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Abstract— In this article we present a sagittal plane, sprawled
posture hexapedal running model with distributed body inertia,
massless legs and serial elastic actuation at the hips as well as
along the telescoping legs. We show by simulation that simple,
periodic, feedforward controlled actuation is sufficient to obtain
steady period 1 running gaits at twice the actuation frequency.
We observe a nearly linear relation of average running speed
and actuation frequency. The ground reaction profiles of the legs
show leg specialization as observed in running insects. Interleg
phasing has a strong influence on the foot fall sequence and thus
the overall body dynamics. While the single leg ground reaction
force profiles show little dependency on interleg actuation phase
the total reaction force does. Thus, depending on the interleg
actuation phase body motions without flight phase are observed
as well as body motions and total ground reaction forces
that show similarities to those obtained for the spring loaded
inverted pendulum model. Further, we show that including leg
damping and a ground friction model the periodic orbits have a
large region of attraction with respect to the initial conditions.
Additionally, the model quickly rejects step up and step down
disturbances as well as force impulses. Finally, we briefly discuss
the energetics of the hexapedal running model.

I. INTRODUCTION

In nature, hexapedal runners such as cockroaches show

impressive dynamical stability and robustness with respect to

disturbances. According to experimental studies they are able

to traverse highly unstructured terrain at very high velocities.

Hereby, they cross obstacles and dents larger than their

hip height with little changes of running speed and neural

activation pattern [5]. Therefore, biologists hypothesize that

the remarkable robustness and stability of rapidly running

cockroaches results from self-stabilizing properties of their

mechanical structure in combination with an appropriate pe-

riodic feedforward controlled actuation [7]. Inspired by their

natural counterparts, hexapedal robotic platforms like RHex

[12] or the Sprawl robots from Stanford [3] have been built

that exploit such self-stabilizing mechanisms using passively

compliant, underactuated legs and feedforward control. With

regard to experimental data on ground reaction forces and

kinematics of running cockroaches as well as the above

mentioned robots, different conceptual mathematical models

have been developed to test hypotheses on the underlying

structure of robust dynamic locomotion.

The work presented in this article is also motivated by the

question of how to embed self-stabilizing fast locomotion

capabilities in hexapedal robots. Our underlying assumption

is the existence of compliant mechanical configurations that
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together with proper periodic feedforward excitation result in

running motions characterized as phase synchronized, cou-

pled, nonlinear oscillations. We approach the identification

of possible mechanical structures by modeling the sagittal

plane dynamics of running hexapods. Hereby we use a body

with distributed mass, six massless, actuated, compliant legs

and explicitly include body pitch motions. For our model we

assume that it is possible to capture the basic leg functionality

by combining a feedforward controlled telescoping serial

elastic actuator along the leg with a feedforward controlled

rotating serial elastic actuator at the hip. Following these as-

sumptions we identify asymmetric kinematic configurations,

suitable parameter sets and simple periodic excitation that re-

sult in stable sagittal plane locomotion. We perform extensive

simulation studies to show the occurrence of periodic orbits

and to quantify their region of attraction. Further, we show

that the running velocity is proportional to the excitation

frequency and that the ground reaction forces of our model

indicate leg specialization as it is observed in insects [6].

Introducing a phase shift in between front, middle and hind

leg actuation of the same tripod we observe variations of

the center of mass dynamics. These range from dynamics

without a flight phase but with a short double support by

both tripods towards dynamics that are qualitatively similar

to the spring loaded inverted pendulum model. Considering

the power flow of the system we show that the springs act as

storage elements that mainly bridge the phase shift of motor

power and leg power rather than increasing efficiency.

The article proceeds as follows. In Sect. II we briefly

discuss related literature and introduce our system model

as well as a dimensionless version. In Sect. III we present

simulation studies and analyze the model behavior with

respect to the occurrence of periodic orbits, their region of

attraction and the robustness against disturbances. Further,

we briefly comment on the energetics of our model. Finally

in Sect. IV, we conclude our work.

II. SAGITTAL PLANE HEXAPEDAL MODEL

A variety of models with different levels of complexity has

been developed to capture the hybrid dynamics of animal

locomotion. The most prominent example is the spring

loaded inverted pendulum (SLIP), a simple conservative

spring mass model for sagittal plane dynamics. The SLIP

model predicts the basic motions and whole body ground

reaction forces for a wide variety of animals [2] including

hexapedal runners [8] and is considered as a template for

animal locomotion. The lateral leg spring (LLS) model [13],

[14] transfers the SLIP properties into the horizontal plane
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Fig. 1. Hexapod model with left tripod in support

but additionally includes yaw motions as a third degree of

freedom (DOF). Both models, the SLIP and the LLS, show

self-stable periodic orbits and capture the basic behavior of

hexapedal locomotion. In addition to those simple models

more complex planar hexapedal running models exist that

include a body with mass moment of inertia, six massless,

compliant legs and different modes of actuation. One ex-

ample for the horizontal plane is the model presented by

Seipel [15] et al. that achieves stable and robust locomotion

using six telescoping compliant legs of which the force-free

length and the location of the hip attachment points along

the body are prescribed functions of time. These functions

have been calculated such that ideal body motions match

desired ground reaction force profiles. For the sagittal plane

Saranli [11] and Ankarali et al. [1] present models with

passive, compliant legs and rigid hip actuation that either

employ tuned feedforward hip joint trajectories or try to

embed SLIP like behavior by control. Clark et al. [4] use a

multi-body approach to model the dynamics of their Sprawl

type robots with pneumatically actuated, telescoping legs and

passive, compliant hips. By extensive simulation they show

that a sprawled posture improves robustness and stability of

periodic running gaits. Close to our approach but applied to

single leg hopping, Remy [10] employs a planar model with

distributed masses and serial elastic actuation with a focus

on comparing the effect of cost functions on locomotion

efficiency in an optimal control framework.

A. System model

Our model for sagittal plane hexapedal running consists

of a body with mass m and mass moment of inertia J ,

six massless, serial elastic actuated, telescoping legs and

serial elastic actuated, rotating hips. A viscous damper is

included in parallel to each spring. The legs are arranged in

a sprawled posture. Front, middle and hind legs each have

a different length. All hip joints are collinear with the body

center of mass which is placed slightly behind the hip joint

of the middle leg. A second order slip model is implemented

for each foot that can be activated or deactivated. Upon

activation the slip model moves the foot contact point once

the ground reaction force leaves the friction cone. If it is

deactivated the foot position is fixed during stance until the

lift off condition is fulfilled. Two tripods consisting of left

front, left hind and right middle leg (left tripod) as well as

right front, right hind and left middle leg (right tripod) are

controlled 180◦out of phase with a single frequency periodic

feedforward pattern. Hereby, the actuation changes the force

free length of the leg and hip springs following a sine based

pattern for the telescoping legs and a cosine based pattern

for the rotating hip joints. The equations of motion of our

hexapedal model are the following,

mr̈b = fg +

6
∑

i=0

fl,i, (1)

Jθ̈b =
6

∑

i=0

−τh,i +
6

∑

i=0

(−rh,isin(θb)flx,i − rh,icos(θb)flz,i)

(2)

τh,i =

{

−(kh,i∆θi + dh,i∆θ̇i) : ci = 1
0 : ci = 0

, (3)

fl,i =

{

−(kl,i∆li + dl,i∆l̇i)er,i +
τh,i

li
et,i : ci = 1

02×1 : ci = 0
(4)

Herein, rb = (xb, zb) is the planar position of the body center

of mass (COM) with respect to the world coordinate system.

The vector fg represents the gravity force acting on the COM

and fl,i, i = 1 . . . 6 are the ground reaction forces of the legs.

θb is the pitch angle of the body and τh,i are the torques at

the hip joints of the respective legs. The distance between the

hip joint of the ith leg and the COM is given by rh,i which

is positive for the hip being located in front of the COM

and negative for the hip being located behind the COM. The

parameters kh,i and dh,i are the spring and damping constant

of the ith hip joint while kl,i and dl,i are the spring and

damping constant of the ith leg. er,i is the radial unit vector

of leg i that is directed along the leg towards the hip. et,i
is the tangential unit vector of the respective leg that results

from rotating er,i 90◦ clockwise. The discrete state ci = 1
indicates ground contact of leg i. The touch down (TD) and

lift off (LO) conditions of a leg are TD: zb − rh,i sin(θb)−
l0,i(t) sin(θ0,i(t) + θb) <= 0 and LO: flz,i = 0, ḟlz,i < 0.

The deflection of hip and leg spring is given by ∆θi and

∆li, respectively, which are calculated according to

∆θi = θi − θ0,i −
∆θ0,i
2

(1− cos(φ(t) + ∆φi)), (5)

∆li = li − l0,i −∆l0,i sin(φ(t) + ∆φi). (6)

The terms θ0,i(t) = θ0,i +
∆θ0,i

2
(1 − cos(φ(t) + ∆φi)) and

l0,i(t) = l0,i + ∆l0,i sin(φ(t) + ∆φi) are the force free

length of hip and leg spring consisting of a fixed and a time

varying component. The fixed components of the rotational

hip springs, θ0,i are determined manually. In contrast, the

fixed components of the translational leg springs, l0,i are

calculated such that the feet touch ground for a configuration

with a COM height h0, zero body pitch and leg angles
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according to θi = θ0,i. The time varying part of the force

free length of the springs is the feedforward control signal

with a time and frequency dependent phase, φ̇(t) = ω, and

a leg specific fixed phase shift, ∆φi. This leg specific phase

shift is composed of interleg phase shifts within the same

tripod group (φlf = φlh+2 ·φ0 and φrm = φlh+φ0, where

φ0 is a constant) and a 180◦ phase shift with respect to the

opposite tripod group. The subscripts lf , rm and lh indicate

the specific legs of the left tripod, i.e. left front, right middle

and left hind respectively. The right tripod follows the same

naming conventions.

To be more realistic with respect to slippage we include a

second order slip model for the feet which can be activated or

deactivated during simulation. If the slip model is activated

a small mass is assigned to each foot in stance. Once the

horizontal ground reaction force is larger than the static

friction force the difference of both forces accelerates the

foot mass and thus shifts the ground contact point of the

foot. If the horizontal ground reaction force returns into the

friction cone the foot motion is decelerated.

B. Dimensionless system model

To obtain more general results we introduce a dimension-

less version of the model presented in the previous section.

For this purpose we normalize the equations following the

procedure presented by Hof [9]. The characteristic parame-

ters for scaling are the body mass, m, and the height of

the center of mass, h0, as described above. Thus, with the

tilde symbolizing dimensionless quantities, the equations of

motion (1) and (2) take the following form.

¨̃rb =

(

0
1

)

+

6
∑

i=0

f̃l,i, (7)

J̃
¨̃
θb =

6
∑

i=0

−τ̃h,i +
6

∑

i=0

(−r̃h,isin(θ̃b)f̃lx,i − r̃h,icos(θ̃b)f̃lz,i)

(8)

We note that all derivatives indicated by dots are now taken

with respect to the dimensionless time, t̃. In order to obtain

dimensionless equivalents of equations (3) to (6) their struc-

ture is kept, but all states, parameters and time are replaced

by their dimensionless version. Table I gives the relations of

all quantities and their dimensionless counterparts.

III. SIMULATION STUDIES

In this section we demonstrate and analyze the behavior

of our hexapedal running model by use of simulations. For

this purpose we use a Matlab/Simulink implementation of the

model and the variable step solver ODE45. First, we demon-

strate the appearance of periodic orbits and show the relation

of feedforward actuation frequency and running speed. Next,

we demonstrate how a phase shift within the actuation of the

legs of one tripod changes the overall dynamic behavior and

the footfall sequence. Following, we present estimates for

the region of attraction for SLIP like running with respect

to the initial conditions. Finally, we show that the model is

TABLE I

PHYSICAL QUANTITIES AND THEIR DIMENSIONLESS COUNTERPARTS

Quantity Dimensionless Definition
Quantity

time, t t̃ := t/
√

h0/g

length, l l̃ := l/h0

position, r r̃ := r̃/h0

velocity, ṙ ˙̃r := ṙ/
√

gh0

acceleration, r̈ ¨̃r := r̈/g

angle, θ θ̃ := θ

angular velocity, θ̇
˙̃
θ := θ̇

√

h0/g

angular acceleration, θ̈
¨̃
θ := θ̈h0/g

mass moment of inertia, J J̃ := J/(mh2

0)

translational spring, kl k̃l := klh0/mg

rotational spring, kh k̃h := kh/mgh0

translational damping, dl d̃l := dl
√

h0/g/m

rotational damping, dh d̃h := dh/(m
√

gh3

0
)

force, f f̃ := f/(mg)
torque, τ τ̃ := τ/(mgh0)

TABLE II

DIMENSIONLESS MODEL PARAMETERS

Body J̃ 0.6944

Legs: front middle hind

r̃h 0.8333 0.1667 -0.8333

l̃0 1.1547 1.0154 1.0154

∆l̃0 0.25 0.25 0.25

θ̃0 1.0472 (60◦) 1.3963 (80◦) 1.7453 (100◦)

∆θ̃0 0.6109 (35◦) 0.6109 (35◦) 0.7854 (45◦)

k̃l 2.9358 2.9358 2.9358

d̃l 0 0 0

k̃h 0.6796 0.6796 0.6796

d̃h 0 0 0

φ̃0 0 0 0

robust with respect to step disturbances and briefly discuss

the energetics. Throughout the section all results are given

in their more general dimensionless form.

A. Periodic orbits

For a certain range of actuation frequencies ω̃/2π and

model parameters the hexapedal running model converges to

stable periodic orbits. These orbits are period 1 with respect

to the body. Due to the alternating actuation of left and

right tripod, all body states (except the horizontal displa-

cement) oscillate at twice the actuation frequency. We find

fixed points of the return map at “apex” (maximum vertical

displacement and zero vertical velocity) by simulation once

the body states remain within an error region of 10−5 for

100 successive half strides. Hereby, a half stride covers the

stance phase of left or right tripod. The dimensionless model

parameters used throughout the simulations are given in table
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Fig. 2. Steady running gait: (a) trajectories; (b) ground reaction forces,

(ω̃/2π = 0.5, φ̃0 = 0, d̃l = 0, d̃h = 0)

II. Left and right tripod are actuated 180◦ out of phase

while the legs within the same tripod are perfectly actuated

in phase (φ̃0 = 0). Leg and hip damping constants are all

set to zero. As can be seen in Figure 2(a), the body states

converge to a steady period 1 running gait. Horizontal kinetic

energy and gravitational potential energy are in phase as is

indicated by the dashed vertical line that runs through the

maximum of horizontal velocity and vertical displacement.

Figure 2(b) shows the ground reaction forces of the legs

of the left tripod, which are equivalent for the right tripod.

The feet show sequential touchdown starting with the hind

leg followed by the middle and the front leg. The stance

duration and vertical force component are almost equal for

all legs while specialization is observed for the horizontal

force component. Similar to observations on cockroaches
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[6], the front leg mainly decelerates the body, the middle

leg first decelerates and then accelerates the body and the

hind leg dominantly accelerates the body. In Fig. 3 we show

the periodic orbits in state space and their dependency on

actuation frequency. Increasing the feedforward actuation

frequency leads to larger forward velocity and decreasing

amplitudes of all other periodic states. As can be seen in

Fig. 4 the average forward velocity increases almost linearly

with actuation frequency for zero leg and hip damping.

Increasing the leg damping leads to smaller average forward

velocities and slightly increased bending of the velocity-

frequency curve but has only little qualitative influence on

the shape of the body trajectories and ground reaction forces

patterns. For steady running gaits the second order slip model

applied to the foot ground interaction was never active since

horizontal forces always were within the friction cone.

B. Interleg phasing

An interesting property of the model can be observed by

introducing a larger phase shift of φ̃0 in between middle and

hind leg as well as 2 · φ̃0 in between front and hind leg of

the same tripod. Keeping the contra-lateral legs 180◦ out of

phase this new phase shift influences the foot fall sequence

and the observed dynamic behavior. Figure 5 displays the

leg specific and the total ground reaction forces for three
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Fig. 5. Single leg ground reaction forces,(a)-(c), and total ground reaction

forces,(d)-(f) , for different interleg phase shift values, (ω̃/2π = 0.5, d̃l =
0, d̃h = 0)

different phase shift values. Increasing the phase shift from

zero at constant actuation frequency, the foot fall sequence

changes form leading hind leg via simultaneous touch down

towards leading front leg. Apparently, this has negligible

influence on stance duration and force characteristics of

the single leg but shifts their relative phase. Nevertheless,

this relative phase shift of single leg ground reaction forces

changes the overall dynamic behavior as can be observed

in Fig. 5(d)-(f) as well as Fig. 6. While experiencing no

flight phase, small horizontal forces and thus small variations

of forward velocity for zero phase shift, the model shows

qualitatively SLIP like behavior for a phase shift that results

in simultaneous touch down. Hereby, the simulations reveal

a flight phase and very smooth ground reaction force profiles

similar to those observed for the spring loaded inverted

pendulum. Additionally, the body shows only very small

pitch oscillations. Increasing the phase shift further, the flight

phase disappears but the model shows larger horizontal force

variations than for zero phase shift.

C. Transient dynamics, region of attraction and disturbance

rejection

Since initial conditions are usually not part of the periodic

orbit or the model is subject to external disturbances, tran-

sient dynamics play an important role. For those dynamics

1
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Fig. 6. Trajectories and periodic orbits for different interleg phase shifts,

(ω̃/2π = 0.5, d̃l = 0, d̃h = 0)

leg damping and the second order slip model applied to the

foot ground interaction are included. During these transition

processes the model with zero slip and zero leg damping

stabilizes quickly for a wide range of initial conditions but

displays horizontal force peaks at the end of a step that

violate friction constraints. This behavior can be removed by

allowing the feet to slip according to the model presented

above. In combination with small leg damping the model

quickly transitions to its periodic orbit without violating fric-

tion constraints as displayed in Fig. 7. Following, we present

regions of attraction for the hexapedal model parametrized

such that it displays SLIP like behavior (φ̃0 = 0.175 · π).
Starting at apex with various initial velocities, Fig. 8 shows

the number of full strides taken until the model settles to

its steady periodic gait. Each of the diagrams displays a

total of 400 simulations along an equidistant grid of initial

vertical and horizontal velocity. To demonstrate the influence

of leg damping two different values have been assigned, d̃l =
0.0011 for the complete left column and d̃l = 0.0111 for the

complete right column. For Fig. 8(a) and (b) all other initial

states correspond to the apex states of the steady periodic

orbit. In subsequent figures additional initial conditions have

been changed. In Fig. 8(c) and (d) the initial height is raised

by 0.2, in Fig. 8(e) and (f) the initial angle of the body is

zero and in Fig. 8(g) and (h) the initial angular velocity of

the body is set to 0.5. The plots show that the fixed point
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is attractive for a wide variety of initial forward velocities.

Further, we see that higher initial downward velocity does

not result in stable motion for larger initial angular offsets.

Clearly, leg damping enlarges the region of attraction for

all initial conditions and reduces the number of transition

strides. Figure 9 and the video attachment give an example

for the ability of the model to reject step disturbances.

D. Energetics

Finally, we want to comment on the energetic behavior

of the model. As shown in Fig. 10 the actuators have to

provide or absorb substantial power in order to inject or to

remove energy from the system. Hereby, the motors mirror

the functional behavior of the legs. The prismatic actuator of

each front leg dominantly absorbs energy, while the prismatic

actuator of each hind leg mainly injects energy and the

prismatic actuator of each middle leg does both. As can be

seen, the springs obviously function as storage elements that

mainly bridge the evident phase shift between actuator and

leg power. The hips show a behavior opposite to the legs.

The front hip joints provide energy while the hind hip joints

absorb it. The data suggest that providing efficiency is not

the core functionality of the springs. For example, running at

an actuation frequency of ω̃/2π = 0.5, with interleg phase

shifts of φ̃0 = 0.175 · π and zero leg damping results in a

steady periodic motion that for a half stride shows 8.17%

fluctuation of the total mechanical energy of the body with

respect to its maximum value. Across the same time span all

motors inject and consequently also remove 15.92 % of the
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Fig. 8. Number of full strides until the transient dynamics settles to
the steady periodic orbit with respect to initial velocities: leg damping is

d̃l = 0.0011 for the left column and d̃l = 0.0111 for the right column; the

fixed point at apex indicated by a white dot is, ( ˙̃xb, ˙̃zb,
˙̃
θb, z̃b, θ̃b, φ̃)

∗ =
(0.9309, 0, 0.0023, 1.0511,−0.1211, 2.5477) for the left column and

( ˙̃xb, ˙̃zb,
˙̃
θb, z̃b, θ̃b, φ̃)

∗ = (0.8657, 0, 0.0058, 1.0554,−0.121, 2.4534)
for the right column; apart from the varied initial velocities the other initial
states correspond to: (a), (b) - the fixed point at apex; (c), (d) - the fixed
point at apex but with increased initial height (z̃b(t̃ = 0) = z̃∗

b
+0.2); (e),

(f) - the fixed point at apex but with zero inital angle; (g), (h) - the fixed

point at apex but with increased inital angular velocity (
˙̃
θb(t̃ = 0) = 0.5)

maximum mechanical energy of the body. Thus, the motors

provide more power than necessary to only account for the

net power exchange of the body. In Fig. 11 we show the

cost of transport (COT) for one full stride as a function of

actuation frequency and leg damping. Hereby, the COT is

the sum of positive work performed by all actuators during

one stride divided by weight and distance traveled. This is

computed from dimensionless quantities by,

COT =

∫ T̃

0

∑6

i=1
(max(f̃lr,i

˙̃
l0,i, 0) + max(τ̃h,i

˙̃
θ0,i, 0))dt̃

∆x̃b,stride

.

(9)
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disturbances, (ω̃/2π = 0.5, φ̃0 = 0.175 · π, d̃l = 0.0111, d̃h = 0)
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Fig. 10. Power over one stride for the telescoping legs, (a)-(c), and the

rotating hips, (d)-(f), (ω̃/2π = 0.5, φ̃0 = 0.175 · π, d̃l = 0, d̃h = 0)

Herein, f̃lr,i is the radial force component along the leg com-

puted from leg spring and damper. The substantial amount of

negative work performed by the actuators is not considered

in the COT since this energy could be regenerated or just

lost as heat. From the diagram in Fig. 11 we observe that

for zero leg damping the COT shows little dependency on

the actuation frequency and thus running speed. Further, the

COT grows almost linearly with leg damping for a fixed

actuation frequency, while the slope of this relation increases

for higher frequencies. Additionally, interleg phasing appears

to have minor influence on the COT as well as leg slippage

which does not appear at steady state running.

IV. CONCLUSIONS AND FUTURE WORK

In this article we have studied the behavior of a sagittal

plane hexapedal running model with serial elastic actuation

and simple periodic feedforward control. We have shown that

kinematic configurations and parameter sets exist that result

in stable period 1 running motions at twice the actuation

frequency. Average running speed is almost linearly related

to the actuation frequency. Leg damping strongly increases

the robustness with respect to the initial conditions, step

disturbances and force impulses. Changing interleg phasing
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Fig. 11. Cost of transport with respect to leg damping and actuation

frequency (φ̃0 = 0.175 · π, d̃h = 0)

allows influencing the foot fall sequence and produces diffe-

rent overall dynamic behaviors with or without flight phases.

In this configuration the springs mainly modulate the power

flow and do not increase efficiency. The motors produce

substantially more work than the pure body dynamics would

require. The cost of transport grows approximately linear

with leg damping for a fixed actuation frequency and shows

little dependency on the interleg phasing. Currently, we

investigate the extension of the model to 3D, perform a

detailed sensitivity analysis with respect to parameters and

evaluate the limitations of the model in greater detail. In

future we want to build an experimental robotic platform to

verify the results obtained for our model and want to evaluate

how to transfer the functional behavior to articulated legs.
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