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Abstract— Object shape information is an important param-
eter in robot grasping tasks. However, it may be difficult to
obtain accurate models of novel objects due to incomplete and
noisy sensory measurements. In addition, object shape may
change due to frequent interaction with the object (cereal boxes,
etc). In this paper, we present a probabilistic approach for
learning object models based on visual and tactile perception
through physical interaction with an object. Our robot explores
unknown objects by touching them strategically at parts that
are uncertain in terms of shape. The robot starts by using only
visual features to form an initial hypothesis about the object
shape, then gradually adds tactile measurements to refine the
object model. Our experiments involve ten objects of varying
shapes and sizes in a real setup. The results show that our
method is capable of choosing a small number of touches to
construct object models similar to real object shapes and to
determine similarities among acquired models.

I. INTRODUCTION

One of the reasons that makes the process of autonomous
grasping challenging is that object properties required for
grasp planning such as shape are commonly not known
a priori. In addition, sensory information used to extract
this information from the environment, e.g. vision, is prone
to error. Processes prior to shape extraction such as scene
segmentation are not perfectly accurate due to several issues,
e.g., occlusions and noisy measurements. Besides object
shape, conceptual high-level object category information is
another important input that can be used. In particular, for
goal-oriented grasp planning, different instances from the
same category can be grasped in a similar way for a particular
task. For instance, bottles should be grasped from a side for
a pouring task, so as not to block the opening.

Humans interact with the environment using rich sensory
information. Studies show that both visual and haptic modal-
ities contribute to the combined percept [1]–[3]. Results
from [3] suggest that observers integrate visual and haptic
shape information of real 3D objects and that bimodal shape
estimates are more reliable than shape estimates that rely on
either vision or touch alone.

The goal of our work is to complement visual information
with tactile sensing in order to acquire 3D object models. We
investigate how to deal with uncertainties in the sensory data
to extract object shape and category. Given a scene like the
one shown in Fig. 1, with an object in the center of view,
our goal is to gain insight on what manipulation actions the
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Fig. 1: Extracting object model: We rely on visual mea-
surements from a Kinect and tactile measurements from the
fingers. The model is formed based on the point cloud (in
yellow) from the camera and the contact points (in red).

object affords. If the shape of the object were known, one
could get some idea of what actions to consider, especially
if the shape is similar to an object that has already been
manipulated. Much information can be provided through
stereo vision, using e.g. a Kinect device. Regardless of which
stereo vision system is used, however, only one side of
an object is seen, i.e., the one side facing the cameras.
Without any additional sensory modalities, one can only
make qualified guesses of what the occluded side looks like,
using assumptions such as symmetry [4], assumptions that
may well be incorrect. In this paper we instead propose
touch as a means to get additional information. By carefully
touching the object, we will show how an object model
can be created, a model that provides enough information
to categorize the object based on shape.
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II. RELATED WORK AND CONTRIBUTIONS

In robotics, object shape estimation has been studied with
unimodal data, i.e., only visual [5] or tactile [6] sensing, and
bimodal data with visual and tactile sensing combined [7].
Clearly, vision alone delivers useful information about object
shape. Krainin et al. [5] proposed a method where a robot
picks up and moves an object in front of a sensor. Their
approach based on Kalman filters is able to build 3D models
of unknown objects using a depth camera observing the
robot’s hand moving the object. However, they showed that
the approach may produce failures with poor alignment in
case of a combination of high uncertainty in the object pose,
nondistinctive object geometry (completely planar surface)
or fairly uniform color and poor lighting conditions. Tactile
information can be used to alleviate such problems.

Bierbaum et al. [8] introduced the idea of using Dy-
namic Potential Fields for tactile exploration to build a con-
tact/tactile point cloud of an unknown object. Their system
requires a rough initial estimate about the object position,
orientation and dimension, then exhaustively performs grasps
in unexplored regions. Faria et al. [9] also builds contact
point clouds in an exhaustive way. They however follow a
probabilistic approach to store the extracted tactile points
in a volumetric map. In their experiments, a human subject
wearing a glove with magnetic tracking sensors to obtain
fingertip positions performs grasps that follow the contour of
objects. Meier et al. [6] followed a similar strategy and used
a probabilistic approach, Kalman filters, to build a model of
the contact point cloud. Their robot grasps objects at different
heights and positions also varying the orientation of the hand.
Their results show that the acquired models can successfully
be used for classification.

There are approaches that supplement vision with more
sensory information especially where visual sensing is weak,
e.g., occluded object parts. Maldonado et al. [10] used a
proximity sensor to scan the unseen parts of an object by
a depth camera without touching the object. They combined
the point cloud from the camera and the sensor and built a 3D
Gaussian point representation based on the convex hull of the
complete point cloud. Their representation simply contains
the centroid and the shape of the object through the mean and
the covariance matrix of the Gaussian distribution. Dragiev
et al. [7] has included laser data in addition to haptic mea-
surements in order to complement vision. They proposed to
use Gaussian Process Implicit Surfaces to fuse the uncertain
sensory data and showed that this representation can be used
to control reaching and grasping such that the hand is moved
and oriented towards the object and grasps aligning the
fingers according to the object shape. There are also studies
that focus on object recognition without explicitly modeling
the full 3D shape, but rather representing the objects based
on visual [11], tactile [12], [13] or both features [14].

Differently from the aforementioned approaches, we focus
on building object models that can be extracted with a
small number of actions (touches) in order to understand the
category objects belong to, rather than exhaustively trying to

explore the whole object. This is an iterative process where
the robot executes more touches as it is less confident about
the object shape. In summary, our contributions can be listed
as follows:

• We incrementally include tactile readings in the shape
estimation to further refine the object model that is
initialized based on visual measurements only.

• We use a probabilistic approach to shape estimation
through Gaussian Process regression to deal with un-
certainties in sensory measurements.

• Instead of an exhaustive exploration, we obtain a model
of a given object by selecting where to touch next, given
the object regions where the shape estimation is most
uncertain.

• Our system is able to build models that can be used for
shape categorization after a small number of touches.

III. OBJECT MODELLING

In this section, we describe how objects are represented
based on visual and tactile measurements. We introduce
Gaussian Process regression modeling of Implicit Surfaces,
the strategy to determine how to acquire tactile data and the
shape descriptors used for measuring similarities between
different objects.

A. Visual Measurements
An observed object is segmented from its background

using a segmentation and tracking system that works over
sequences of touches. The system uses stereo vision, in our
case a Kinect device, in an heterogeneous MRF based frame-
work [15]. The framework uses color and depth information
to divide the scene into either planar surfaces, bounded
objects or uniform clutter models. The planar and uniform
models are automatically initialized, while an ellipsoid used
to model the observed object is initiated by a point that
is manually placed inside the corresponding image region.
From the resulting object segments we get point clouds that
serve as starting points for object modelling. Later we will
complement these points with tactile readings from touches.

B. Implicit surfaces
From a set of measurements of 3D points {xi, i = 1...N}

that are located on the surface of an object, we now describe
how to derive implicit surfaces for representation. The model
should later be used for deciding object category based on
shape. In our case the measurements originate from stereo
vision as well as tactile readings. With a function f : R3 �→
R, we define an implicit surface by the supporting points
x ∈ R3 that satisfy

f(x) = 0.

The function f(x) is modelled by Gaussian Process (GP)
regression [16], with each observation y = f(x)+� assumed
to be subjected to zero-mean Gaussian noise, � ∼ N (0,σ2

n).
The shape of the GP is governed by a thin plate covariance
function [17]

cov(f(xi), f(xj)) = k(xi,xj) = 2|r|3 − 3Rr2 +R3,

3181



cyl-1

cyl-2

cyl-3

(a) v. only (b) 1 t. (c) 4 t. (d) 12 t. (e) 54 t. Real

cyl-4

Fig. 2: Evolution of object models against the number of touches (t.) for the cylinders: (a) Initial models based solely on
visual (v.) measurements depicted by yellow points. The models are oriented to show the back sides that are not visible
by the camera. Highest uncertainty is represented by red color and dark green regions correspond to least uncertainty. (b)
Models after including tactile measurements from one touch applied to the region with highest uncertainty. Contact points
obtained by touching are depicted by red points. (c) Models after 4 touches. (d) Models after 12 touches which were found
sufficient to group all the objects confidently. (e) Models after exhaustively exploring the objects which require 54 touches
with our setup. (f) The real objects for comparison.

where r = |xi − xj | and R is a maximum possible value of
r. This covariance function has slightly better characteristics
than the more frequently used squared exponential function,
in particular for rectangular objects where the flatness of
surfaces needs to be preserved. Quantitatively, however, we
have not observed any significant differences between the
two when applied for categorization.

The model is learned from a set of tuples (xi, yi), where
yi = 0 for the stereo vision or tactile measurements. Since
a physical object, at least those that can be acted on by a
robot, occupies a certain volume in 3D space, the implicit
surfaces need to be compact (closed and bounded). In order
to guarantee this, we place additionally exterior points, for
which yi = +1, on the boundaries of the scene and a single
interior point that is forced to be inside the closed surface
with yi = −1.

In the later experiments, this interior point was chosen as
the centroid of the stereo point cloud displaced by 1 cm along
the direction of the camera, assuming that this is the smallest
object thickness one can expect. With objects assumed to be
located within a cube with side lengths L = 30 cm and
centered at the centroid, the parameter R was set to

√
3L.

The only remaining hyperparameter is the expected noise
level which is set to σ2

n = 0.1. The value was chosen so as
a balance between the smoothness of the surfaces and the
noise in the integration of tactile and visual readings.

C. Action selection and cue integration

With GP regression we do not explicitly get a function
f(x), but the mean f̄ and variance V(f) of all possible
functions that could fit the measurements. The variance can
be used as a measure of uncertainty, with higher variance
for points far away from already recorded measurements.
Examples of implicit surfaces and variances can be seen in
Fig. 2a. A surface is given by points for which the mean
is zero and the colors illustrate the corresponding variances,
with red for points of highest variance. The stereo vision
point clouds are shown as yellow points, most of which are
occluded by the objects in the figure.

To refine the object models and decrease the uncertainty,
the robotic hand is guided towards those points for which the
variance is large in order to select a position for touching.
We call these touches ordered touches in the experiments
below, as opposed to random touches where new touches
are selected in random order. The arm-hand configuration
has earlier been calibrated with respect to the camera system,
with a precision of a few millimeters. The highest variance
point is searched for in a discrete action space defined by the
vertical position and the approach angle, both of which are
computed with respect to the centroid of the current model.
For each possible action, the closest point to each respective
tactile sensor pad is found on the implicit surface. The
action selected for execution is then based on the maximum
variance found among all actions and sensor pads.

Touches are then executed in sequence and the GP model
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Fig. 3: Convergence of curvature point clusters using ordered (solid) and random (dashed) touches with respect to the final
result after up to 54 touches (x-axis). Plots from random touches are based on the average from 10 runs and are thus
smoother than those of the ordered touches.

is updated accordingly, as new measurements are integrated
with the model. To speed up computations, the measurement
set is made sparser to about two thousand points1. This is
necessary since the computational cost of the GP increases to
the cube of number of points. Recorded tactile measurements
can be seen as red points in Fig. 2 for an increasing number
of touches. In some cases, these points are displaced with
respect to the implicit surface, which might happen if the
object moves considerably when it is touched. To minimize
these displacements, which is critical for long sequences of
touches, the object frame is constantly updated for each new
touch. This is done by registering the stereo vision point
clouds, given by the segmentation system, before and after
a touch using the Iterative Closest Point algorithm [18] and
transforming new measurements back to the original frame.

D. Shape Descriptors
Representing object shape as a GP or a mesh derived from

points on the resulting implicit surface is not straightforward,
if the goal is to compare shapes for action selection. Instead
we represent the extracted implicit surfaces with shape
descriptors that capture information invariant to possible ma-
nipulation actions, while discarding redundant information.
Two very different objects may afford similar actions, while
two seemingly similar objects might not. For example, a
rectangular box and a cylinder typically require different
grasping strategies, but they may well appear similar when
e.g., represented as ellipsoids, if aspect ratios are similar.

In this work, we look at two different rotation and trans-
lation invariant shape descriptors; 3D Zernike moments and
surface curvatures. Zernike moments have successfully been
used for shape retrieval [19] and are attractive due to the
flexibility and low number of dimensions required, as well
as the fact that Euclidean distances can be used for shape
comparison. For the Zernike moments, voxelization is first
applied in a 3D grid with voxels of side length l = 0.75 cm,
keeping the interior voxels for which the GP means are f̄ ≤ 0
at their center points.

1On a 3.2 MHz Core i7 CPU the cost of computing the GP model and
associated shape descriptor is about 4 s using PCL, VTK and Eigen.

For comparison using surface curvatures, the Marching
Cubes algorithm [20] is first applied to the same grid to find
a triangular mesh representing the implicit surface. From this
mesh, principal curvatures are then computed [21], with one
2D measurement per vertex point. The shape of an object is
thus represented by a sample set of about 500 measurements
of curvatures. A kernel based two sample test [22] is used
to compare two such representations, using Gaussian kernels
with standard deviations of 0.25, which yields a soft decision
on the similarity between the sample sets.

IV. EXPERIMENTAL EVALUATION

In this section, we first describe our experimental platform
and then present results from shape estimation and catego-
rization experiments comparing touch selection strategies and
shape descriptors.

The experimental robot platform is composed of an indus-
trial Kuka arm (6 dof), a three-finger Schunk Dextrous hand
(7 dof) equipped with tactile sensing arrays, and a Kinect
stereo vision camera. The robot can acquire tactile imprints
via pressure sensitive tactile pads mounted on the Schunk
hand’s fingers. Each finger of the hand has 2 tactile sensor
arrays composed of 6x13 and 6x14 cells, which yields at
most 486 tactile points after one touch. For each touch, the
hand is set to a fixed initial joint configuration where the
thumb opposes the other two fingers as seen in Fig. 1, then
fingers are closed until contact is sensed.

In an earlier study [23] we concluded that the object class
was an important factor, if one wants to determine what
grasping action to pursue to fulfill particular tasks, tasks such
as hand-over, pouring or dish-washing. However, the object
class was not derived directly from sensory data, but given
manually prior to the experiments. In this work, we aim to
automate this process by learning shape-dependent features
to replace the manually set object class. Our starting point
is thus a set of objects for which we know the respective
affordances from earlier experiments. These ten objects can
be seen in Fig. 4, with names indicating the similarity
in afforded actions. The end goal is to use stereo vision
and tactile measurements through a series of touches to
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Fig. 4: Spectral embeddings of curvature point clusters, after 0 (left), 1, 4, 12 and 54 (right) touches, using ordered (first
row) and random (middle row) touches, as well as with Zernike moments and ordered touches (last row). Ordered touches
lead to faster convergence than random touches, and Zernike moments cluster objects more based on similarity in object
aspect ratios, than similarities in affording grasp actions.

determine which grasping action the object would afford.
The question is: how many touches this would require and
what representation should one aim for?
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Fig. 5: Similarity matrices using up to 54 touches with
columns and rows given by the objects in Fig. 4 using either
curvature measures (left) or Zernike moments (right).

A. Experimental results
The ten objects were placed on a table-top with the Kinect

camera overlooking objects from one side. To fully cover
an object with tactile measurements, up to 54 touches (27

for cyl-2 and 18 for box-2 due to their lower heights) were
performed from the side parallel to the table in a grid of
9 angles (22.5◦ apart) and 6 heights (spaced at a vertical
distance of 2 cm) with respect to the table. The tactile
measurements are illustrated as red points in Fig. 2. From
the resulting implicit surface model, shape descriptors based
on curvatures and Zernike moments (up to order 10) were
computed and analyzed.

The convergence of the curvature based descriptors was
studied by computing the distances between the descriptors
after different numbers of touches and the final one. In
Fig. 3 the convergence is shown using either ordered touches
computed from points of maximum GP variance or touches
selected randomly. The randomly generated sequences of
touches were executed 10 times and then averaged. Thus the
corresponding curves are slightly smoother than those of the
ordered touches. The difference between the two strategies
is not consistent. For most objects the difference is small
and for some objects random touches are sometimes better,
in particular in the beginning. The reason is because ordered
pushes are computed from implicit surfaces obtained so far
and at an early stage the shapes are still mostly unknown. For
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Fig. 6: Evolution of object models against the number of touches for the spray bottles and the boxes. See Fig. 2 for details.

the box shaped objects, the first ordered push is usually at a
corner edge on the back side of the object, when a preferable
push would instead have been on one of the sides. Thus it
takes another push or two for the ordered touches to catch
up. From the graphs in Fig. 3, as well as from Fig. 2 and
6, it can be concluded that most changes occur during the
initial ten touches.

As an illustration of the similarity between different ob-
jects, similarity matrices were computed for both curvature
and Zernike based shape descriptors, which are given in
Fig. 5. From the structures of the two matrices it can be
concluded that while the curvatures capture classes relevant
for grasping, Zernike moment does not do so to the same
degree. In fact, the grouping is quite different for Zernike
moments and more related to the aspect ratios of the objects
than the curvatures.

This can be more easily illustrated with spectral clustering.
Using the method of Ng et al. [24], we computed 2D spectral
embeddings from the similarity matrices, embeddings that
are shown in Fig. 4 for different numbers of touches. Here
the object cyl-3 is grouped with box-1 and box-3 for Zernike
moments, due their similar height/width ratios. Whereas the
elongated cyl-2 and cyl-4 are similar, they are very different
from the shorter cylinder cyl-1. Even if box-1 is a bit distant
from box-3 using curvature measures, the three classes can
still be trivially found using e.g. k-means clustering. From

the embeddings, the benefits of ordered touches can also
be seen, compared to the random ones. Already after four
touches, the three classes are grouped, even if it is not until
12 touches the box-1 is closer to the other boxes than the
group of spray bottles. The reason for this is that this box
is thinner than the other boxes and since the GPs tend to
smoothen edges, it is more like a spray bottle after too few
touches. The thin plate prior tends to weaken this effect
compared to a typical exponential one.
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Fig. 7: Evolution of quotient between within- and between-
category distances with random (dashed) and ordered (solid)
touches using curvatures, as the number of touches increases.

3185



A final illustration of the benefits of ordered touches for
shape discrimination can be seen in Fig.7, where the quotient
between within- and between-category distances are shown
for an increasing number of touches. The quotient stabilizes
after only about ten ordered touches, but for random touches
at least 25 touches are required. Thus even if the benefits
of ordered touches are sometimes limited when studying
individual objects, they are considerable for categorization.

V. CONCLUSIONS

This paper has presented a method 2 for creation of object
models from visual and tactile measurements, with the goal
of later applying these for classification and manipulation.
From an initial set of visual measurements, an object model
is refined by touching the corresponding object on surface
points predicted to be most uncertain. Given a curvature
based representation of object shape, it was shown that about
ten touches are sufficient for objects to be grouped into
clusters relevant for manipulation. What remains to be tested
in future work, however, is to what extent this representation
captures manipulation affordances and can be directly used
for action selection, preferably without using an intermediate
step of supervised object classification.

A weakness of the current system arises from the fact that
GPs have a computational cost proportional to the number of
measurement points cubed. To cope with this we currently
sample from the total set of points to make the problem
computationally tractable. However, there are methods for
sparse GPs that choose an optimal subset of points instead
[25], [26], which will become a necessity in particular if
measurements from additional modalities are later included.

The presented work can be extended in several directions.
We intend to investigate more descriptors, other than surface
curvatures and Zernike moments, that can be useful for object
categorization. We will further integrate the presented ap-
proach with a pushing mechanism that can provide additional
information on object affordances, e.g. rolling or sliding,
potentially leading to more informed decisions about whether
more measurements are needed given a particular task. Grasp
planners e.g., often need information on object category [23],
[27] to plan goal-directed grasps, where objects from the
same category can be grasped in a similar way. Hence, we
also plan to test the obtained object models for grasping tasks
by using them for grasp planning.
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