
Uncertainty Estimation of AR-Marker Poses for Graph-SLAM
Optimization in 3D Object Model Generation with RGBD Data

Razvan-George Mihalyi, Kaustubh Pathak, Narunas Vaskevicius, Andreas Birk

Abstract— This paper presents an approach to acquire tex-
tured 3D models of objects without the need for sophisticated
hardware infrastructures. The approach is inexpensive, using
a low-cost Microsoft Kinect RGB-D sensor and Augmented
Reality (AR) markers printed on paper sheets. The AR-markers
can be freely placed in the scene, allowing the modeling of
objects of various sizes, and the sensor can be moved by the
hand of an untrained person. To generate usable models with
this very inexpensive and simple set-up, the sequence of RGB-D
scans is embedded in a graph-based optimizer for automatic
post-refinement. The main novelty of this contribution is the
development of an uncertainty model for an AR-marker. The
AR-marker uncertainty models are used as constraints in an
optimization problem to better estimate the object pose. The
models are in the end further fine-tuned by a standard point-
based registration algorithm. The results section presents real-
istic models of various objects generated using this system, e.g.,
parcels, sport balls, human dolls etc. Additionally, a quantitative
analysis is presented using objects of known dimensions.

I. INTRODUCTION

There is a significant recent interest in textured 3D models
of objects in the robotics community. Textured 3D infor-
mation – also known as RGB-D for color-depth – can be
useful in a wide range of advanced robotics applications
that deal with object recognition, semantic mapping, or
manipulation tasks, to name a few examples. There are three
main approaches for generating textured 3D object models:
1) hand-crafted virtual models, 2) high-end models generated
with sophisticated hardware infrastructure, and 3) coarse
models generated with low-cost, infrastructure-less methods.

Examples of databases of virtual models of textured 3D
objects are the Princeton Shape Benchmark [1] and the
Google warehouse [2]. The Princeton Shape Benchmark con-
sists of polygonal models that were collected from the World
Wide Web. The common trait of the models in the database
is that they have been handcrafted. The same holds for the
Google warehouse where the models are based on different
user contributions. Generally speaking, virtual models have
the advantage of being easily generated with appropriate
design tools. However, as they are not constructed from real
objects, they consist of simplified shapes and textures and are
influenced by the modeling skills of the contributing users.

Option two, in form of high-end models generated with
sophisticated hardware infrastructures, is at the opposite end

The authors are with the Dept. of EECS, Jacobs University
Bremen, 28759 Bremen, Germany. {r.mihalyi, k.pathak,
n.vaskevicius, a.birk} @jacobs-university.de

The research leading to the results presented here has received funding
from the European Community’s Seventh Framework Programme (EU
FP7 ICT-2) within the project “Cognitive Robot for Automation Logistics
Processes (RobLog)”.

(a) (b)

Fig. 1. Baby doll model. Fig. (a), (b) show different views of the model.

of the scale. These textured 3D models are highly realistic
but their generation requires complex hardware set-ups. An
example for this kind of approach is the KIT Object Model
Database [3]. The high-end models contained therewith were
generated using a sophisticated infrastructure consisting of a
3D digitizer, a turn-table and a pair of 2D cameras mounted
on a sled moving along a curved rail [3]. Commercial
solutions for high-end 3D object model acquisition are also
available and are typically targeted at reverse engineering or
quality assurance [4]. While a database like [3] is very useful
for the community, as basis for a benchmark, it is very costly
to procure a similar infrastructure to generate own models
of objects that do not already exist in such databases.

The third option is somewhere in the middle between the
first two approaches, namely to obtain realistic models with
little or no infrastructure needs. The work presented here
falls into this category. A core motivation is the availability
of low-cost RGB-D sensors, e.g., Microsoft Kinect, Asus
Xtion Pro, which allow for object model generation without
large additional investments. The University of Washington
RGB-D Object Dataset [5] is an example along those lines,
as it is based on a Kinect-like sensor. But this dataset is
generated using some infrastructure, namely a turn-table and
a fixed frame for mounting the sensor at specific angles. In
contrast, the object modeler [6] from the RoboEarth project
[7] only uses a Kinect sensor and simple Augmented Reality
(AR) markers that can be printed on paper sheets. Concretely,
the RoboEarth modeler employs the ARToolkit [8], [9]
library for a coarse extraction of marker poses, which is
followed by a least-squares fit of points on two lines passing
through the center of the markers. The 6 AR-markers in the
RoboEarth set-up are printed in a fixed orthogonal pattern

2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 1807

on two A4-sheets that are glued together. The known fixed
pattern among the six AR-markers is used for a plausibility
check based on known distances between the markers. A
Gram-Schmidt process determines a coordinate system that
is centered in the fixed AR pattern to assemble the RGB-
D scans into a model. While the approach proposed in this
paper also uses a Microsoft Kinect RGB-D sensor and AR-
markers, it differs from [6] in two aspects. Firstly, in the
approach presented here the AR-markers can be placed freely
in scene, hence allowing to model objects of a wide range of
sizes (volumes ranging from 10−4m3 to 3.5m3). Secondly,
a non-trivial post-processing of the registered RGB-D scans
is used to clearly improve the model quality, as shown in the
results section.

Fig. 2. Close-up of an example container content that is to be unloaded
in the context of the RobLog project.

Part of the method presented here relies on an uncertainty
model for the AR-markers poses (cf. Sec. II-B). AR-markers
have been used in the context of pose estimation in robotics
before, e.g., in [10], [11], [12], [13]. The authors are not
aware of a proper uncertainty treatment of AR-markers
poses, which includes both translational and rotational as-
pects. The discussion in Sec. II-B is therefore of interest for
general AR-marker applications beyond the application of
object modeling presented here.

The authors’ interest in object modeling stems from the
EU-project “Cognitive Robot for Automation of Logistic
Processes (RobLog)”. RobLog (www.roblog.eu) is an
Integrated Project (IP) funded by the European Commission
in the area “Cognitive Systems and Robotics” under grant
agreement 270350. The objective of this project is to auto-
mate logistic processes, such as the unloading of containers.
Examples of container content are shown in Fig. 2 and the
current hardware set-up is shown in Fig. 3. In this context

it is of interest to generate an object model on the spot with
a low-cost device like the Kinect sensor and without any
complex infrastructure. Therefore, a simple modeling set-
up using only AR-markers, as in the RoboEarth modeler, is
desirable. An important feature in the context of the RobLog
project is the ability to model a wide range of object sizes.
Consequently, the AR-markers cannot be arranged in a fixed
geometric pattern as in the RoboEarth modeler [6]. Instead,
the markers can be literally thrown into the scene to be placed
at arbitrary positions. The RGB-D sensor can then be moved,
with a sufficiently low speed so as not to induce motion blur,
around the object by the hand of an untrained person.

The initial step is the estimation of the object pose in each
frame of the RGB-D data stream, based on the AR-markers
distributed in the scene (Sec. II-B). Once the object pose is
approximately known in one scan, the object is segmented
from the scene, the resulting point cloud constituting one
of the object views. The core idea of this approach is
to accumulate point clouds from all object views into a
consistent frame. This is done via a graph-based optimization
of both the sensor poses, which capture the object views,
and the AR-markers in the scene (Sec. II-C, Sec. II-D).
Furthermore, each point cloud view, corresponding to an
optimized sensor pose, is aligned with the model point cloud,
using the standard choice for the registration of 3D point
clouds, namely the Iterative Closest Point (ICP) algorithm
[14]. Additionally, the models are further fine-tuned by using
a voxelgrid filter to remove outlying points. The complete
workflow is detailed in Sec. II.

Using this approach, one can generate 3D models of
various objects, like barrels, boxes, sports balls, etc. These
are presented in Sec. III. The ground-truth models, such as
sport balls and cuboidal boxes, are assessed quantitatively
by comparing the radii or, respectively, the volumes of the
model and the physical object. The errors thus obtained are
in the order of 3% for both spherical and cuboidal objects.
Other models, such as human baby dolls, car tires, etc., as
seen in Fig. 1 and Fig. 7, are visually inspected and deemed
satisfactory when not exhibiting registration errors.

Notation

The notation used in this paper is summarized below. In
general, scalars are in normal lowercase letters, vectors in
bold small letters, and matrices in bold capitals. For quanti-
ties resolved in different frames, the left superscript/subscript
notation of [15] is used. Right subscripts are used for
indexing or for denoting vector components.

Using this notation, a position vector of a spatial point
resolved in the reference frame Fi is denoted by pi ∈ R3

and its homogeneous coordinates representation by pi . Two
position vectors of the same physical point observed from
two different frames Fi, Fj with their respective origins at
Oi, Oj , are related by:

1808

Fig. 3. The set-up of the RobLog scenario for container unloading.

pi = Tij pj , where, (1a)

Tij ,

[
Rij tij

0T
3 1

]
, tij ,

−−−→
OiOj resolved in Fi. (1b)

II. METHOD

A. Overview

Object modeling using just point clouds has been widely
studied in the past two decades. An early attempt, described
in [16], uses range images and a variant of ICP to construct a
3D model. In contrast to ICP, an iterative algorithm that min-
imizes the error between pairs of points [14], the approach
from [16] consists of an iterative algorithm that minimizes
point-to-plane distances. The most advanced system for
range-only based registration in terms of performance is the
KinectFusion system [17]. While targeted at the mapping and
reconstruction of “complex room-sized scenes”, this system
could, in principle, also be used for modeling of individual
objects. The main concepts behind KinectFusion are the
continuous update of the surface representations by fusing
already registered views and the accurate tracking of the
camera pose by depth disparity measurements. KinectFusion
is designed as a real-time system, i.e., the algorithms for
modeling and tracking are optimized for GPU computation.

Recent work on modeling 3D surfaces also uses a graph-
based optimization [18], where the standard point based reg-
istration is supplemented by an additional heuristic, namely
that the points are sampled from a regular surface. The
method in [18] is a variant of the bundle adjustment problem
[19] where the surface points in the scans and the poses of
the sensor are globally and jointly optimized.

The approach proposed here differs from the above meth-
ods in that it does not rely solely on registration algorithms
to align the multiple views of the object to obtain the final
model. Instead, the modeling problem is formulated as a
graph-based optimization problem, where the error of the
pose estimates of the RGB-D sensor and the AR-marker
landmarks is minimized in a nonlinear least squares sense.
Furthermore, an element of novelty in this contribution is

the derivation of an AR-marker uncertainty model, which is
used as a constraint in the optimization graph.

For the purpose of minimizing the estimation error of the
RGB-D sensor and the AR-marker poses, the g2o framework
[20] is used. The approach presented here builds on three
major components, described in the following subsections:
the derivation of an AR-marker uncertainty model, the es-
timation of the transformations between the markers (here
denoted as the calibration step) and the final part of ac-
cumulating point clouds in a single, consistent frame (the
modeling step).

B. AR-marker uncertainty model

The procedure for determining the uncertainty of an AR-
marker from a 3D point cloud relies on fitting a plane, in a
least-squares sense, to the marker. The plane is parametrized
by (n̂, d) and the uncertainty of the plane fitting is given by
covariance matrix Cn̂d.

1) Translation Covariance: Let m =
[
u, v

]T
be the 2D

pixel coordinates of a marker corner point; this is returned
by ARToolkit [9], [21]. Let p =

[
x, y, z

]T
be a corner point

obtained by the intersection of the ray at the marker pixel
m. Given the camera matrix, A, it holds that:

A · p w

(
m
1

)
(2)

Writing the first two rows, normalized by z:

A00 ·
x

z
+ A01 ·

y

z
+ A02 = u (3)

A10 ·
x

z
+ A11 ·

y

z
+ A12 = v (4)

Furthermore, the corner point p lies on the detected plane:

n̂Tp = d (5)

From Eq. 3, 4, by perturbing the x, y, z and the u, v
components:[

A00

z
A01

z
−A00·x−A01·y

z2
A10

z
A11

z
−A10·x−A11·y

z2

]
︸ ︷︷ ︸

,J1

·

δxδy
δz

 =

[
δu
δv

]
(6)

1809

Fig. 4. The Augmented Reality (AR) markers that provide coarse localization information can be freely placed in the scene where the object is recorded.
This allows the modeling of objects of very different sizes.

From Eq. 5 by perturbing p, n̂ and d:

n̂T ·

δxδy
δz

 =
[
−pT 1

]︸ ︷︷ ︸
,J2

·
[
δn̂
δd

]
(7)

Concatenating Eq. 6, 7 yields:

[
J1

n̂T

]
︸ ︷︷ ︸
,B

·

δxδy
δz

 =

[
I2×2 O2×4
O1×2 J2

]
︸ ︷︷ ︸

,J3

·

δu
δv
δn̂
δd

 (8)

Rewriting Eq. 8:δxδy
δz

 = B−1 · J3︸ ︷︷ ︸
,J4

·

δu
δv
δn̂
δd

 (9)

Finally, the covariance of a corner point, Cp, is obtained as:

Cp = J4 ·
[

Cuv 02×4
04×2 Cn̂d

]
· JT

4 (10)

where Cuv is the uncertainty of a pixel, defined as:

Cuv = σ2

[
1 0
0 1

]
, σ2 = 1 pixel2, where Cn̂d is the plane

uncertainty obtained from fitting a plane to the marker.
The translation covariance of the marker is obtained from

the covariance of the four corner points, pi, of the AR-
marker as:

Ctranslation =
1

16
·

3∑
i=0

Cpi (11)

2) Rotation Covariance: The computation of the rotation
covariance assumes that the rotation of the marker with
respect to the camera frame, RCM , parametrized by roll,
pitch, yaw angles, is available. Additionally, it is assumed
that the corner points, pi, are numbered as shown in Fig. 5.

The x and y axes of the marker with respect to the camera
frame, xC , yC , respectively, are defined as:

x1
C =

p1
C − p0

C

‖ p1C − p0C ‖ ; x2
C =

p2
C − p3

C

‖ p2C − p3C ‖

y1
C =

p1
C − p2

C

‖ p1C − p2C ‖ ; y2
C =

p0
C − p3

C

‖ p0C − p3C ‖

p0 p1

p2p3

Fig. 5. AR-Marker Corner Points pi

Using the above, let

η =

n̂C

x1
C

y1
C

x2
C

y2
C

 =

RCM · zM

RCM · xM

RCM · yM

RCM · xM

RCM · yM

}

, q(r, p, y) (12)

where xM = [1 0 0]T, yM = [0 1 0]T, zM = [0 0 1]T

Cηη = J ·Crpy · JT, where J =
∂q(r, p, y)

∂(r, p, y)
(13)

Solving for Crpy yields:

Crpy = (JTJ)
−1

JT ·Cηη · J(JTJ)
−1

(14)

where Cηη =

Cn̂n̂ 03×12
03×3 Cx1x1 03×9
03×6 Cy1y1 03×6
03×9 Cx2x2 03×3

03×12 Cy2y2

 ,
Cn̂n̂ is obtained from Cn̂d

Cx1x1 = J1 ·Cp1
· JT

1 + J0 ·Cp0
· JT

0 ,
Cy1y1 = J3 ·Cp1

· JT
3 + J2 ·Cp2

· JT
2 ,

Cx2x2 = J5 ·Cp2 · JT
5 + J4 ·Cp3 · JT

4 ,
Cy2y2 = J7 ·Cp0 · JT

7 + J6 ·Cp3 · JT
6 ,

J1 = ∂x1

∂p1
, J0 = −J1, J3 = ∂y1

∂p1
, J2 = −J3,

J5 = ∂x2

∂p2
, J4 = −J5, J7 = ∂y2

∂p0
, J7 = −J6

Finally, from Eq. 11, 14, the covariance of the AR-marker
is written as:

Cmarker =

[
Ctranslation 03×3

03×3 Crpy

]
(15)

1810

C. Calibration Step

This step assumes an experiment set-up where markers are
randomly distributed across the scene, as shown in Fig. 4.
The purpose of the calibration step is to estimate TOmi

∀i,
the transformations between the marker on which the object
is going to be placed, henceforth object marker, and the rest
of the markers.

For estimating the marker poses the g2o graph opti-
mization framework [20] is used. g2o is a framework for
optimizing nonlinear least squares problems that can be
represented as graphs [20]. The problems of interest, i.e.,
estimating the marker poses (translation and orientation)
during calibration and estimating the camera poses during
modeling, can be represented as non-linear least squares
optimization problems:

F(x) =
∑
i,j

e(xi, xj , zij)TΩije(xi, xj , zij) (16)

x∗ = argmin
x

F(x) (17)

where x = (tx, ty, tz︸ ︷︷ ︸
translation

, rw, rx, ry, rz︸ ︷︷ ︸
quaternion rotation

)T represents a vertex in

the optimization graph and zij and Ωij represent the mean
and the information matrix of an edge in the graph, i.e., a
constraint between the parameters xi and xj .

In the calibration step, the g2o graph consists of the
following vertex types:
• sensor poses expressed in the object marker frame FO

and encoded in a homogeneous transformation matrix,
TOC

• marker poses TOmi
, also expressed in the object marker

frame FO
The edges in the graph are directed edges from camera

poses to marker pose and the edge constraint is TCmi
:

TOC · TCmi
= TOmi

(18)

The information matrix Ωij between camera vertex
i and marker vertex j is obtained from the covariance
Cmarkerj of the marker at vertex j, as follows:

Ωij = cj ·C+
markerj (19)

where the generalized inverse of the marker covariance
matrix is scaled with the confidence, cj , with which marker
j was detected by ARToolkit [9], [21].

The optimized g2o graph is shown in Fig. 6, where the
sensor poses are indicated by the triangular vertices in the
upper part of the figure and the marker poses are indicated
by the vertices in the lower part of the figure.

D. Modeling

The modeling step is a repetition of the calibration step
wherein the physical object is placed on the object marker.

After the g2o optimization, the 3D model is built by
accumulating surface points from the object, pC , into a
single consistent frame FO, i.e., the object frame. More

Fig. 6. The g2o graph after calibration, i.e., after the RGB-D sensor has
been moved over the freely placed markers without an object in the scene.
The upper triangles show the estimated sensor poses, the lower ones are the
estimated marker poses.

specifically, the optimized sensor poses are used to transform
the points on the object’s surface into FO:

pO = TOC · pC (20)

The final refinement steps applied to the 3D model consist
of a standard ICP algorithm, used to register the current
frame with the previously registered frames, and a voxelgrid
filter to remove any outlying points.

III. EXPERIMENTS AND RESULTS

This section introduces the experiment set-up and presents
the modeling results of ground truth objects, with simple
geometries, and objects with more complex geometries.

A. Experiment Set-up

In these experiments, two types of AR-markers were used:
10 large markers, with a single marker printed on a DIN A4
paper and 10 small markers, printed on a DIN A5 paper. The
markers were distributed on the ground, as presented in Fig.
4. The Kinect sensor was then moved by hand smoothly,
so as not to induce motion blur, and circularly around the
markers, at a distance of ≈ 1m from the AR-markers.

B. Ground Truth Objects

Models of ground truth objects, such as sports balls and
cuboidal boxes, are used to quantify the accuracy of the
proposed approach. The error measurements differ for the
two objects:

• For spherical objects, the estimate of R, the radius of
the best fitting sphere is compared with the true object
radius. R and ro, the 3D centroid of the estimated
sphere, are found by minimizing the cost function e,
where ri =

[
xi yi zi

]T
are N points on the object:

e =

N∑
i=1

(‖ro − ri‖ −R)2 (21)

1811

Eq. 21 is minimized by setting ∂e
∂ro = 0 and ∂e

∂R = 0:

∂e

∂ro
=

N∑
i=1

(ro − ri)−R ·
ro − ri
‖ro − ri‖

= 0 (22)

⇒ ro =
1

N
·

[
N∑
i=1

ri +R · ro − ri
‖ro − ri‖

]
(23)

R =
1

N
·
N∑
i=1

‖ro − ri‖ (24)

Eq. 23 and 24, form the basis of an iterative procedure
to determine ro and R.

• Measuring the error for cuboidal objects is done by ob-
taining the axes-aligned bounding box of the point cloud
and comparing the volume defined by the bounding box
to the volume defined by the true cuboidal box.

The errors listed in Table I are reported for two modeling
scenarios for each object: using the AR-marker uncertainty
model and not using the uncertainty model. In the latter case,
the information matrix is obtained by scaling the identity
matrix with the confidence, cj of the marker detection: Ωij =
cj ·I6×6. The results show smaller errors when using the AR-
marker uncertainty model.

The results in Table I were generated on an Intel(R)
Core(TM) i7-3770 CPU @ 3.40GHz, 16GB RAM machine,
running 64-bit Ubuntu 12.04. The results show errors of
≈ 3mm (3%) for sports balls models (cf. Fig. 7(a), Fig.
7(b)). For cuboidal boxes models (cf. Fig. 7(c), Fig. 7(d),
Fig. 7(e), Fig. 7(f)), the errors are ≤ 2mm3 (3%).

The above evaluation shows that the approach presented
in this paper is fairly accurate and able to model objects
of different sizes, from small sports balls (0.1m radius) to
medium-sized boxes (0.08m3 = 80l volume).

C. Other Objects

In addition to ground truth objects, models of objects that
can be found in container unloading scenarios are shown
in Fig. 7. These are objects of various sizes and categories,
e.g., parcels, barrels, car tires, etc.

IV. CONCLUSIONS

In this paper an approach for modeling physical objects as
3D point clouds was presented. The method relies on data
from an RGB-D sensor, such as Microsoft Kinect, and uses
a type of fiducial markers to accurately estimate the pose
of the object in the scene. After the object is segmented
from the scene, the surface points, obtained from multiple
object views, are accumulated into a single consistent frame
which forms the initial model. The model becomes final by
sequential refinements using standard registration algorithms
and outlier removal methods. Evaluations of the final object
models indicate good levels of accuracy.

This paper introduced a convenient method for modeling
objects of different sizes, by easily changing the experimental
set-up, i.e., the size and distribution of the AR-markers.
Furthermore, an uncertainty model for an AR-marker was
developed in the context of object modeling. However, it

may be relevant for other applications involving AR-marker
pose detection.

REFERENCES

[1] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser, “The princeton
shape benchmark,” in Shape Modeling Applications, 2004. Proceed-
ings, 2004, pp. 167–178.

[2] Google, “3d warehouse,” http://sketchup.google.com/3dwarehouse/,
2012.

[3] A. Kasper, Z. Xue, and R. Dillmann, “The kit object models database:
An object model database for object recognition, localization and ma-
nipulation in service robotics,” The international Journal of Robotics
Research, vol. 31, no. 8, pp. 927–934, 2012.

[4] W. Associates, “3d scanning and reverse engineering,” http://www.
wohlersassociates.com/scanning.html, 2012.

[5] K. Lai, L. Bo, X. Ren, and D. Fox, “A large-scale hierarchical multi-
view rgb-d object dataset,” in Robotics and Automation (ICRA), 2011
IEEE International Conference on, 2011, pp. 1817–1824.

[6] D. Di Marco, A. Koch, O. Zweigle, K. Haussermann, B. Schiessle,
P. Levi, D. Galvez-Lopez, L. Riazuelo, J. Civera, J. M. M. Montiel,
M. Tenorth, A. Perzylo, M. Waibel, and R. van de Molengraft, “Cre-
ating and using roboearth object models,” in Robotics and Automation
(ICRA), 2012 IEEE International Conference on, 2012, pp. 3549–
3550.

[7] M. Waibel, M. Beetz, J. Civera, R. D’Andrea, J. Elfring, D. Galvez-
Lopez, K. Haussermann, R. Janssen, J. M. M. Montiel, A. Perzylo,
B. Schiessle, M. Tenorth, O. Zweigle, and R. van de Molengraft,
“Roboearth,” Robotics and Automation Magazine, IEEE, vol. 18, no. 2,
pp. 69–82, 2011.

[8] H. Kato and M. Billinghurst, “Marker tracking and hmd calibration
for a video-based augmented reality conferencing system,” in Aug-
mented Reality, 1999. (IWAR ’99) Proceedings. 2nd IEEE and ACM
International Workshop on, 1999, pp. 85–94.

[9] M. Billinghurst and H. Kato, Proceedings of the First IEEE Interna-
tional Augmented Reality Toolkit Workshop, ser. Augmented Reality
Toolkit, The First IEEE International Workshop, 2002.

[10] K. Jongbae and J. Heesung, “Vision-based location positioning using
augmented reality for indoor navigation,” Consumer Electronics, IEEE
Transactions on, vol. 54, no. 3, pp. 954–962, 2008.

[11] O. Mohareri and A. B. Rad, “Autonomous humanoid robot navigation
using augmented reality technique,” in Mechatronics (ICM), 2011
IEEE International Conference on, 2011, pp. 463–468.

[12] M. Ishida and K. Shimonomura, “Marker based camera pose es-
timation for underwater robots,” in System Integration (SII), 2012
IEEE/SICE International Symposium on, 2012, pp. 629–634.

[13] W. Huiyao, C. Zhihao, and W. Yingxun, “Vison-based auxiliary navi-
gation method using augmented reality for unmanned aerial vehicles,”
in Industrial Informatics (INDIN), 2012 10th IEEE International
Conference on, 2012, pp. 520–525.

[14] P. Besl and N. McKay, “A Method for Registration of 3-D Shapes,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 14, pp. 239–256, 1992.

[15] Craig, J. J., Introduction to robotics – Mechanics and control. Prentice
Hall, 2005.

[16] Y. Chen and G. Medioni, “Object modeling by registration of multiple
range images,” in Robotics and Automation, 1991. Proceedings., 1991
IEEE International Conference on, 1991, pp. 2724–2729 vol.3.

[17] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J.
Davison, P. Kohli, J. Shotton, S. Hodges, and A. W. Fitzgibbon,
“KinectFusion: Real-time dense surface mapping and tracking,” in
ISMAR, 2011, pp. 127–136.

[18] Ruhnke, M. and Kümmerle, R. and Grisetti, G. and Burgard, W.,
“Highly Accurate 3D Surface Models by Sparse Surface Adjustment,”
in Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
2012.

[19] B. Triggs, P. Mclauchlan, R. Hartley, and A. Fitzgibbon, “Bundle
adjustment – a modern synthesis,” in Vision Algorithms: Theory and
Practice, LNCS. Springer Verlag, 2000, pp. 298–375.

[20] Kuemmerle, R. and Grisetti, G. and Strasdat, H. and Konolige, K. and
Burgard, W., “g2o: A general framework for graph optimization,” in
Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), 2011.

[21] M. Ferguson, “ROS package for AR marker detection and
pose estimation, based on ARToolkit.” [Online]. Available: http:
//ros.org/wiki/ar kinect

1812

(a) Yellow ball (b) White ball (c) Warrior box (d) Gigabyte box

(e) DHL Xmas box (f) Tchibo box (g) DHL box (h) Brown box

(i) Sugar bag (j) Post box (k) Beer barrel (l) Car tire

Fig. 7. Collection of object models

TABLE I
ERROR MEASUREMENT FOR GROUND TRUTH OBJECTS

Object Description Absolute error for
complete model [m]

Relative error for
complete model

Modeling
duration [s]

Yellow ball w/ uncertainty model 1.989e-03 1.989% 69s
Yellow ball w/o uncertainty model 1.61e-02 16.1% 80s
White ball w/ uncertainty model 3.567e-03 3.567% 60s
White ball w/o uncertainty model 2.12e-02 21.2% 77s

Object Description Absolute error for
complete model [m3]

Relative error for
complete model

Modeling
duration [s]

Warrior box w/ uncertainty model 1.961e-03 2.485% 756s
Warrior box w/o uncertainty model 6.584e-03 8.34% 870s

Gigabyte box w/ uncertainty model 1.843e-04 3.07% 112s
Gigabyte box w/o uncertainty model 9.109e-04 15.16% 193s

DHL Xmas box w/ uncertainty model 2.893e-04 1.95% 218s
DHL Xmas box w/o uncertainty model 1.21e-03 8.107% 240s

Tchibo box w/ uncertainty model 9.77e-04 2.584% 427s
Tchibo box w/o uncertainty model 3.1147e-03 8.24% 521s

1813

