
when the separation was evident as shown by fig. 4. For
tracking in the proximity mode we implemented a Kalman-
Filter as described in [15].

With the Kalman-Filter the current dynamics state of the
object is estimated based on state history, a noisy dynamics
model for the motion of the object combined with a noisy
measurement taken at each sample time. In each step the pre-
dicted state of the object, according to the dynamics model
and the previous state, is combined with the measurement
such that the combined uncertainty inherited from prediction
and measurement is minimized. In our implementation we
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use the dynamics model for rigid body motion given by:

pos(t) = p+ vt+
1

2
at2 (9)

At each time step the next position and velocity are
predicted based on the previous values for position p, ve-
locity v and acceleration a. The acceleration of the object is
propagated as constant but is assumed to be noisy, leading to
the uncertainty in the prediction. The modeled uncertainty in
the acceleration should vary from scenario to scenario. The
motion of human hands has high variance in its acceleration
whereas a robot controlled movement is commonly subject
to constant accelerations and target speeds. In this fact we
see a chance for performing pretouch object categorization
by analyzing its movement profile.

A measurement for the current object position is the
weighted mean, according to eq. 8, of the sensor values
of the sensors that are considered to be activated because
of the object’s presence. For a single object or multiple
objects clearly separated this means all non-zero values of
the corresponding region are included. For multiple objects
that activate overlapping regions of sensors it has to be
decided which measurements correspond to which object in
order to measure the position. For the case of the human
hands an object size of 3 × 4 sensor cells is assumed. A
mask of the object size is applied along the Y axis (longer
side of the sensor) of the foreground region, flush with the
lower and upper boundary of the foreground respectively.
Then a weighted centroid ck is calculated from the mask as
a position estimate. An example for two hand tracking is
shown in Fig. 4. For this case of the rather narrow sensor
arrangement this simple solution works more robustly than
trying to find the region limits by means of the watershed-
algorithm [16] or using gradient images. Also with our
scheme, when objects (hands) completely overlap, the same
measurements are assigned to both instances, which is a
desirable behaviour. Nonetheless, for higher resolutions and
a greater number of sensor modules more elaborate schemes
and more features, such as the orientation of the shape,
should be considered.

The correspondence of centroids ck to the objects is
calculated using the relative distance reli,k of ck to the
position pospredi of object Oi predicted by the Kalman-Filter:

reli,k =
||pospredi − ck||∑
j ||pos

pred
i − cj ||

(10)

The centroid cl = argmini,k(reli,k) with overall smallest
distance relj,l is assigned object Oj . This is done succes-
sively until all centroids are assigned. Multiple objects that
from the sensing point of view are joined from the beginning
cannot be recognized as such until separation is evident.

D. Proximity Mode Calibration

As stated previously, the proximity-signal is non-linearly
related to the object’s distance, material, size and electrical-
state (floating, grounded). Therefore, we calibrated the prox-
imity mode output of the sensor for the two types of objects

Fig. 6. Sample data and least-squares polynomial fits for calibrating sensor
values to distance for a human hand and the aluminum cylinder.

Fig. 7. Setup for the experiments of halt- and contact-prediction with an
aluminum cylinder (length 15cm, diameter 8.5 cm and weight of 2kg).

used in this paper: a grounded aluminum cylinder and a
human hand. The raw sensor outputs are offsetted for each
sensor stripe so the first step is to get zero mean values after
sensor initialization. Since the sensor signal is approximately
exponentially related to the distance, in the next step the
logarithm of the values is taken. These corrected values are
then calibrated using a least-squares polynomial regression
as seen in Fig. 6, good distance estimation through the
polynomial expression is achieved. The calibrated sensor
values are used for the experiments in sec IV.

For the cylinder samples at an interval of 1mm were
taken and it is noticeable that with increasing distance the
measurement becomes noisier. Therefore a next step in the
tracking would be to consider this noise explicitly in the
tracking for fine-tuning. A detection range of about 10cm is
achievable for the hand and the cylinder.

IV. EXPERIMENTS AND RESULTS

In addition to the qualitative results shown for the tracking
of hands in the previous section, in this section two experi-
ments regarding the halting prediction and contact prediction
are shown. These experiments represent two possible scenar-
ios: 1) an object is moving towards the sensor array mounted
on a robot manipulator and 2) the arm itself is moving
and the sensors detect some feature of the environment is
approaching. The general setup used for the experiments is
shown in Fig. 7. To avoid damaging the sensors by drag-
ging them after contact has been established, both types of
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Fig. 8. Real and tracked movement (above) and halt position prediction
error (below) in Y-direction of the aluminum cylinder.

movement, parallel to the sensor (in Y ) and perpendicular to
the sensor (in Z), are evaluated independently. The foremost
application that can be derived from these experiments is
a smart collision avoidance strategy for robot manipulators
equipped with tactile proximity sensors. To our knowledge
no contact prediction using proximity sensing, evaluated
against the same sensor in tactile mode has been presented by
other authors so far. This type of evaluation is essential for
assessing the extent of the safety awareness that is possible.

There is a time-delay due to signal processing as explained
in III-A.1. At this point it has not been exactly determined
and for this reason the robot control data of the object’s
motion is not considered for the quantitative evaluation.

1) Halt Position Prediction: For this experiment we con-
sider the scenario of tracking an object moved by a robot
arm parallel to the sensor surface. The robot is programmed
to perform a trajectory of start and stopping constrained to
a constant acceleration for starting and braking. Therefore,
the acceleration variance (noise) in the dynamics model of
the tracking algorithm is set very low. The robot trajectory
is represented by the blue line in Fig. 8. The movement
parameters of the braking part of the trajectory of the object
are estimated using the tracking algorithm indicated by the
red line in Fig. 8. Once a negative acceleration is detected,
a prediction about the halting position of the movement is
calculated according to the equations of motion (Eq. 9).

The actual final position measured as the mean of 20
sensor values after the halt of the motion is then used to
estimate the precision of the prediction. At each sample time
the difference of the actual and the predicted final position in
Y is shown in Fig. 8. From the estimated trajectory in Fig. 8 it
is recognizable that the measurement of the object position is

Fig. 9. Real and tracked movement (above) and contact time prediction
error (below).

quite precise. Shortly after the braking phase begins, the error
in the halt position estimation drops below 5cm, 4 seconds
before halt it is below 2.5cm. This result is satisfactory since
the error is quite below the length of a sensor module (4cm).

2) Contact Time Prediction: In the event that contact with
the robot is unavoidable, one of the main features that are
necessary to assess the safety of the situation with proximity
sensing is to be able to predict the movement parameters
such as the velocity at the time of impact or the time of
impact itself. How to detect where the robot will halt was
evaluated in the previous experiment IV-.1. For detecting
when impact will occur it is necessary to track the motion
of the object perpendicular to the sensor, i.e. in Z direction.
In our experiment the object movement starts outside the
sensing range of the proximity sensors and moves along
the Z axis in negative direction, shortly after entering the
sensing range of the sensor the object motion brakes until
finally contacting the sensor itself and triggering the tactile
modality of the cells. The object’s motion is represented in
Fig. 9 where blue is the actual trajectory given by the robot
control, green represents the raw measurements and red is
the filtered measurement. The halting point for the object’s
motion was set slightly lower than the contact point with the
sensor’s surface, so that the tactile modality is activated and
the motion has a crossing point for Z = 0.

It can be seen that the measurements and the tracking
follow the trajectory of the object very closely. This also
shows that a very precise calibration of sensor signal to
distance is possible (see III-D). Fig. 9 shows the error in
predicting the actual time of impact at each sample time
with respect to the impact time measured with the tactile
mode. The total braking time is about 3.25 seconds and the
estimate is best at 1.5 seconds before impact. After 18.5
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Fig. 10. A vision for the integration of the sensors on the exterior of a
robotic manipulator.

seconds no more prediction solutions are available because
the predicted motion is has no crossing point at Z = 0.
Prediction of contact time satisfactory, but this experiment
shows that even with precise measurements the object’s
distance the exact estimation of the movement’s parameters
is challenging. A basic safety reaction is an emergency stop
as soon as the object enters the sensing range of the sensor.
Using the contact time and position prediction presented here
it is possible to implement more complex strategies that can
actively avoid contact.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have shown applications for a matrix ar-
rangement of modules of capacitive tactile proximity sensors.
The sensing principle presents some challenges in relating
the proximity signal to distance values, but nevertheless the
scope of application is broader than optical counterparts.
These sensors are able to close an existing near field per-
ception gap in robotics. The challenge adressed in this paper
is to model events in the near surroundings of the robot,
namely tracking of objects and performing analysis of their
motion for halt and contact prediction.

Firstly, we showed improvements on the previous signal
processing design which results in higher framerates for the
sensors which are beneficial for the prediction and tracking
tasks. We have shown that the human hands can be tracked
effectively, a combined touch- and proximity-based interac-
tion should be easily be implemented with state of the art
methods for gesture recognition. For object motion controlled
by a robot we have shown that brake and contact prediction
is possible with encouraging results. These results are a
foundation for proximity and touch based safe human-robot-
interaction. Prediction of contact has several applications
for safety and can be used to implement collision avoiding
strategies for preventing damage because of collision caused
by robot motion. When the contact is intended, this can also
be useful for proximity/touch based control of the robot.

For a future work we want investigate how to relate
object’s motion detected by the sensors to the type of object.
Human hands motion is very dynamic whereas robot con-
trolled motion are often constrained to constant acceleration
and target speed. Then, indirectly regression models can be
adjusted to better estimate the distance and size. Further steps

are also the integration of the sensors into a gripper and onto
a robot platform and its motion control, as seen in Fig. 10,
as well as developing more applications, such as pretouch
object exploration. In general the developed capabilities are
aimed to be included in a Skill library so they can be used
within complex execution and collaboration plans.
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