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Abstract— The aim of this paper is to investigate the discrete-
time stability of robot motion control in the task space. The
control system has been modeled as a classical inner-loop/outer-
loop architecture, adopted in several industrial robotic systems.
The inner-loop is composed of a servo-level joint controller,
and higher level kinematic feedback is performed in the outer-
loop. Heterogeneous dynamics is considered in the inner-
loop, which can for instance describe redundant coordina-
tion/synchronization control systems with cooperative robots
with non-identical dynamical responses. There are surprisingly
few discrete-time stability results in the current state-of-the-art
for this popular control architecture. The qualitative effects of
the inner-loop dynamics on the overall stability of the system
is investigated, and improved outer-loop feedback gain margins
are derived.

I. INTRODUCTION

Historically, industrial manipulators have been adopted

in highly structured environment, in which preprogrammed

motion is sufficient to fulfill the assigned task and the

perception of the external world is minimal. However, in

modern, more flexible industrial scenarios the autonomy

required for robotics systems is increasing and higher-level

sensor based control techniques are needed in addition to

pure motion control. A typical control hierarchy adopted

in robotics and marine crafts is shown in Fig. 1, [1]. It is

composed by two loops. The inner loop consists of low-level

velocity controller of some configuration coordinates, i.e. the

joint servo loop in robotics. The outer loop calculates the

desired joint velocities using a kinematic controller usually

taking extrasensory information into account.

Feedback for motion control of robotic systems in the

control literature is usually considered in the continuous time

framework, with torque as the control input [2]. However,

most industrial robotic systems do not support direct torque

control, offering instead a higher level discrete-time con-

trol interface [3]. Despite potentially lower performance, a

hierarchical control design has advantages over centralized

torque controllers with respect to modularity, portability,

safety, and computational cost [4]. One of the most popular

kinematic control laws used for outer-loop motion control is

the resolved motion rate controller (RMRC) first proposed

in [5]. This controller is the 1th order pseudoinverse closed
loop inverse kinematics (CLIK) type controller proposed
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Fig. 1: Block diagram of a typical industrial robot motion

control system. Zero order hold sampling of position mea-

surements are available.

in [6] for closed loop motion control of robotic systems.

Some applications of the RMRC include: Visual servoing

[7], redundancy resolution (typically with respect to obstacle

avoidance or manipulability) [8], multi-robot coordination

[9], velocity-field control [10], or general operational-space

trajectory tracking problems [11].

The practice of using outer loop RMRC to achieve oper-

ational space motions is well established (see, for example,

[7]-[11]), the obtained stability properties, especially for

discrete-time systems, have surprisingly not been the focus

of much research.

Some notable results which have recently been presented

for the continuous-time case include [4], where Lyapunov

analysis is used to show uniform ultimate boundedness with

a computed-torque type controller in the inner loop. Global

exponential stability is reported in [12] using cascade theory,

again with a computed-torque controller. Most recently uni-

form ultimate boundedness is shown using a PI-controller in

the inner loop [13].

However, for discrete-time systems, hardly any results

exist considering inner-loop dynamics. The assumption of

no inner-loop dynamics reduces the system to the damped

Gauss-Newton method for numerical optimization [14]. The

latest result for this simplified system, [15] derives input

bounds which are sufficient for local exponential stability of

the equilibrium as well as a tight estimate of the region of

attraction. The lack of general results in the literature for this

popular motion control architecture is the main motivation

behind this paper. The introduction of non-ideal effects

resulting from heterogeneous inner-loop dynamics will give

results which much better represent the realities faced when

dealing with the control of industrial manipulators. The

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 4778



stability results presented hare are not only desirable for the

completeness of literature, but also for determining how the

inner-loop dynamics affects the overall stability of the closed

loop system, especially with respect to outer loop feedback

gains margins.

This paper represents a first step in understanding of the

stability properties obtained using the RMRC in the discrete-

time framework taking dynamics in the inner loop into

account. The contributions in this paper are as follows.

• A heterogeneous dynamical model is introduced to

accurately model systems consisting of cooperating

agents with different dynamical responses, or robot

manipulators where the response of the servo controllers

for the different joints are non-identical.

• Experimental data from a real industrial manipulator is

used to verify the proposed model.

• Stability results for the two-loop system are derived

which is applicable to both minimum phase and non-

minimum phase inner loop dynamics.

• Outer loop gain margins which ensure stability and

simplify gain tuning are presented.

This paper is organized in the following way. The robot

model is introduced in Section II. The stability problem

statement is presented in Section III. The error dynamics

are derived in Section IV followed by the Lyapunov-based

stability proof in Section IV. Conclusions and further work

is found in Section VII.

II. ROBOT MODEL

In this section the low-level joint dynamical model and the

notation used in this paper is introduced. It is stressed that the

robot dynamics introduced now is the discrete input-output

dynamics of the robot under servo control, i.e. the dashed box

in Fig. 1. The reference velocity in the configuration space is

the input, and the actual position is the output. We propose

a linear model for these dynamics, which is for instance the

case if feedback linearization or computed torque is used in

the inner loop [4].

Consider a robotic system with configuration variables

q ∈ R
n. The position at time k ∈ Z

+ is given by

qk where the sampling period is T , where the continuous

time is given by t = Tk. The low-level controller is

passed a reference velocity q̇ref
k at time k. The measured

joint increment Δqk = qk − qk−1 is assumed to con-

verge exponentially to the reference for a constant reference

velocity. Moreover, the low-level dynamics of each joint is

assumed linearly decoupled. Denoting the convergence rate

of Δqi as ai ∈ (−1, 1) results in the following robot model

Δqk+1 = AΔqk + (I−A)T q̇ref
k , (1)

where A = diag{ai}. A convergence rate of ai = 0
corresponds to a perfect velocity controller which converges

in one step, ai close to 1 corresponds to a slow ”overdamped”

joint dynamics, and ai close to −1 gives an oscillatory non-

minimum phase response. The model is considered hetero-

geneous as the different states does not have an identical
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Fig. 2: 2-step ahead joint prediction errors using data from

the KUKA-KR16 industrial manipulator with a sinusoidal

reference. The mean square error of the 0th order model is

about 5 times greater than the 1th order model.

dynamical response. The homogenious case is when ai =
aj , ∀i, j.

Experimental data from a KUKA-KR16 manipulator was

used to verify the model. The manipulator is composed of an

elbow with 3 ”large” servo motors, in series with a spherical

wrist with 3 smaller servo motors. From input-output data

of a KUKA-KR16 manipulator, a1−4 was identified around

0.6 with a sampling time of 75ms, and a5−6 had a faster

convergence rate, around 0.5. Experimental data from a

KUKA-KR16 as well as an identified 1th order input/output

model of the servo-loop is seen if Fig. 2. It is seen that the

prosed model more accurately describes the discrete joint

dynamics than an algebraic model.

III. PROBLEM STATEMENT

In this section the problem statement is presented, and we

recall the RMRC for regulation.

Let e ∈ E be the vector of task error variables of a robotic

system, with E being a domain of R
m , and let q ∈ Q be

the vector of the robotic system configuration, with Q being

a domain of Rn with m ≤ n, such that

e(q) : Q ⊆ R
n �→ E ⊆ R

m. (2)

For example, in a robotic manipulator, e(q) may be the

position error of the end effector, and q is the vector of

joint positions, whereas in a platoon of mobile robots, q
is the vector of coordinates representing the location of

each robot, and e(q) is the vector of suitable task errors,

depending on the mission. Note that for visual servoing

e(q) depends upon camera information, but is still purely

configuration dependent for a static scene. For distance-based

formation control problems, [16], the task Jacobian may not

be uniformly bounded. The results derived in this paper do

not concern these control problems.

The robot is said to be executing its task if e = 0. The

task Jacobian is defined as J(q) = ∂e
∂q ∈ R

m×n. For a task
redundant problem we have m < n using the definition

in [17]. The problem is to determine if the RMRC given by

Eq. (3) below can stabilize e = 0 for the industrial robot

dynamics (1). More precisely we may state:
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Determine if there exist a positive feedback gain γ, and

admissible initial conditions q0,Δq0, such that

q̇ref
k = −γJ†(qk)e(qk) (3)

in closed loop with (1) implies that

lim
k→∞

‖ek‖ = 0. (4)

A. Assumptions

In this section we state the assumptions that the stability

of e = 0 is subject to. These assumptions are the same

as considered in [15], and are necessary for a well-posed

problem in terms of existence of solutions to (1),(3).

1) ∃ δ ∈ R
+ : ‖J(q)‖ < δ ∀ q ∈ Q

2) ∃ β ∈ R
+ : σ(JJT ) ≥ β ∀ q ∈ Q

3) ∃ ζ ∈ R
+ : ‖∂2ei(q)

∂q2 ‖ ≤ ζ ∀ q ∈ Q, i ∈ [1,m]

Here, as the matrix norm, the spectral norm, i.e., the largest

singular value, is used, and σ(X) denotes the smallest

singular value of a matrix X. Assumptions 1) and 3) im-

pose smoothness constraints on the task description, as they

assume that the norms of both the Jacobian and the Hessian

of e are bounded on Q. These smoothness assumptions

hold for example for the direct kinematics of revolute-link

manipulators. Assumption 2) specifies that the Jacobian has

full rank, and is some distance away from a singularity.

B. Preliminaries

The error dynamics will be derived using Taylors theorem

with explicit 2nd order Lagrange remainders. We shortly

recall the Lagrange remainder result, which is similar to

our approach, used in [15] to determine the linearized error-

dynamics. From the Taylor expansion of e(q) we have

e(q + ε) = e(q) + J(q)ε+ r(q, ε, ζ) (5)

where the Lagrange remainder r is given by

ri(q, ε, ζ) =
1

2

⎡
⎢⎢⎢⎣
εT ∂2e1(q)

∂q2

∣∣∣
q+ζ1ε

ε

...

εT ∂2em(q)
∂q2

∣∣∣
q+ζmε

ε

⎤
⎥⎥⎥⎦ , (6)

for some ζ ∈ R
m where all the elements of ζ are between

0 and 1, i.e. ζi ∈ [ 0 , 1 ]. Note that Assumption 3) implies

that r in (5) is quadratically bounded by a norm of ε.

The discrete-time variant of Lyapunov’s 2nd method for

determining the stability of fixed points [18], is also needed

for the stability result.

IV. ERROR DYNAMICS CONSTRUCTION

In this section a linearization of the task-error dynamics

is constructed. The notation J(qk) = Jk is used for brevity

to denote time dependency. The following state error is

considered

zk =

[
ek
Δqk

]
. (7)

The joint increments Δq are kept in the state to allow us to

analyze the stability of the zero dynamics in addition to the

error dynamics. This is needed here as ek = 0 or Δek =
0 does not imply that Δqk+1 = 0 for redundant systems.

This fact may be seen from inserting ek = 0 in (1),(3).

The task velocity Δek is not included in the state since the

feedback law (3) introduces an unmatched task error term

which cannot be represented by a task velocity alone.

The proof presented in the next section is a linearization

type proof. The goal of this section is hence to derive the

dynamics for the state (7) such that the main stabilizing

effects of the system appears linearly in the error dynamics,

and disturbances/unwanted-effects appears nonlinearly. We

will in our analysis group these nonlinear terms denoting

them collectively as r for brevity.

The Taylor series of vector-valued functions is the main

tool used in the linearization procedure, and the Taylor

expansion of the task function may be written as

ek+1 = e(qk +Δqk+1) = ek + JkΔqk+1 + rk. (8)

In view of Assumption 3) and standard norm properties, the

reminder rk is bounded as

‖r‖ ≤ ν
(
‖AΔqk‖+ γT‖A− I‖‖J†

k‖‖ek‖
)2

.

Using assumptions 1) and 2), [15], the Jacobian pseudo-

inverse can be bounded as

‖J†(qk)‖ ≤ δ

β
= η ∀q ∈ Q, (9)

hence

‖r‖ ≤ ν21‖Δqk‖2+ν22‖ek‖2+2ν1ν2‖Δqk‖‖ek‖ ≤ ν̄‖zk‖2,
where the positive constants ν0−2 and ν̄ are suitably defined.

Inserting the dynamics of Δqk, (1), and the controller (3) for

the 1th order term in the Taylor series gives

JkΔqk+1 = Jk(AΔqk + γT (A− I)J†
kek). (10)

The state space form of the linearized error dynamics is

readily given by (1),(8)

zk+1 =

[
I+ γTJk(A− I)J†

k JkA

γT (A− I)J†
k A

]
︸ ︷︷ ︸

Ak

zk + rk (11)

where rk is quadratic in zk.

V. STABILITY ANALYSIS

In this section the stability properties of the error dynamics

derived in the previous section is determined. We will use

Lyapunov’s 2nd method for discrete-time systems [18], with

a quadratic Lyapunov function candidate1. The reason behind

using Lyapunov’s 2nd method, as opposed to more spe-

cialized theorems regarding systems with parameter-varying

transition matrices, e.g. [19], is that we have a better under-

standing of the time-variation in the transition matrix, which

depends upon qk, than what is typical for a more general

1An application originally considered by Hurt in [18] was the stability of
the Newton-Raphson method, which is a special case of our system assum-
ing no dynamics in the inner loop and a non-redundant task description.
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formulation. This information, which is different from a

purely time-varying system, is what allows us to quantify

the magnitude of the changes to the transition matrix with

respect to the state, and is paramount to completing the proof.

Determining the properties of the configuration dependent

transition matrix A(qk) is the main hurdle in analyzing the

stability properties of (11). It is not possible to calculate the

eigenvalues of A(qk) directly since Jk is a time varying arbi-

trary matrix, barring the restrictions imposed by Assumptions

1)-3). However, it is possible to estimate the magnitude of the

eigenvalues without resorting to direct calculation. The main

result in the stability analysis is summarized in the following

proposition where amin denotes the smallest diagonal element

of A:

Proposition 1: If the input gain γ is chosen such that

γ <
(1 + amin)

(1− amin)

2

T
, (12)

and Assumptions 1)-3) hold, then the eigenvalues of A(qk)
are located within the unit circle for all qk. Proof: See

Appendix 1.

Proposition 2: Let Pk = P(qk) be the unique solution to
the discrete time Lyapunov equation at the time k

AT
kPkAk −Pk = −I. (13)

If Assumptions 1)-3) hold, and Ak given by (11) is a Schur
matrix for all k, then the following bound holds for some
positive constants ν1, ν2

‖ΔPk+1‖ = ‖Pk+1 −Pk‖ ≤ ν1‖zk‖+ ν2‖zk‖2, (14)

for either the matrix 2-norm or Frobenius norm. Proof: See

Appendix 2.

A. Lyapunov analysis

In this section the 2nd method due to Lyapunov is used

to show local asymptotic stability of z = 0 for the system

(11). For an exposition of Lyapunov theory for discrete time

systems see [18]. We will from now on treat the configuration

dependency as a time varying exogenous signal. Consider the

time varying quadratic Lyapunov function candidate

V (k, zk) = zT
kPkzk (15)

where Pk is the solution to the discrete time Lyapunov

equation

AT
kPkAk −Pk = −I. (16)

Under the assumption of Proposition 1, the eigenvalues of

Ak are located wholly within the unit circle, which ensures

that Pk exists and is well-defined [20]. Uniform lower and

upper bounds for the Lyapunov function are given as

λm{P}‖zk‖2 ≤ V (k, zk) ≤ λM{P}‖zk‖2 (17)

Where λm{P}, λM{P} denotes the lower and upper bounds

for the eigenvalue of P(qk) uniformly in qk. For a derivation

of the smallest and largest eigenvalues of Pk explicitly, see

[20].

The Lyapunov difference ΔVk+1 = Vk+1 − Vk is calcu-

lated as

ΔVk+1 = (Akzk+rk)
TPk+1(Akzk+rk)−zT

kPkzk. (18)

Expanding (18) and collecting the superquadratic terms in r
gives

ΔVk+1 ≤ zT
k

[AT
k (Pk +ΔPk+1)Ak −Pk

]
zk + rk. (19)

Imposing the bound from Proposition 2, and lumping the

superquadratic terms in r

ΔVk+1 ≤ zT
k

[AT
kPkAk −Pk

]
︸ ︷︷ ︸

−I

zk + rk. (20)

which we see is locally negative definite using the definition

of Pk (16)

ΔVk+1 ≤ −‖zk‖2 + rk (21)

because rk depends upon cubic powers of ‖zk‖ and higher.

Together with the upper and lower boundedness of the

Lyapunov function in terms of the state, we can using Lya-

punov’s 2nd method [18] summarize our result as follows.

Theorem 1: If the feedback gain γ is chosen small enough
to fulfill Proposition 1, and Assumptions 1)-3) hold, then
there exists a small enough initial conditions ‖Δq0‖, ‖e0‖
such that zk = 0 is an asymptotically stable equilibrium
point of the system (1),(3), i.e.

lim
k→∞

‖ek‖ = 0, lim
k→∞

‖Δqk‖ = 0.

VI. QUALITATIVE CONSIDERATIONS

Note that if ai = 0, i.e. the homogeneous perfect control

assumption which is common in the literature, then the upper

gain margin is γ < 2
T , which is identical to the one derived

by [15]. The previous result may hence be seen as a special

case of the more general result derived here. We also observe

that a slower velocity controller implies that a higher gain

is possible. An oscillatory controller with amin = −1+ ε for

ε � 1 is the worst case, in which we have an upper bound

on the order of ε
T . This means that if a platoon of robots is

controlled centrally using the RMRC, then the gain margin

is limited by the robot with the worst inner-loop response.

It is also observed that for all inner-loop dynamics, a higher

sampling frequency imply that higher input gains are possible

while maintaining stability.

VII. CONCLUSION AND FURTHER WORK

It was shown in this paper that the RMRC (3) used for

outer-loop kinematic control with a 1th order linearly stable

inner loop (1), results in an asymptotically stable task error

and zero-dynamics. The result is applicable to both mini-

mum and non-minimum phase heterogeneous discrete-time

dynamics in the inner loop. A tight upper bound for the outer-

loop feedback gain was derived. Furthermore, it was seen that

slower low-level joint control implies that a higher outer-loop

feedback gain is possible while maintaining stability.

The results extend the knowledge of the stability proper-

ties of applications such as, redundancy control, centralized
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coordinated robotic systems with non-identical agents, visual

servoing, and motion control of industrial manipulators with

different servo motor responses. A more realistic feedback

bound for these systems is derived, which simplifies gain

tuning. For a multi agent system for instance, it was seen

that the ”worst” behaved agent limits the upper bound on

the centralized feedback gain.

The future efforts to generalize the results will mainly

consist adding input/output delays for a more general inner

loop.
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APPENDIX

PROOF OF PROPOSITION 1

To show that Proposition 1 is true, note that the matrix

A(qk) has the following factorization

A(qk) = SkBST
k (SkS

T
k )

−1 (22)

Sk =

[
Jk 0m×n

0n×n In×n

]
(23)

B =

[
I+ γT (A− I) A
γT (A− I) A

]
(24)

Here Sk ∈ R
n+m×2n, and B ∈ R

2n×2n. This factorization

is possible since JkJ
†
k = I as Jk has full rank by using

Assumption 2). Now consider an eigenvalue/eigenvector pair

v ∈ C
n+m,λ ∈ C, where v �= 0

SkBST
k (SkS

T
k )

−1v = λv. (25)

The configuration dependency is first moved to the first

m equations of (25) using the change of variables u =
(SkS

T
k )

−1v such that

SkBST
k u︸︷︷︸
z

−λSk S
T
k u︸︷︷︸
z

= 0 ⇒ Sk(Bz − λz) = 0. (26)

It is seen that we can now define z = ST
k u even though this

transformation is not invertible.Furthermore, note that z is in

the range of ST
k such that S†

kSkz = z. The last n equations

of (26) which are now configuration free are given by

γT (A− I)z1 +Az2 = λz2 (27)

where zT = [zT
1 , z

T
2 ]

T . Since the elements of Ai,i ∈ (−1, 1)
then (A− I) is invertible, and we note that both zT

1 , z
T
2 are

nonzero and that (27) has a unique solution for z2 in terms

of z1 and λ. Inserting this solution into the top m equations

of (26) gives

Jk[I+ γT (A− I)− TγA(A− λI)−1(A− I))− λI]z1 = 0

This equation is rendered configuration free by a pre-

multiplication of zH
1 J†

k using the fact that z1 is in the range

of JT
k , resulting in the scalar equation

zH
1 [I+γT (A− I)−TγA(A−λI)−1(A− I))−λI]z1 = 0.

Here zH
1 = (zT

1 )
∗ denotes the hermitian transposed where

(x+ jy)∗ = (x− jy) is the complex conjugate and j is the

purely imaginary number. One further change of variables

given by ζ = (A−λI)z1 is introduced to remove the inverse

matrix (A−λI)−1. The complex vector ζ is normalized such

that ζHζ = 1. This transformation is not well-defined for

λ = ai. In this case the proof is done however as |λ| = |ai| <
1. For the cases where λ �= ai we apply the transformation

yielding

ζH(A− λ∗I)(λ2I+ (Tγ(I−A)−A− I)λ+A)ζ = 0.

At this point we are ready to impose some restrictions on

the magnitude of the eigenvalue λ. The real and complex

cases for λ = x + jy will be handled seperately. The real

and imaginary part of ζH [...]ζ is calculated as

ζH [Dx+(Tγ(A−I)+I−xI)|λ|2−2Ax+A2]ζ = 0 (28)

yζH(D− |λ|2I)ζ = 0 (29)

where

D = A[−A(Tγ + 1) + 2xI+ TγI] (30)

1) The complex case: Let y �= 0. From (29) it is seen that

ζH(D−|λ|2I)ζ = 0. We may solve (29) easily for x as it is

now a linear equation in x, and insert the solution into (28)

giving

−TγζH(A− I|λ|2)(A− I)ζ = 0, (31)

which we can solve as

|λ|2 = ζH
2 Aζ2 = ã < 1, ‖ζ2‖ = 1 (32)

where ζ2 = (I − A)
1
2 ζ. Since ‖ζ2‖ = 1 and A is a

real diagonal matrix, then ã is a real number in the range

[amin, amax]. In summary, if an eigenvalue of Ak is imaginary,

then the eigenvalue is located within the unit circle for all

feedback gains γ. Moreover, if ai are all negative, then all

the eigenvalues are real.

2) The real case: Let y = 0. In this case (28) is a 3d order

polynomial in x with only real solutions. We will show that

under the conditions of Proposition 1, λ cannot be equal

to 1 or −1. Since the eigenvalues varies continuously with

the elements of Ak, then λ �= ±1 implies that number of

real eigenvalues outside the unit circle is constant for all qk.

Inserting x = 1, y = 0 into (28) gives

−TγζH(A− I)2ζ = 0, (33)

which can not be equal to zero since (A− I)2 is a diagonal

matrix with strictly positive elements. Inserting x = −1, y =
0 into (28) gives

ζH(A+ I) (2(A+ I) + Tγ(A− I))︸ ︷︷ ︸
G

ζ = 0 (34)

For equation (34) to hold, then all the elements of G cannot

have the same sign since (A + I) is positive definite. The
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elements of G are all positive if

γ <
(1 + amin)

(1− amin)

2

T
(35)

which is seen by solving Gi > 0 for γ. To verify that

the constant number of real roots outside the unit circle

is zero, we may for instance take J = I and apply Jury’s

test resulting in (35), or test a single case numerically. This

completes the proof of Proposition 1.

APPENDIX

PROOF OF PROPOSITION 2

The derived bound (14) relies on a result from [20], which

quantifies how the solution to the discrete time Lyapunov

equation varies with perturbations to the transition matrix.

The following bound which holds for the 2-norm and Frobe-

nius matrix norm, is derived in [20] for ΔPk+1

‖ΔPk+1‖ ≤ ‖Pk+1‖‖Pk‖‖ΔAk+1‖(2‖Ak‖+ ‖ΔAk+1‖).
(36)

Furthermore there exist a positive constants ρk such that

‖Pk‖ ≤ ρk (37)

We define the upper bound uniformly in q as

‖Pk‖ ≤ α = sup
q∈Q

ρ(q) (38)

It is possible to bound the change of the linearized tran-

sition matrix ΔAk+1 by the state zk. This is due to the

boundedness of the partial derivatives of the task Jacobian

by Assumption 3), we can construct the following Taylor

expansion for J

J(qk +Δqk+1) = Jk +H(Δqk+1, ζ)

For some constants ζi in the range (0, 1) which are possibly

different from those from (6). The elements of H may be

calculated using the Hessian of the task function e as in (6).

It is seen that the task Jacobian difference is bounded as

ΔJk+1 = Jk+1 − Jk = H(Δqk+1, ζ) such that

‖ΔJk+1‖ = ‖H(Δqk+1, ζ)‖ ≤ α2‖Δqk+1‖ ≤ α
′
2‖zk‖

(39)

for some positive constants α2, α
′
2. The task Jacobian pseu-

doinverse is bounded similarly using Taylor’s theorem and

noting that the partial derivatives of J†
k with respect to q are

given by

∂

∂qi
J† = (∂J)T (JJT )−1 − J†[(∂J)JT + J(∂J)T ](JJT )−1,

with

∂J =
∂

∂qi
Jk, ‖∂J‖ ≤ ν

′‖Δqk+1‖. (40)

The obtained bound ‖∂J†
k‖ ≤ η‖zk‖ is due to Assumption

1) which bounds the Jacobian, (JJT )−1 is bounded using

Assumption 2) and Assumption 3) is used to obtain (40). As

the partial derivatives of the elements of the task Jacobian

and its pseudoinverse are bounded, we have that the partial

derivatives of the elements of the transition matrix Ak,

which are linear combinations of these, also are bounded.

Expressing the bounds for the task Jacobian difference (39),

and for ΔJ†
k in terms of Ak gives

‖ΔAk+1‖ ≤ ν‖zk‖, ν > 0. (41)

The proof is completed by inserting (38),(39),(41) into (36)

giving

‖ΔPk+1‖ ≤ ν1‖zk‖+ ν2‖zk‖2. (42)
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