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Abstract— This paper presents a method for proactive robot
communication connectivity maintenance based on electromag-
netic field (EMF) recognition and signal strength (SS) gradient
estimation for mobile robots. To achieve these goals in an
efficient manner, we combine EMF recognition method and
gradient descent of SS measurements into a proactive robot
motion control algorithm in a way that maintains connectivity
among mobile robots in the presence of a radio frequency (RF)
obstacle. The EMF recognition method utilizes hidden Markov
models (HMMs) for learning EMF environments based on SS
measurements. The proposed motion control algorithm uses
the EMF recognition and gradient method results to drive the
robots towards favorable locations in which robots can com-
municate. The numerical simulation demonstrates promising
EMF recognition, robot motion control results and confirms
their abilities in proactive robot motion control for connectivity
maintenance.

I. INTRODUCTION

In recent years, the communication network has evolved
so that properties like node connectivity and signal strength
measurements can be used to maintain the quality of con-
nectivity of the network [1]. The connectivity maintenance
of robot networks is essential for effective and efficient robot
team operations [2]. A competent connectivity maintenance
mechanism is required to achieve robust mobile ad hoc
networks (MANET) especially if the network is subject to
intermittent connections due to adverse environments [3].
Multi-robot exploration for urban search and rescue (USAR)
is an example of such an application scenario, where a
team of robots is instructed to fan out into an unknown
environment to accomplish assigned tasks and then return
to the operator [4]. As one way to achieve the goal of proac-
tive network connectivity maintenance, robot motion control
using EMF environment recognition and multi-dimensional
gradient descent methods is expected to provide a good
solution to maintain robot connectivity and repair broken
links. In this paper, we focus on two steps in the process:
Firstly, the EMF environment recognition based on signal
strength measurements is used to learn and recognize adverse
environments containing RF obstacles. This approach helps
to investigate the relationship between known obstacle types
and their impact on EMF strength in different scenarios.
Secondly, we estimate the multi-dimensional gradient of
mobile robots in the experiment field. However, most existing
methods estimate the two-dimensional (2-D) gradient with
respect to a fixed signal source and do not extend directly
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to estimate the gradient where nodes are mobile. While the
estimation in the former case is analogous to regression
in a 2-D space, the later requires estimations for a four-
dimensional (4-D) space. In [5], the authors’ incorporate
radio SS information into the exploration algorithm by
locally sampling the SS and estimating the 2-D gradient.
They determine the 2-D gradient of a mobile robot for a
fixed signal source. In [6], the authors’ considered a scenario
exploiting the 2-D gradient within a cooperating sensor
network, to localize and navigate to a fixed radio source.
The robot measures SS and estimates the direction of the
2-D gradient along which the robot moves in the next step.
In [7], [8], the authors focus on developing tools that allow
for online evaluation and mapping of received radio SS. In
[9], the authors’ approach entails the automated construction
of a radio map for a partially known urban environment
which can then be used to establish a team of robots and
the corresponding control algorithm that drive the team to
achieve designated targets while maintaining satisfying link
quality. In our simulation, we use known obstacles to study
their effects on the RF signal measurements when two robots
move around the obstacle. We use wall, cylinder and cage
obstacles of different sizes, which are made of perfect electric
conductor. Numerical simulations have been conducted to
evaluate the feasibility and performance of the proposed
EMF environment recognition and gradient based motion
control. The proposed methods have presented promising
solutions to joint message routing and link maintenance in
mobile robot network.

II. FORMULATION FOR EMF RECOGNITION

EMF environment recognition is based on RF signal
strength measurements along the robot trajectory. The
method aims to identify and classify the EMF environment
shadow type along the robots paths. The HMM result based
EMF recognition informs moving robots whether they are
under the effects of an obstacle shadow or not. Afterwards,
the motion control algorithm based on the HMM results
decides the controlled motion to recover from the obstacle
shadow and maintain the robots connectivity.

A. EMF Environment Modeling

In our EMF recognition application scenario, we use two
sensors to transmit and receive RF signals at 2.4 GHz, re-
spectively. The sensor measurement is the RF signal strength
at the current location of the receiver, which is affected by
fading and interference [10]. The robots are positioned in 2-D
Cartesian coordinates (zy, yx) at time k. The 2-D space for
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the EMF is divided into grids. The grid widthis A, = L, /M
in z-direction and A, = L, /N in y-direction. Here, L, and
L, are the length and width of the space, and M and NN are
the number of segments in z-direction and y-direction as in
Fig. 1 (b).

(@ (b)

Fig. 1. (a) Experimental scenario with two robots moving on different sides
of a wall, and (b) the 2-D space divided into grids in numerical simulation
experiments.

In our numerical simulation experiments, we assume that
the robots move in this 2-D space along the following
trajectories to collect SS measurements. The [th trajectory
is given by
o) =al), u) = ug) +kAy, k=12, N, (1

’ s

where [ is the trajectory index, i € {1,2} is the robot
index, (xéLg, y(()zl)) denotes the initial location of the ith robot
at time 0. (1) describes the ith robot’s motion which begins
with (zfﬁ,yé’?) and then moves along y-direction with a
step size of A, for each time step. Furthermore, for the

1st robot, we assume x&) = [A,, yé’l = 0 for the [th

trajectory. For the 2nd robot, we assume :JcéQZ) = xéll) +d and

yé?l) = y((fl). The two robots are separated by a fixed distance

d in z-direction, but they are with the same coordinate
in y-direction. The experiment scenario with two robots is
demonstrated in Fig. 1 (a). The sensor measurements at time
k for the [th trajectory in the presence of obstacle type 7j,
which is the RF received SS at the receiver location, is
denoted as

j 1 1 1 2 2 2 2
Slm(k) = f(xé],yé’l),x,(f,l%y,i,,),xé,f,yé,l),wﬁc,f,yfc,,),cﬁj), (@)

which is a function of the initial robot positions (:r(()i%7 y((;; ),

robots positions (z”,y{") at time k and the obstacle char-
acteristics ¢;. Here, the index of the trajectory [ =1, ..., L)
for each j, where L) is the number of the trajectories with
the presence of type j obstacle. In (2), j € {1,2, 3} denotes
the obstacle type and ¢; = {(z%),y%), 89} denotes
the obstacle characteristic set. The obstacle characteristic set
contains the central position of the obstacle (xg]), yﬁj )) and
the shape parameters of the obstacle 6. For example, the
wall obstacle is with the parameters of central coordination
(%7 %), and the shape parameters 0%) contains its width,
length and height information.

The SS measurements in the experiment field with the
presence of three obstacle types are demonstrated in Fig. 2
(a), Fig. 3 (a) and Fig. 4 (a). Fig. 2 (b), Fig. 3 (b) and
Fig. 4 (b) show the measurement sequence shapes obtained
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Fig. 2. The RF SS measurements in the 2-D experimental space with
the presence of (a) a wall obstacle and (b) RF SS measurement sequences
corresponding to different trajectories.

from different trajectories. By investigating how the SS
changes at different locations, it is possible to recognize and
classify the EMF signatures of certain obstacle types. We
used Computer Simulation Technology (CST) Microwave
Studio [11] software for EMF simulation and studied three
types of obstacles, wall, cage and cylinder for different sizes.

III. HMM BASED EMF RECOGNITION METHOD

The block diagram in Fig. 6 summarizes the major steps of
our algorithm for EMF recognition. First, each measurement
vector obtained from different trajectories is segmented into
small segments as shown in Fig. 5. Each segment is then
transformed into the frequency domain using fast Fourier
transform (FFT) for extracting features in the frequency
domain. We use a subset of all feature vectors for the training
set and the reminder used for the testing set. The extracted
feature vectors for training are then clustered using K-means
clustering algorithm to generate observation sequences CZ(J ),
The generated observation sequences are used to train three
HMMs, one for each obstacle type. Each HMM model
consists of 5 states, corresponding to 5 binned segments of
robot motion through a trajectory. As described above, each
model was trained using a set of observation sequences. The
HMM classification models were tested using the testing set
of feature vectors. Using the trained HMM results, the EMF
recognition is achieved and then utilized for robot motion
control aiming at proactive connectivity maintenance.

The robot motion is a sequential event, and we were
interested in classification based on its temporal ordering.
There exists a strong analogy of EMF classification using
SS measurements to word recognition using speech patterns

3399



-100

-150

Signal Strength (dBm)

-200

Signal Strength (dBm)

(b)

Fig. 3. The RF SS measurements in the 2-D experimental space with the
presence of (a) a cage obstacle and (b) Different trajectories.

[12]. The use of HMMs provides an intuitive approach to
supervised classification. It naturally breaks up the robot
trajectory into constituent parts, similar to the way they are
synthesized. The HMM approach also provides a simple
mechanism for classifying a subset of segments in the robot
trajectory through an obstacle shadow during its movement,
as opposed to classification at the completion of a trajectory.
The following paragraphs review HMMs and our application
of them to EMF recognition.

HMMs [13] is a method to model stochastic events.
A model A\ consists of states () and their corresponding
probabilities of observations B, as well as probabilities of
transitions between states A. Given a sequence of observa-
tions, O, and a model A, one can drive what is P(O|\),
the probability of observations O given A. Essentially, this
is a measure of how well the model represents the event. In
the case that the model is unknown (i.e. hidden), the model
can be learned. To train a model, training data (a set of
observations O; for (i = 1, ...,n) is used to modify an initial
estimate of model parameters with the goal of maximizing
P(O])) using Baum-Welch, EM, or gradient methods. For
classification, a model is created for each class )\(j) for
(j =1,...,m,), Where m, is the number of obstacle types.
To assign obstacle type membership to a novel observation
O, P(O|\()) is calculated for each type j, and the class
whose model has the highest probability is assigned to O.
The detailed algorithm description and preliminary results
are presented as follows.

A. Measurement Segmentation and Feature Extraction

We denote the measurement vector collected in the
robot movement along the I[th trajectory as ,Bl(] -
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Fig. 4. The RF SS measurements in the 2-D experimental space with the

presence of (a) a cylinder obstacle and (b) Different trajectories.
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Fig. 5. Segmented wall signals.

[Sl(j)(l) Sl(j)(Z) Sl(j)(Nm)]T, where N,, represents the
number of SS measurements along the /th trajectory for the
jth obstacle type. Each B(j) is segmented into five seg-
ments denoted as a§f£=[Sl(‘76(5(u —1)+1) - Sl(j)(Su)]T,
u=1,2,---,5 as in Fig. 5. Afterward, each measurement
segment agju) is transformed into the frequency domain

using FFT, and the results of FFT are denoted as I‘l(jg =
FFT(a(j ) Np rr), where FFT(-) denotes the FFT operation,

l,u
Nrppr denotes the number of points in the FFT results.
The first 10 elements in the FFT result I‘Z(JJ are defined as
. , , , T
£ = [T T 0o
of the measurement corresponding to the /th trajectory and
jth obstacle type. Once each segment is transfered into
frequency space, the feature vector I‘l(ji is clustered using
the K-means clustering algorithm. Then, the HMM uses
these binned segments to classify the obstacle shadow based
on the probabilistic sequence of segments. In other words,
we used spatial distinctions to classify cluster each segment
(a phoneme) using k-means clustering algorithm, and the

the feature vector ~
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Fig. 6. Block diagram of RF environment recognition processing steps.

temporal ordering within the sequence to classify obstacle
shadow (a word) using HMM classification method. In our
numerical experiments, we tried different training sets to
examine their effect on the recognition rate. We found that
the recognition rate is affected positively by the size increase
of the training sets. Data was randomly split into training
and testing sets for the verification of the HMM classifier.
We randomly select 60% of the measurement vectors into the
training set S¢. which is used for clustering and training,

train
and the rest constitutes the testing set Sg.

B. Unsupervised Clustering for Observation Generation
The measurement vectors 'y(J ) in the training set S¢ ..,

are clustered into G clusters using the k-means clustering

algorithm. We denote the G clusters as D1, Ds,--- ,Dg so

that the within-cluster sum of squares (WCSS) is minimized.
The k-means algorithm is summarized in (3) as

arg min Z S 47 = g 112 3)

PrPe =1 g ese ~0)ep,

train

where g1, is the centroid of D,

Dy || viu—
the vector 71(]3 and p,. After Dy and p, are generated by
the k-means clustering algorithm they are used to assign
observation symbols to the feature vectors to generate obser-
vation sequences for HMM training and test. First, we denote
the symbol set used for representing HMM observations as

= {C4,---,Cq} with Cy as the gth symbol. The symbol

C(] ) corresponding to the data segment 'y(J ) is assigned with

, i.e. the mean of points in

—pt, ||? is the squared Euclidean distance between

the value Cj if || 'y(J ) — 1, ||* has the minimum value among
all ¢ € {1,2,--- ,G}. In other words, CZ(Q is assigned
with symbol Cj, if the closest cluster centroid to the feature
vector 'yl(J ) is Hg. We concatenate the Cl(]u) corresponding
to the segments from the Ith trajectory to form the vector
i — [c“') , Cmr
observatzon sequence correspondmg to measurement vector

161 . Observation sequence C, ) is in the HMM training set
() s

The resulting vector C(j ) is the

SIMM if its corresponding measurement vector 3;”’ is in the
clustering training set S, otherwise, it is in the HMM test
set SHMM,

test
In summary, followmg the above procedure, an measure-
ment vector (3, ) for the Ith trajectory in the presence of

type j obstacles, is segmented into segments O‘l(]i’ U =

1,2,3,4,5. Consequentially, each al({j is transformed into
the fre(%uency domain by FFT, and the FFT result is denoted
J

by 1"( The first 10 elements in 1"1(32 are selected to

form feature vector 'y(J ). The feature vectors are clustered

using the k-means clustering algorithm to generate G clus-
ters, D1, ,Dg, and the corresponding cluster centroids
My, -+, Hg. Using the cluster parameters, each segment
feature vector 71(,) is assigned with a symbol C} J €C. We
(J’)

concatenate C'’,; to form the observation sequence C(J ). At

this point, the measurement vector for each trajectory ,6(] )

is transformed into observation sequence C), @) and ready for
training or testing HMMs.

IV. NUMERICAL RESULTS ON HMM BASED
RECOGNITION

The HMM training set SEMM is used to train three HMMs,
and each HMM corresponds to one of the three obstacle
types. We denote the trained HMMs as A(;y, with j =1,2,3
corresponding to obstacle type of wall, cage and cyhnder
respectively. Given an observation sequence C| () which are
composed of several observation symbols, the conditional
probability of C; @) given HMM A\(,, P (C( | )\(p))
calculated for p = 1,2, 3 for classification. If the maximum

P(C, @ | A(p)) is obtained with p = p, we predict that
the EMF environment is with obstacle type p. We note that
C’l(] ) is an observation sequence with arbitrary length, and
thus may only contain the first few available observations.
This corresponds to the scenarios where the robots are
approaching an obstacle without all the observations being
available.

A. Different cylinder sizes

In this experiment, a total of 535 measurement vectors
are used. A subset of 321 measurement vectors are used for
training, and the reminder are used for testing. These mea-
surement vectors contain three different cylinder radiuses,
which are 7 = 10 cm, 7 = 15 cm and r = 20 cm, the height
of the cylinders is 30 cm. The confusion matrix of the EMF
recognition results are shown in Tables 1, 2 and 3, each row
of the confusion matrix represents the predicted class and
each column represents the actual class. Table 1 demonstrates
the confusion matrix of EMF recognition using the first
2 elements in observation sequences, the classification rate
achieved is 84%. Table 2 demonstrates the confusion matrix
using the first 3 elements in observation sequences, the sucess
rate is 92% and Table 3 demonstrates the confusion matrix
of EMF recognition using 4 elements the classifiction rate is
100%.

TABLE 1
CONFUSION MATRIX OF EMF RECOGNITION BY 2 OBSERVATIONS.

Cylinders r = 10 cm r = 15cm r = 20cm

r=10cm 0.86 0.0 0.14

r=15cm 0.14 1 022

r = 20cm 0.0 0.0 0.64
TABLE II

CONFUSION MATRIX OF EMF RECOGNITION BY 3 OBSERVATIONS.

Cylinders r = 10 cm r = 15cm r = 20cm

7 = 10 cm 1 0.0 0.0
T = 15 cm 0.0 1 0.0
T = 20 cm 0.0 0.0 1
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TABLE III
CONFUSION MATRIX OF EMF RECOGNITION BY 4 OBSERVATIONS.

Cylinders r = 10 cm r = 15cm r = 20cm
7 = 10 cm 1 0.0 0.0
T = 15 cm 0.0 1 0.0
T = 20 cm 0.0 0.0 1

B. Different walls, cylinders and cages sizes

In this experiment, a total of a 825 measurement vectors
containing the three aforementioned obstacles with different
sizes. A subset of 495 measurement vectors are used for
training, and a subset of 330 measurement vectors are used
for testing. The confusion matrix of the EMF recognition
results are shown in Tables 4, 5 and 6, each row of the
confusion matrix represents the predicted class and each
column represents the actual class. Table 4 demonstrates
the confusion matrix of EMF recognition using the first 2
elements in observation sequences the classification rate is
87%. Table 5 demonstrates the confusion matrix using the
first 3 elements in observation sequences, the success rate
for this experiment is 89% and Table 6 demonstrates the
confusion matrix of EMF recognition using 4 elements of
the observation sequences the classification rate is 92%. The
results show that the HMM classifier can achieve satisfied
classification performance when 2 observations are available,
and the classification performance improves as more obser-
vations become available. Thus, these results demonstrate
that the proposed method has sufficient ability in EMF
environment recognition for proactive robot planning.

TABLE IV
CONFUSION MATRIX OF EMF RECOGNITION BY 2 OBSERVATIONS.

Different obstacles Cage Wall wall Cylinder | Cylinder

30 em® 10 em 15 em 10 em 15 cm
Cage 30 cm® 1 00 0.0 0.0 0.0
wall w = 10 em 0.0 1 0.44 0.0 00
wall w = 15 cm 00 00 0.56 0.0 0.0
Cylinder » = 10 em 00 00 00 0.80 0.0
Cylinder » = 15 em 0.0 00 00 020 1
TABLE V

CONFUSION MATRIX OF EMF RECOGNITION BY 3 OBSERVATIONS.

Different obstacles Cage Wall wall Cylinder | Cylinder

30 em® 10 cm 15 em 10 em 15 cm
Cage 30 cm® 1 00 0.0 0.0 0.0
wall w = 10 em 00 034 00 0.0 0.0
wall w = 15%m 00 0.66 1 0.0 0.0
wall » = 10 cm 00 00 00 0.80 0.0
Cylinder » = 15 em 0.0 00 00 020 1

TABLE VI
CONFUSION MATRIX OF EMF RECOGNITION BY 4 OBSERVATIONS.

Different obstacles Cage wall wall Cylinder | Cylinder

30 em 3 10 em 15 cm 10 em 15 cm
Cage 30 cm® 1 0.0 00 0.0 0.0
wall w = 10 em 00 1 040 00 00
wall w = 15 cm 00 00 0.60 0.0 00
Cylinder w = 10 em 00 00 00 1 00
Cylinder w = 10 em 00 00 00 00 1

V. MOTION CONTROL ALGORITHM FOR CONNECTIVITY
MAINTENANCE
In the application scenario, when a moving robot starts to
lose communication connectivity with the team, its motion

control mechanism will guide the robots towards favorable
positions in the field for maintaining the connectivity or
fixing the failing link. The motion control algorithm needs to
utilize the knowledge learned from EMF recognition through
HMM results. Once the robot recognizes the obstacle shadow
or obstacle type, the motion control algorithm will decide
whether the robots continue their trajectories or move the
robots back to a position in the field where the robots can
gain a strong signal strength. The motion control algorithm
takes the first decision, it drives the robots to move across
the obstacle shadow towards a favorable position to main-
tain their connectivity based on the HMM results. If the
motion control algorithm chooses the second decision, the
robots start computing the gradient to find the trend of the
strong SS and then maintain their connectivity. We use the
gradient based motion control algorithm, by which the multi-
dimension gradient of the SS measurements is extracted for
controlling robot movement around the obstacle. In other
words, the motion control algorithm has the decision to con-
tinue the movement through the obstacle shadow or to move
back to a position in the field that has a strong enough SS,
and computes the gradient to define the direction of robots
movement to maintain their connectivity, depending on the
HMM results that estimate the type and the approximate size
of the obstacle. The flowchart in Fig. 7 summarizes the main
steps of the motion control algorithm.

obstacle
Type and Size

. Move forward
Apply gradient descent (continue current path)
algerithm Get out of shadow

Fig. 7. Flowchart diagram of the motion control algorithm

A. Gradient based Motion Control

In the SS gradient experiments, we start with a simple
scenario where two mobile robots transmit and receive RF
signals, respectively. The sensor measures SS at the receiver
location. The two robots are separated by distance d along
the r-direction as shown in Fig. 1 (b). The signal strength
SZ(J )(k:) at time £ for the Ith trajectory in the presence of
obstacle type j can be calculated according to (2) defined in
Section 2.1.

As the robots move in the EMF environment with LOS
between each other, the signal strength SZ(J )(k:) remains
stable. However, if a conductive obstacle appears in the
experiment field, the SZ(J )(k:) is subject to change as the
robots move around the obstacle. In this scenario, the SS
measurements, SZ(J ) (k), resulted from the two moving robots

are to be measured and recorded for each (x,(:), y](:)), i=1,2
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Fig. 8. Step wise trajectory of two robots as transmitter and receiver.

at time k. We then extract the 4-D gradient vector of the SS
corresponding to known trajectories. The gradient vector of
the SS at time % for the [th trajectory is defined as

88 (k) s (k) 987 (k) BSl(j)(k)]T @

(4
v (k) =
! [ 83:,(:) 8y,(€1) 83:,&2) 8y,(€2)

In typical scenarios, robots would move in parallel
straight-lines to reach their goal. However, this leads to
undefined gradient estimates because the sampling locations
can not be co-linear. Therefore, rather than traveling in
parallel straight-lines trajectories, the robots introduces some
dither or oscillations to their paths as shown in Fig. 8. This
makes the gradient estimation more robust at the cost of
distance. We calculate the SS gradient using the trajectories
as shown in Fig. 8 where we assume robot 1 and robot 2
are located at positions (z;, (@ ), y,gl)) and (z (2),y,(€2)) at time k,
respectively. If only one robot moves at a time and the other
stays still, the gradient can be calculated using the following
method. Fig. 8 shows the step wise trajectories for the two
mobile robots for calculating the gradient vector. During time
k and k + 1, robot 1 moves along trajectory segment 1, so
o= el = =D 0
and the gradient element 2 o (1() ) ;

as (k) 289H) 8D (k1) - 89 (k)
PRE) PO Az ®
T Ty

is calculated as

During time £ 4+ 1 and k£ + 2, robot 2 moves along

trajectory segment 2, so x,gl+)2 = x,(;)l, ,222 = y,glﬁl,
(2) (2)

(2) (2)

xkﬂ(— 11+ Az, yp s = Yy, and the gradient element
a
a”q—(;)) calculated as
Oz,
89s9 (k) ASPk+1) SP(k+2)-8T (k+1)
92 ra® Az ©
Ly Lrt1

During time £+2 and k43, robot 1 moves along trajectory

segment 3, so x,gl+)3 =2y )

Yo T+ Dy, xk+3 =

Trto Ypps = :
(2) (2) (2) ; 887 (k)
T s, = , and the gradient element —L——~ is
k20 Y3 = Ypt2 g oy
calculated as
050 ) a5 (k) SOk -5 k)
ayl(ﬁl) Aylg:l—22 Ay

During time £+ 3 and k44, robot 2 moves along trajectory
(1 2D M ORC)) 2

segment 4, so 2,7y = 2303, Yply = Yniss Tpia A
a

E) .

y,g2+)4 = ,22+)3 + Ay, and the gradient element agy—f()) is

calculated as

asP (k)  ASP(k+3)  SD(k+4)— ST (k+3)

=] = ®
8y,(€2) Ay,(jzg Ay

As we can see in Fig. 9 (a), when the two robots have the
LOS between each other, their reception SS is strong, which
is indicated by yellow boxes, and their gradient directions
point towards each other, which is indicated by arrows.
However, when one of the robots is trapped inside the cage,
the gradient amplitudes become small, which is indicated by
green boxes. The movements of the robot which is outside
of the cage do not result in a noticeable increase of the SS.
However, as we can see in Fig. 9(a), small movement of the
trapped robot result in a significant increase of the SS once
it leaves the cage. In Fig. 9(b), the robot moves extremely
close to the cage in a step wise trajectory while the other
robot is stands still on the left side of the cage. The gradient
points along the direction of the other robot in the presence
of LOS and it is subject to scatter when the obstacle blocks
the two robots.
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Fig. 9. (a) Two robots move in the experiment field, with one trapped
in the cage, and the (b)The left robot stays still and right robot moves in
stepwise trajectory.

Fig. 10(a) shows the SS gradient direction and SS magni-
tude for the scenario when one robot is close to one corner of
the cage while the other one moves in a step wise around the
cage. The gradient points toward the other robot when there
is a LOS, and it subject to scatter as the robots separated
by an obstacle. The observation from Fig. 9(b) and Fig. 10
(a) shows that gradient directions can lead the robots to the
favorable positions to maintain their connectivity. Fig. 10
(b) shows a scenario where two robots move in parallel one
at a time along different trajectories around the cage. The
robot at the left side moves two segments in a step wise
trajectory, one segment in x-direction and the other one in
y-direction while the other robot stands till. Then, the stands
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still robot moves one segment in y-direction along a straight
line trajectory and this process repeated along each trajectory
in the experiment field. In this experiment, the gradient is
calculated for the right robot according to (5) and (7). The
gradient directions and magnitudes of the SS are shown at
each position. This confirms that the gradients are useful
in finding favorable locations to maintain RF links between
robots.

R moves

M=
L

]

Xem

®
Fig. 10. (a) The right robot stays still and the right robot moves in stepwise
trajectory, and (b)Two robots move at the two sides of the cage.

B. The Gradient Algorithm Results

The idea of the motion control algorithm is to divide the
experiment field of the robots into grids as explained in
Section 2.1. shown in Fig. 11(a), two robots move in the
area defind by yellow grids, measure the SS and calculate
the gradient for any two points in the field for motion
control. A database is established which contains the robots’
positions, SS measurements, and gradient calculation results
at each time k. The flowchart of the gradient algorithm is
shown in Fig. 12. Fig. 11(b) shows two robots trajectories
where robot 1 starts at 2" = 20,y(()1) = 11 and robot
2 starts at ng) = 38,3/(()2 = 14 at time £ = 0 in the
experiment field. The gradient algorithm drives the robots to
avoid the obstacle shadow and maintain their connectivity.
Fig. 13 (a) shows two trajectories where robot 1 starts at
(xgl) =17, y(()l) = 15) at the entrance of the cage obstacle
and robot 2 starts at (ng) = 38,y(()2) = 15) on the right side
of the obstacle at time & = 0. Both trajectories show that the
gradient algorithm can guide the robots to approach each
other to evade the obstacle effects and maintain the robots’
connectivity.

The scenario in Fig. 13(b) shows two robots trajectories
where robot 1 starts at xgl) = 22,y(()1) = 17 and robot 2
starts at ng) = 40, y((]Q) = 23 at time &k = 0. This experiment
illustrates how the algorithm performs when robot 1 faces the
obstacle while robot 2 moves at far right most of an obstacle.
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Fig. 12. Gradient Algorithm flowchart.

It is clear that the gradient algorithm has the ability to drive
the robots safely and maintain their connectivity.

C. The Motion Control Algorithm Results

The HMM results through EMF recognition demonstrates
detection of an obstacle on the robot trajectory and confirms
the obstacle type and approximate size within specific dis-
tance along the robot path. The motion control algorithm
uses the HMM results to drive robots to continue moving
forward through the current trajectories if the segments
length traveled by the robots are greater than or equal one
half of the estimated obstacle size as shown in the scenario of
Fig. 14 (a). Otherwise, the robots stop movement and move
back to a position where it can gain strong SS. Then, the
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robots run the gradient algorithm to define the direction of
the strongest SS. Afterwards, the robots move in the direction
of the gradient and attempt to regain communication as
shown in the scenario of Fig. 14 (b). Fig. 7 summarizes the
main steps of the motion control algorithm.

VI. CONCLUSION

In this paper, an EMF environment recognition approach
and a gradient based robot motion control method were
presented. Extensive numerical simulations were conducted
to evaluate the feasibility and performance of the proposed
EMF environment recognition and gradient based motion

control. The proposed methods have presented preliminary
studies and promising solutions to joint physical message
routing and logical link maintenance in robots network.
We expect that the proposed methods can be a compet-
itive alternative to broken link replacement and maintain
robot connectivity in robotic networks. We can achieve that
through controlling the movement of mobile robots in the
field.
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