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Abstract— This paper presents a method for proactive robot
communication connectivity maintenance based on electromag-
netic field (EMF) recognition and signal strength (SS) gradient
estimation for mobile robots. To achieve these goals in an
efficient manner, we combine EMF recognition method and
gradient descent of SS measurements into a proactive robot
motion control algorithm in a way that maintains connectivity
among mobile robots in the presence of a radio frequency (RF)
obstacle. The EMF recognition method utilizes hidden Markov
models (HMMs) for learning EMF environments based on SS
measurements. The proposed motion control algorithm uses
the EMF recognition and gradient method results to drive the
robots towards favorable locations in which robots can com-
municate. The numerical simulation demonstrates promising
EMF recognition, robot motion control results and confirms
their abilities in proactive robot motion control for connectivity
maintenance.

I. INTRODUCTION

In recent years, the communication network has evolved

so that properties like node connectivity and signal strength

measurements can be used to maintain the quality of con-

nectivity of the network [1]. The connectivity maintenance

of robot networks is essential for effective and efficient robot

team operations [2]. A competent connectivity maintenance

mechanism is required to achieve robust mobile ad hoc

networks (MANET) especially if the network is subject to

intermittent connections due to adverse environments [3].

Multi-robot exploration for urban search and rescue (USAR)

is an example of such an application scenario, where a

team of robots is instructed to fan out into an unknown

environment to accomplish assigned tasks and then return

to the operator [4]. As one way to achieve the goal of proac-

tive network connectivity maintenance, robot motion control

using EMF environment recognition and multi-dimensional

gradient descent methods is expected to provide a good

solution to maintain robot connectivity and repair broken

links. In this paper, we focus on two steps in the process:

Firstly, the EMF environment recognition based on signal

strength measurements is used to learn and recognize adverse

environments containing RF obstacles. This approach helps

to investigate the relationship between known obstacle types

and their impact on EMF strength in different scenarios.

Secondly, we estimate the multi-dimensional gradient of

mobile robots in the experiment field. However, most existing

methods estimate the two-dimensional (2-D) gradient with

respect to a fixed signal source and do not extend directly
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to estimate the gradient where nodes are mobile. While the

estimation in the former case is analogous to regression

in a 2-D space, the later requires estimations for a four-

dimensional (4-D) space. In [5], the authors’ incorporate

radio SS information into the exploration algorithm by

locally sampling the SS and estimating the 2-D gradient.

They determine the 2-D gradient of a mobile robot for a

fixed signal source. In [6], the authors’ considered a scenario

exploiting the 2-D gradient within a cooperating sensor

network, to localize and navigate to a fixed radio source.

The robot measures SS and estimates the direction of the

2-D gradient along which the robot moves in the next step.

In [7], [8], the authors focus on developing tools that allow

for online evaluation and mapping of received radio SS. In

[9], the authors’ approach entails the automated construction

of a radio map for a partially known urban environment

which can then be used to establish a team of robots and

the corresponding control algorithm that drive the team to

achieve designated targets while maintaining satisfying link

quality. In our simulation, we use known obstacles to study

their effects on the RF signal measurements when two robots

move around the obstacle. We use wall, cylinder and cage

obstacles of different sizes, which are made of perfect electric

conductor. Numerical simulations have been conducted to

evaluate the feasibility and performance of the proposed

EMF environment recognition and gradient based motion

control. The proposed methods have presented promising

solutions to joint message routing and link maintenance in

mobile robot network.

II. FORMULATION FOR EMF RECOGNITION

EMF environment recognition is based on RF signal

strength measurements along the robot trajectory. The

method aims to identify and classify the EMF environment

shadow type along the robots paths. The HMM result based

EMF recognition informs moving robots whether they are

under the effects of an obstacle shadow or not. Afterwards,

the motion control algorithm based on the HMM results

decides the controlled motion to recover from the obstacle

shadow and maintain the robots connectivity.

A. EMF Environment Modeling

In our EMF recognition application scenario, we use two

sensors to transmit and receive RF signals at 2.4 GHz, re-

spectively. The sensor measurement is the RF signal strength

at the current location of the receiver, which is affected by

fading and interference [10]. The robots are positioned in 2-D

Cartesian coordinates (xk, yk) at time k. The 2-D space for
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the EMF is divided into grids. The grid width is ∆x = Lx/M
in x-direction and ∆y = Ly/N in y-direction. Here, Lx and

Ly are the length and width of the space, and M and N are

the number of segments in x-direction and y-direction as in

Fig. 1 (b).
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Fig. 1. (a) Experimental scenario with two robots moving on different sides
of a wall, and (b) the 2-D space divided into grids in numerical simulation
experiments.

In our numerical simulation experiments, we assume that

the robots move in this 2-D space along the following

trajectories to collect SS measurements. The lth trajectory

is given by

x
(i)
k,l

= x
(i)
0,l, y

(i)
k,l

= y
(i)
0,l + k∆y , k = 1, 2, · · · , N, (1)

where l is the trajectory index, i ∈ {1, 2} is the robot

index, (x
(i)
0,l, y

(i)
0,l) denotes the initial location of the ith robot

at time 0. (1) describes the ith robot’s motion which begins

with (x
(i)
0,l, y

(i)
0,l) and then moves along y-direction with a

step size of ∆y for each time step. Furthermore, for the

1st robot, we assume x
(1)
0,l = l∆x, y10,l = 0 for the lth

trajectory. For the 2nd robot, we assume x
(2)
0,l = x

(1)
0,l +d and

y
(2)
0,l = y

(1)
0,l . The two robots are separated by a fixed distance

d in x-direction, but they are with the same coordinate

in y-direction. The experiment scenario with two robots is

demonstrated in Fig. 1 (a). The sensor measurements at time

k for the lth trajectory in the presence of obstacle type j,

which is the RF received SS at the receiver location, is

denoted as

S
(j)
l

(k) = f(x
(1)
0,l , y

(1)
0,l , x

(1)
k,l

, y
(1)
k,l

, x
(2)
0,l , y

(2)
0,l , x

(2)
k,l

, y
(2)
k,l

, φj), (2)

which is a function of the initial robot positions (x
(i)
0,l, y

(i)
0,l),

robots positions (x
(i)
k , y

(i)
k ) at time k and the obstacle char-

acteristics φj . Here, the index of the trajectory l = 1, ..., L(j)

for each j, where L(j) is the number of the trajectories with

the presence of type j obstacle. In (2), j ∈ {1, 2, 3} denotes

the obstacle type and φj = {(x
(j)
c , y

(j)
c ), θ(j)} denotes

the obstacle characteristic set. The obstacle characteristic set

contains the central position of the obstacle (x
(j)
c , y

(j)
c ) and

the shape parameters of the obstacle θ(j). For example, the

wall obstacle is with the parameters of central coordination

(Lx

2 ,
Ly

2 ), and the shape parameters θ(j) contains its width,

length and height information.

The SS measurements in the experiment field with the

presence of three obstacle types are demonstrated in Fig. 2

(a), Fig. 3 (a) and Fig. 4 (a). Fig. 2 (b), Fig. 3 (b) and

Fig. 4 (b) show the measurement sequence shapes obtained
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Fig. 2. The RF SS measurements in the 2-D experimental space with
the presence of (a) a wall obstacle and (b) RF SS measurement sequences
corresponding to different trajectories.

from different trajectories. By investigating how the SS

changes at different locations, it is possible to recognize and

classify the EMF signatures of certain obstacle types. We

used Computer Simulation Technology (CST) Microwave

Studio [11] software for EMF simulation and studied three

types of obstacles, wall, cage and cylinder for different sizes.

III. HMM BASED EMF RECOGNITION METHOD

The block diagram in Fig. 6 summarizes the major steps of

our algorithm for EMF recognition. First, each measurement

vector obtained from different trajectories is segmented into

small segments as shown in Fig. 5. Each segment is then

transformed into the frequency domain using fast Fourier

transform (FFT) for extracting features in the frequency

domain. We use a subset of all feature vectors for the training

set and the reminder used for the testing set. The extracted

feature vectors for training are then clustered using K-means

clustering algorithm to generate observation sequences C
(j)
l .

The generated observation sequences are used to train three

HMMs, one for each obstacle type. Each HMM model

consists of 5 states, corresponding to 5 binned segments of

robot motion through a trajectory. As described above, each

model was trained using a set of observation sequences. The

HMM classification models were tested using the testing set

of feature vectors. Using the trained HMM results, the EMF

recognition is achieved and then utilized for robot motion

control aiming at proactive connectivity maintenance.

The robot motion is a sequential event, and we were

interested in classification based on its temporal ordering.

There exists a strong analogy of EMF classification using

SS measurements to word recognition using speech patterns

3399
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Fig. 3. The RF SS measurements in the 2-D experimental space with the
presence of (a) a cage obstacle and (b) Different trajectories.

[12]. The use of HMMs provides an intuitive approach to

supervised classification. It naturally breaks up the robot

trajectory into constituent parts, similar to the way they are

synthesized. The HMM approach also provides a simple

mechanism for classifying a subset of segments in the robot

trajectory through an obstacle shadow during its movement,

as opposed to classification at the completion of a trajectory.

The following paragraphs review HMMs and our application

of them to EMF recognition.

HMMs [13] is a method to model stochastic events.

A model λ consists of states Q and their corresponding

probabilities of observations B, as well as probabilities of

transitions between states A. Given a sequence of observa-

tions, O, and a model λ, one can drive what is P (O|λ),
the probability of observations O given λ. Essentially, this

is a measure of how well the model represents the event. In

the case that the model is unknown (i.e. hidden), the model

can be learned. To train a model, training data (a set of

observations Oi for (i = 1, ..., n) is used to modify an initial

estimate of model parameters with the goal of maximizing

P (O|λ) using Baum-Welch, EM, or gradient methods. For

classification, a model is created for each class λ(j) for

(j = 1, ...,mo), where mo is the number of obstacle types.

To assign obstacle type membership to a novel observation

O, P (O|λ(j)) is calculated for each type j, and the class

whose model has the highest probability is assigned to O.

The detailed algorithm description and preliminary results

are presented as follows.

A. Measurement Segmentation and Feature Extraction

We denote the measurement vector collected in the

robot movement along the lth trajectory as β
(j)
l =

−20
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Fig. 4. The RF SS measurements in the 2-D experimental space with the
presence of (a) a cylinder obstacle and (b) Different trajectories.
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Fig. 5. Segmented wall signals.

[S
(j)
l (1) S

(j)
l (2) · · · S

(j)
l (Nm)]T , where Nm represents the

number of SS measurements along the lth trajectory for the

jth obstacle type. Each β
(j)
l is segmented into five seg-

ments denoted as α
(j)
l,u=[S

(j)
l (5(u− 1) + 1) · · · S

(j)
l (5u)]T ,

u = 1, 2, · · · , 5 as in Fig. 5. Afterward, each measurement

segment α
(j)
l,u is transformed into the frequency domain

using FFT, and the results of FFT are denoted as Γ
(j)
l,u =

FFT(α
(j)
l,u, NFFT ), where FFT(·) denotes the FFT operation,

NFFT denotes the number of points in the FFT results.

The first 10 elements in the FFT result Γ
(j)
l,u are defined as

the feature vector γ
(j)
l,u =

[

Γ
(j)
l,u(1) Γ

(j)
l,u(2) · · ·Γ

(j)
l,u(10)

]T

of the measurement corresponding to the lth trajectory and

jth obstacle type. Once each segment is transfered into

frequency space, the feature vector Γ
(j)
l,u is clustered using

the K-means clustering algorithm. Then, the HMM uses

these binned segments to classify the obstacle shadow based

on the probabilistic sequence of segments. In other words,

we used spatial distinctions to classify cluster each segment

(a phoneme) using k-means clustering algorithm, and the
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Fig. 13. (a) Robots start at x0(1) = 17, y
(1)
0 = 15 and x

(2)
0 = 38, y

(2)
0 =

15 at time k=0, and (b)Robots start at x
(1)
0 = 22, y

(1)
0 = 17 and x

(2)
0 =

40, y
(2)
0 = 23 at time k=0.
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Fig. 14. Control Robots movement using (a) two observations (b)three
observations)

robots run the gradient algorithm to define the direction of

the strongest SS. Afterwards, the robots move in the direction

of the gradient and attempt to regain communication as

shown in the scenario of Fig. 14 (b). Fig. 7 summarizes the

main steps of the motion control algorithm.

VI. CONCLUSION

In this paper, an EMF environment recognition approach

and a gradient based robot motion control method were

presented. Extensive numerical simulations were conducted

to evaluate the feasibility and performance of the proposed

EMF environment recognition and gradient based motion

control. The proposed methods have presented preliminary

studies and promising solutions to joint physical message

routing and logical link maintenance in robots network.

We expect that the proposed methods can be a compet-

itive alternative to broken link replacement and maintain

robot connectivity in robotic networks. We can achieve that

through controlling the movement of mobile robots in the

field.
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