
  

  

Abstract—This paper provides stability analyses for two 

different types of desired gravity compensation controllers, 

employing both motor and link feedback, and describes a 

means by which these controllers can be used to control a 

compliant humanoid robot in order to ensure the successful 

execution of walking trajectories. Given the challenging task of 

controlling compliant bipedal systems, owing to their 

possession of under-actuated degrees of freedom, the full 

actuator and link dynamics are accounted for. The proposed 

walking strategy involves a process of switching between three 

distinct controllers which is contingent upon the force feedback 

provided by the force/torque sensors embedded in the robot’s 

feet. These controllers were tuned using a simulation model of 

the robot and were then implemented on the compliant 

COMAN legs, whose performance of walking confirms the 

controllers’ stability, in addition to the walking scheme’s 

efficacy. 

I. INTRODUCTION 

UMANOID robot walking has long been considered an 

exciting research challenge due mainly to the intricacy 

associated with bipedal dynamics and hence with the 

pertinent control algorithms. One of the most famous 

walking bipeds is perhaps the ASIMO, that was capable of 

performing walking trajectories [1] using a posture control 

algorithm, which was a combination of various schemes, 

such as ground reaction force control, online modification of 

the ZMP and foot landing position control. In addition, an 

intuitive control strategy was propounded in [2], wherein the 

authors suggested five criteria to be satisfied in order to 

guarantee a biped’s successful execution of a trajectory. A 

sensory reflex control method was presented in [3], whereby 

the robot was stabilized during a desired trajectory by 

performing online modification of its posture, its foot 

positioning, as well as of the trajectory itself. More recently, 

bipedal walking was achieved through the utilization of a 

linear inverted pendulum model upon which a force 

controller was designed [4].  

Additionally, when dealing with compliant humanoids, the 

devise of more involved control techniques is inevitable 
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owing to the increase in the complexity of the dynamics. 

Even though simpler motor PID schemes may provide 

tracking on stiff humanoids, this might not necessarily be the 

case for compliant humanoids. On the one hand, using single 

pendulum models to develop tracking controllers [4] leads to 

a reduction in the tuning complexity, although it may not 

provide a viable solution for compliant bipeds as there is no 

accounting for the entirety of the states [5]. Contrarily, using 

full-body dynamics can be computationally demanding and 

difficult to implement [5], especially when dealing with 

compliant systems. Therefore, the method described in this 

paper may be viewed as a compromise between the 

previously described techniques, since it offers a higher 

degree of modeling accuracy as compared to the inverted 

pendulum approach, while at the same time reduces the 

complexity associated with full-body dynamics.  

However, despite the afore-stated disadvantage of this class 

of bipedal systems, their inherent compliance tends to 

enhance their stabilization capability and thus there is 

currently a trend of shifting towards flexible machines. [6]  

describes the use of a dynamic, real-time trajectory that 

allowed the COmpliant huMANoid (COMAN) [7] to 

perform walking. Moreover, [8] reports on a technique of 

merging the inverted pendulum model with a compliant 

Cartesian model used to predict the center-of-mass (COM) 

position and then employing Internal Model Control (IMC) 

to achieve the required tracking performance. The method 

was validated experimentally on the COMAN. [9] outlines 

the development of a compliant humanoid walking strategy 

using a combination of a posture-based state machine and a 

tendon-driven compliant actuator torque control scheme to 

guarantee trajectory tracking.  

Gravity compensation control has been the topic of several 

works. [10] proposed a PD plus gravity compensation 

controller that has been mathematically proven to 

asymptotically stabilize robots composed of elastic joints. In 

[11], there is a description of the derivation of strict 

Lyapunov functions based on the energy shaping principle, 

which are then used to demonstrate global asymptotic 

stability. The approach involving the employment of full-

state feedback controllers on flexible joint robots has been 

treated in [12]. On the other hand, [13] presented a PD plus 

on-line gravity compensation controller for a flexible joint 

that has been validated through both analytical and 

experimental results. This paper expands on the afore-

mentioned works by means of providing stability proofs for 

equal-actuated and over-actuated gravity compensation 
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controllers employing both motor and link feedback. Full-

body gravity compensation control of humanoids was 

initially presented in [14] and proved to be an apt choice as 

far as the execution of dynamical tasks was concerned. [15] 

on the other hand proposes the use of virtual gravity 

compensation torque control for the development of a 

balance controller capable of attaining natural bipedal 

walking.  [16] describes a method by which the ground 

reaction forces could be translated into joint torques, while 

mathematically proving this specific controller’s passivity. 

Additionally, the topic of semi-passive walking through the 

control of a compliant ankle joint has been reported in [17], 

while [18] describes the exploitation of the robot’s passive 

compliance for the construction of semi-passive motion 

primitives.  

The method proposed in this paper involves the use of PDD 

control (motor position, motor velocity and link velocity) on 

6 degree-of-freedom (DOF) single support and 3-DOF 

double support models of the robot, in combination with 

gravity compensation control. The dynamical models 

include the full actuator dynamics, i.e. the motor and link 

dynamics appearing before and after the elastic element. 

Furthermore, the joint controllers are based purely on 

position control, while a state machine is used to switch 

between the three distinct models as well as between the 

three different gravity vectors, in accordance with the 

force/torque sensor feedback.  

The rest of the paper is structured as follows; section II 

introduces the dynamical models, section III describes the 

PDD plus gravity compensation control schemes and their 

associated theoretical stability proofs, as well as the 

switching mechanism. Additionally, the simulation, 

controller tuning and experimental results are seen in section 

IV, while section V addresses the conclusions and future 

work. 

II. DYNAMICAL MODEL 

A. Compliant Robot Dynamics 

This section describes the dynamics of both the single and 

double support phases of a humanoid robot with compliant 

drives. For the single support case, we consider a generic �-

degree of freedom robot with � drives, one for each degree 

of freedom. The robot and motor dynamics are described by 

the following two equations: 

 									������� + 
�� + ���, �� ��� + �� − �� = �����										�1� 

 																											��� + ��� − �� + �� = �����																						�2� 

 

where � and � denote the link and motor positions, while �����, 
 and ���, �� � ∈ ��×� are the inertia, damping and 

Coriolis/centripetal matrices respectively, ����� is the 

gravity torque vector, ��� ∈ ��×� is the voltage-to-torque 

gain matrix and �� represents the motor voltages. � ∈ ��×� 

is a diagonal matrix with positive entries representing the 

passive spring stiffness between the motors and the robot 

links, while �, � ∈ ��×� are the motor inertia and damping.  

For the double support case, we consider a generic  -degree 

of freedom robot with �!-drives for each degree of freedom 	" = 1,2…  . The total number of drives is � = ∑ �!%!&' . The 

dynamics may be described as follows [19]: 

 ��(����� + 
(�� + �(��, �� ��� + )�� ��)�� − �� = ��(���	�3� 

 																										��� + ��� − �)�� + �� = ����� 																		�4� 

 

where ��(���, 
(, �(��, �� � ∈ �%×% are this phase’s 

counterparts of �����, 
 and ���, �� � while )�� ∈ �%×� is a 

matrix composed of ones and zeros, with its columns 

associated to the system’s motors and its rows to the 

system’s joints. Arranging the motor equation so that the 

first �' drives are connected to link 1, the next �, are 

connected to link 2 and so on, then )��   is given as:  

 

															)�� =
-.
..
..
/1	1 ⋯112324�5

0 ⋯ 0
0 1	1⋯112324�7

⋯ 0
⋮ ⋮ ⋱ ⋮0 0 ⋯ 1	1⋯112324�: ;<

<<
<<
=
														�5� 

B. Single and Double Support Models 

In order to maintain an adequate degree of accuracy when 

mathematically describing the robot, it was essential to 

include all the sagittal joints in the system’s model. This 

could be seen as an improvement when compared to 

employing an inverted pendulum model, while it also 

dispenses with the need for full-body dynamics. 6-DOF 

models (Fig. 1) were used to represent the single support 

phases, while a 3-DOF model (Fig. 1) was employed for the 

modeling of the double support phase. Fig. 1 also depicts the 

left and right ground reaction forces (GRF) ?@_B and ?@_C. 

The gravity vectors differed significantly between the single 

and double support phases and hence had to be computed 

independently. The entries of the 6-DOF single support 

vectors were arranged as follows: 

 �� = [�EF �EG �EH �EIH �EIG �EIF]K 

 

with �EF , �EG , �EH, �EIH , �EIG , �EIF  being the support ankle, 

knee and hip, and swing hip, knee and ankle torques 

respectively. On the other hand, the elements of the 3-DOF 

double support vector were ordered as follows:  

  ��( = [�F �G �H]K 

 

with �F , �G, �H representing the ankle, knee and hip torques 

respectively. An important property of the gravity vector is 

the following: 

 

																																		LM�����M� L = LM,N����M�, L ≤ P															�6� 
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for some P > 0 ; here N���� denotes the potential energy 

due to gravity, and ����� = −SMN����/M�U�
. A similar 

expression holds for the double support model gravity vector ��(���. 

Three dynamical models were used in total to model the 

various phases of the walking trajectory. 

Table I summarizes the above models with LSS, RSS and 

DS standing for ‘left single support’, ‘right single support’, 

and ‘double support’ respectively. This approach resulted in 

the attainment of a set of mathematical models that provided 

a closer approximation to the non-linear nature of the robot’s 

dynamics when switching between the various phases of a 

walking trajectory, as opposed to using a single model 

during the whole trajectory.  
 

TABLE I 

DYNAMICAL MODELS 

Model DOF’s 

DS  3 

LSS  6 

RSS  6 

 
Figure 1. Left single support (left), double support (center) and right single 

support (right) models.  

III. CONTROL STRATEGY 

A. PDD Control plus Gravity Compensation 

1. Single Support Controller 

The control law for system �1� − �2� is given by: 

 																�� = V�'��W − �� − V�,�� − V%,�� + X�Y 											�7� 

 

where X�Y is the gravity compensation term and �W is the 

desired position, while V�', V�, and V%, are the diagonal, 

positive definite motor position, motor velocity and link 

velocity feedback gain matrices.  

For the single support X�Y is given by:	
 																		X�Y = −���[' ∙ ����V�'�[' + ]� ∙ �����													�8� 

 

The matrix: 

 																																		K_ = ` � −�−� ���V�' + �a																						�9� 

 

is defined separately for use in the subsequent section. 

Moreover, �Wis defined as: 

																																					�W = �W − �['����W�																								�10� 

 

since we used a desired gravity compensation scheme. 

 

2. Double Support Controller 

The control law in this case may be represented as follows: 

 													�� = V�'�)��W − �� − V�,�� − V%,�� + X�Y 							�11� 

 

For the double support X�Y is given by:	
 												X�Y = −���['����V�'�[' + ]��)�� �c��(���										�12� 

 

where �)�� �c denotes the Moore-Penrose pseudoinverse of )�� . Then Kd is defined as:  

 																										Kd = `)�� �)� −)�� �−�)� ���V�' + �a																				�13� 

 

Additionally, for the double support: 

 																								�W = )��W − �['�)�� �c��(��W�																		�14� 

 

We also define the matrices: 

 

																						e = 
 ∙ �� + ���V�,� − S���V%,U,
4 													�15� 

 

																		e( = 
( ∙ �� + ���V�,� − S���V%,U,
4 													�16� 

 

B. Proof of Closed-Loop Stability 

1. Single Support Controller  

Theorem 1: If f�!��K_� > P and f�!��e� > 0	when � = �W 

in �12�, then there is a unique equilibrium solution [�W� �W� 0 0]�, that is globally asymptotically stable. 

 

Proof 1: Setting � = �W in �8� gives rise to a desired link 

position gravity compensation controller. Using �1�, �2�,	�7�,	�8�,	�10� and setting zero velocities and 

accelerations, gives the following expression (after some 

algebraic manipulations): 

 																											K_ g� − �W� − �Wh = `����� − ����W�0 a															�17� 

 

Letting i = [�� ��]� , j�i� = iW + K_['��i� 

 

where ��i� = `����� − ����W�0 a, the contraction mapping  

theorem [20] yields: 

 ‖j�i� − j�l�‖ ≤ fmni oK)−1p P‖i − l‖ 

 ∴ 																							 ‖j�i� − j�l�‖ ≤ Pfm"��K)� ‖i − l‖ 
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rstuv��w� < 1 is a sufficient condition to ensure that �17� has 

a unique solution. Hence, this gives: 

 																																											f�!��K_� > P																																	�18� 

 

A crucial step in the construction of a suitable Lyapunov 

function is the selection of an appropriate auxiliary function. 

We therefore propound the following, that can be seen to 

differ from similar functions presented in [10], [13]: 

 y��, �� = 12 �z�K_�z + N���� − N���W� + �z� `����W�0 a �19� 

 

, where �{ = g��h, �{W = g�W�Wh, �z = S�{ − �{WU. 

It can be demonstrated that �19� has a unique minimum at 

the equilibrium point (�W , �W), through the following 

equation:  

 														∇y��, �� = K_�z + `����W� − �����0 a = 0									�20� 

 

From (18) we can conclude that the Hessian is positive 

definite and hence (19) has a unique minimum at (�W , �W): 

 

																		∇,y��W , �W� = K_ − }M�����M� 00 0~ > 0												�21� 

 

The following Lyapunov function formulation is therefore 

permitted:  

 																	���, �� = 12 ��{�������{ + y��, �� ≥ 0													�22� 

 

where � = `�� 00 �a. 
Obtaining the time derivative of the above function yields: 

 �� ��, �� = ��{�������{ + ', ��{��� �����{ − ��{� `����� − ����W�0 a          													+��{�K_�z  

 

�� ��, �� = ��{�
�
��
� g−� 00 0h ��{ + 12�� �����{

+ `����W� − �����0 a − K_�z
− ` 
 0���V%, � + ���V�,a ��{�

��
� + ��{�K_�z 

 +��{� `����� − ����W�0 a 
 									�� ��, �� = −��{� ` 
 0���V%, � + ���V�,a ��{ ≤ 0							�23� 

 

Since the matrix in �23� is not symmetric, proving its 

positive definiteness requires the performance of certain 

manipulations, commencing with a more succinct 

representation for brevity: 

 																																																	g� 0� �h 	> 0																														�24� 

 

An equivalent condition to (24) is 

 

																																					-.
./� + ��2 ��2�2 � + ��2 ;<

<= > 0																						�25� 

 

Computing the Schur complement of �25� [21] and taking 

into account that �, �  and � are diagonal matrices, we have: 

 

																																										� ∙ � − �,4 > 0																																�26� 

 

Finally, setting � = 
, � = � + ���V�,, � = ���V%, and 

since all these matrices are diagonal we arrive at equation �15� and the condition f�!��e� > 0	. 
It may now be observed that �� = 0 if and only if ��{ = 0. By 

then substituting ��{ = ��{ = 0 into the closed-loop equations �1�,	�2� and �7�, we obtain: 

 																																							��� − �� = �����																													�27� 

 																					��� − �� = ���SV�'��W − �� + X�YU											�28� 

 

By carrying out algebraic manipulations, it may be seen that �27� and �28� are equivalent to �17�, that was previously 

shown to possess the unique equilibrium solution [�W� �W� 0 0]�. Thus, it can be concluded that this is also 

the largest invariant subset among the set of states yielding ��{ = 0, in which case invocation of La Salle’s theorem 

leads to the conclusion that the desired equilibrium point is 

globally asymptotically stable. 

 

2. Double Support Controller  

Theorem 2: If f�!��Kd� > P and f�!��	e(� > 0	when � = �W in �12�, then there is a unique equilibrium solution [�W� �W� 0 0]�, that is globally asymptotically stable. 

 

Proof 2: Setting � = �W in �12�, using �3�, �4�,	�11�,	�12�,	�14� and setting zero velocities and 

accelerations, gives the following expression (after some 

algebraic manipulations): 

 																						Kd g� − �W� − �Wh = `��(��� − ��(��W�0 a																�29� 

 

which possesses a unique solution if f�!��Kd� > P. 

The auxiliary function for this case would be the same as �19�, with the only difference being the replacement of K_ 

with Kd. The performance of calculations identical to those 

presented earlier, allows us to arrive at �23�. Hence, the 

resulting Lyapunov function is similar to the one derived for 
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the single support controller, although the matrices are of 

different dimensions. Setting ��{ = ��{ = 0  in �3�,	�4� and �11�, we acquire the following equations: 

 																											)�� ��)�� − )�� ��� = �����																					�30� 

 									��� − ��)�� = ���SV�')���W − �� + X�YU								�31� 

 

Following a similar approach to that used in Proof 1 and 

invoking LaSalle’s theorem, allows us to conclude that the 

desired equilibrium point is globally asymptotically stable. 

C. Phase Switching  

The procedure entailing the switching between the various 

phases of the trajectory and thus between the various sets of 

gains, was based upon a finite state machine (FSM) that 

catered for both the single and double support phases, as 

demonstrated by Fig. 2.    

            

 
 

Figure 2. Walking controller finite state machine. 

 

A preview control approach [4] was employed for the 

generation of the trajectory, which was computed in an 

offline manner. Contrarily, the joint control and gravity 

compensation strategies were formulated online in relation 

to the position/velocity and force/torque feedback 

respectively, as is portrayed in Fig. 3.  

The gravity compensation value was altered not only when a 

phase switch was detected but also as new reference 

positions were fed to the controller by the trajectory 

generator. Therefore, equations �8� and �12� allowed for the 

modification of the gravity compensation voltages in 

accordance with the robot’s configuration. The gravity 

vector varied during all state transitions, as did the PDD 

gains. The switching of the gains was contingent upon the 

force feedback values provided by the force/torque sensors 

at the robot’s feet. There was a need for the definition of 

certain conditions, that when satisfied, would trigger the 

gain switching action at each phase.  

 

Σ
Fq

F

F ,τ

dq

gτ

 
 

Figure 3. Walking strategy control loop block diagram. 

These conditions were based upon our knowledge of the 

robot’s mass and ground reaction forces, that allowed us to 

derive a condition for switching from double to single 

support when a certain force limit was exceeded on either 

one of the feet. On the other hand, the transition from single 

to double support gains occurred when neither of the normal 

forces exceeded the predefined limits.    

IV. CONTROLLER TUNING AND EXPERIMENTS 

A. Simulation and Controller Design 

The simulation procedure involved the use of a series of 

dynamical models (Table I) of the robot with each one 

containing a complete representation of the actuator 

dynamics. Hence, three different controllers were designed 

for the DS, RSS and LSS  models. Notice that the LSS 

model is in essence a mirror-image of the RSS model and 

thus the mere rearrangement of the latter’s gain matrices was 

sufficient for the construction of the former’s gain matrices.  

It was crucial that the controller would be capable of 

displaying a satisfactory degree of tracking in the simulation, 

as this could indicate its potential tracking of walking 

trajectories when implemented on the robot. Fig. 4 depicts 

the support and swing legs’ simulated tracking of the 

walking trajectory.                                                            
 

 
Figure 4. Walking trajectory tracking in simulation. 

 

B. Experimental Validation 

In terms of specifications, the COMAN’s lower body is 

comprised of 15 DOFs, with a height and weight of 79 cm 

and 17.65 kg respectively. Each sagittal compliant joint 

incorporates three position sensors (2 absolute and 1 

relative) and a torque sensor, in addition to 6-axis 

force/torque sensors at the ankles.  

The described controllers were implemented on the 

humanoid, while the control scheme of Fig. 3 was used to 

ensure tracking of the desired walking trajectory.  The step 

length during walking was 12 cm and the trajectory was 

generated at a frequency of approximately 0.8 Hz. Explicit 

details regarding the trajectory generation framework may 

be found in [22][23].  

In order to assess the robot’s overall stability, an inspection 

of the joint tracking and Cartesian CoM position during the 

trajectory was required, as portrayed by Figs. 5 and 6. It is 

evident from these plots that the ankle demonstrates the 

poorest tracking capability of all the joints and this could be 

owed to the fact that it has been assigned the cumbersome 

task of supporting the mass of the whole robot. Furthermore, 

the left and right foot and center of mass positions depicted 

in Fig. 6 were computed using the link position data rather 

than the motor position data, thus accounting for the robot’s 
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oscillatory behavior during motion due to the passive joint

elasticity. Given the link COMs, the u

kinematics (FK) enabled the calculation 

COM trajectory [23]. 

A challenging aspect of the control strategy was related to 

the tuning of the switching conditions which demanded a 

relatively high degree of precision. These 

predominantly concerned with the contact force magnitudes 

on both feet as mentioned earlier. An imprecise switching 

command would mean that the model used at a given instant 

would not provide an accurate description of the system’s 

current state. This in turn would imply the use of an 

incorrect set of gains providing an input that would either 

over-compensate or under-compensate for the system’s 

dynamics. Therefore, the selection of the parameter values 

was based upon our knowledge of the GRF

of the models being used. Fig. 7 portrays the GRFs 

measured on the right foot during walking, with the light 

purple, red and yellow areas representing the double support

right single support and left single support respectively. 

Additionally, Fig. 8 displays the various joint control signal 

values produced during walking.   
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Figure 5. Ankle, knee and hip joint tracking.
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Figure 6. Cartesian X and Y CoM positions during walking.
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Figure 6. Cartesian X and Y CoM positions during walking. 
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Figure 7. Right foot ground reaction forces during walking.
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Figure 8. Ankle, knee and hip control voltages during walking.

 

  

 

Figure 9. COMAN snapshots during walking.

 

C. Controller Specifications 

Despite presenting the theory behind the controller’s 

stability in III.C, it must now be proven that our designed 

controllers satisfy not only conditionf�!��e� > 0	, but also conditionf�!��	e(� > 0	. From a theoretical point of view, the 

stability analyses allow us to conclude global stabilization

for each distinct model, using our proposed controller. In 

practice however, such an assumption 

valid and could only be verified numerically

focus on obtaining a bound for the gravity 

represented by the constant P in f�!��Kd�, f�!��K_�, f�!��e(� and f
The table below indicates that the stability criteria are 

satisfied by all three controllers.     
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Figure 7. Right foot ground reaction forces during walking. 
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Despite presenting the theory behind the controller’s 

it must now be proven that our designed 

conditions f�!��K_� > P and 

conditions f�!��Kd� > P and 

m a theoretical point of view, the 

us to conclude global stabilization 

using our proposed controller. In 

practice however, such an assumption might not always be 

and could only be verified numerically. Thus, we will 

for the gravity vector derivative, 

 �6�. Table II lists the f�!��e� values.  

indicates that the stability criteria are 
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          TABLE II 

                                           STABILITY CRITERIA 

V. CONCLUSION 

A PDD control scheme combined with gravity compensation 

allowed for the development of a strategy that permitted 

COMAN to successfully execute walking trajectories. Three 

different dynamical models were utilized for the description 

of the various phases of the walking trajectory, resulting in 

three sets of gains. The control scheme employed motor 

position, motor velocity and link velocity feedback, in 

addition to force feedback, that enabled switching between 

the various gain matrices and gravity vectors using an FSM. 

Moreover, each distinct controller’s stability was 

mathematically proven through the establishment of two 

conditions that were both shown to be satisfied by all three 

controllers. The experimental results allow us to deduce that 

the proposed approach can successfully track a desired 

dynamic walking trajectory on a compliant humanoid robot. 

Furthermore, this method not only enhances the 

mathematical accuracy when compared to the inverted 

pendulum model but it also reduces the complexity and 

computational burden of implementing full-body dynamics. 
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Controller P f�!��Kd� f�!��e(� f�!��K_� f�!��e� 

DS 68.0360 128.400 1.0540 - - 

LSS, RSS 51.2735 - - 74.6880 0.5931 
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