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Abstract—1In this paper, we propose a dense visual SLAM
method for RGB-D cameras that minimizes both the photomet-
ric and the depth error over all pixels. In contrast to sparse,
feature-based methods, this allows us to better exploit the
available information in the image data which leads to higher
pose accuracy. Furthermore, we propose an entropy-based
similarity measure for keyframe selection and loop closure
detection. From all successful matches, we build up a graph
that we optimize using the g2o framework. We evaluated our
approach extensively on publicly available benchmark datasets,
and found that it performs well in scenes with low texture as
well as low structure. In direct comparison to several state-
of-the-art methods, our approach yields a significantly lower
trajectory error. We release our software as open-source.

I. INTRODUCTION

Many robotics applications such as navigation and map-
ping require accurate and drift-free pose estimates of a
moving camera. Previous solutions favor approaches based
on visual features in combination with bundle adjustment or
pose graph optimization [1], [2]. Although these methods are
state-of-the-art, the process of selecting relevant keypoints
discards substantial parts of the acquired image data. There-
fore, our goal is to develop a dense SLAM method that (1)
better exploits the available data acquired by the sensor, (2)
still runs in real-time, (3) effectively eliminates drift, and
corrects accumulated errors by global map optimization.

Visual odometry approaches with frame-to-frame match-
ing are inherently prone to drift. In recent years, dense
tracking and mapping methods have appeared whose per-
formance is comparable to feature-based methods [3], [4].
While frame-to-model approaches such as KinectFusion [5],
[6] jointly estimate a persistent model of the world, they
still accumulate drift (although slower than visual odometry
methods), and therefore only work for the reconstruction
of a small workspace (such as a desk, or part of a room).
Although this problem can be delayed using more elaborate
cost functions [7], [8] and alignment procedures [9], a more
fundamental solution is desirable.

In this paper, we extend our dense visual odometry [7]
by several key components that significantly reduce the drift
and pave the way for a globally optimal map. Figure 1 shows
an example of an optimized trajectory and the resulting
consistent point cloud model. The implementation of our
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Fig. 1: We propose a dense SLAM method for RGB-D
cameras that uses keyframes and an entropy-based loop
closure detection to eliminate drift. The figure shows the
groundtruth, frame-to-keyframe odometry, and the optimized
trajectory for the fr3/office dataset.

« a fast frame-to-frame registration method that optimizes
both intensity and depth errors,

e an entropy-based method to select keyframes, which
significantly decreases the drift,

« a method to validate loop closures based on the same
entropy metric, and

o the integration of all of the above techniques into a
general graph SLAM solver that further reduces drift.

Through extensive evaluation on a publicly available RGB-D
benchmark [10], we demonstrate that our approach achieves
higher accuracy on average than existing feature-based meth-
ods [1], [2]. Furthermore, we demonstrate that our method
outperforms existing dense SLAM systems such as [5], [11].

II. RELATED WORK

The estimation of the camera motion is known as visual
odometry [12]. Most state-of-the-art methods establish cor-
respondences between sparsely selected visual features to
estimate the camera motion [13]-[16].

As an alternative to these classical approaches to vi-
sual odometry dense methods have emerged in past years.
Comport et al. proposed a method to directly minimize
the photometric error between consecutive stereo pairs [4].
Steinbriicker et al. [3] and Audras et al. [17] applied this
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approach to images obtained from recent RGB-D cameras
like the Microsoft Kinect. In our own recent work we em-
bedded the photometric error formulation into a probabilistic
framework and showed how to robustify the cost function
based on a sensor model and motion priors [7].

Instead of a photometric error one can also minimize a
geometric error between 3D points. This class of algorithms
is known as iterative closest point (ICP) [18], and many
variations of the algorithm have been explored [19], [20].

Combined minimization of photometric and geometric
error was proposed by Morency et al. [21] for head tracking
and more recently for camera motion estimation by Tykkéala
et al. [8] and Whelan et al. [9]. Meilland et al. recently
extended this method to localize the camera with respect
to a reference frame and simultaneously compute a super-
resolved version of it [22].

All odometry methods are inherently prone to drift, be-
cause the error of the frame-to-frame motion estimation
accumulates over time. This can be resolved by simultane-
ously estimating a consistent map. Then the camera can be
localized with respect to the consistent model eliminating the
drift.

Newcombe et al. proposed to incrementally build a dense
model of the scene and registering every new measurement to
this model [5], [23]. Whelan et al. extended the KinectFusion
algorithm of Newcombe et al. to arbitrarily large scenes [24].
As KinectFusion does not optimize previous camera poses,
there is no possibility to correct accumulated errors in the
model. The goal for Simultaneous Localization and Mapping
(SLAM) or Structure from Motion (SfM) approaches is to
jointly optimize the model and the camera trajectory. In this
way, it is even possible to correct large accumulated errors
after detecting a loop closure. In feature-based methods,
the scene is often represented as a collection of previously
observed 3D feature points. For joint optimisation two main
groups of approaches exist. One group comprises filtering-
based methods, which include the camera pose and feature
locations in the state of a filter, e.g. an extended Kalman
filter [25], [26], and incrementally refine them. The second
group uses batch optimization to refine feature locations and
camera poses [27], [28]. Pose SLAM does not optimize the
scene structure in conjunction with the sensor poses, but
only optimizes the sensor poses [29], [30]. In Pose SLAM
the map is represented as a graph in which the vertices
represent absolute sensor poses and the edges represent rel-
ative transformations between them. These transformations
are calculated from sensor measurements. Recently, several
Pose SLAM-based algorithms utilizing RGB-D cameras have
been proposed [1], [11], [31].

In this paper we propose a visual SLAM system, which
combines dense visual odometry based on a joint photometric
and geometric error minimization and Pose SLAM. We show
that our system outperforms comparable sparse feature-based
methods [1], [31] and dense frame-to-model tracking ap-
proaches [5]. In contrast to recent work of Tykkali et al. [32],
we acquire keyframes and optimize the map simultaneously.
Furthermore, we do not require user interaction.

Fig. 2: The general idea of our dense RGB-D alignment
approach: We estimate the camera motion g* between two
RGB-D images by minimizing photometric and the geomet-
ric error.

III. DENSE VISUAL ODOMETRY

Our goal is to estimate the motion of the camera solely
from its image stream. At every timestep ¢ the camera
provides an RGB-D image comprising an intensity image
7Z: and a corresponding depth map Z;. Given the RGB-D
images at two consecutive timesteps we want to calculate
the rigid body motion g of the camera.

Figure 2 illustrates the idea. Given a 3D point p in
the scene and the correct motion g* we can compute its
corresponding pixel coordinates in the first image x and in
the second image x’. The measured intensity at these two
pixels should be identical, i.e., Z;(x) = Z3(x'). In general,
this should be true for every point. This assumption is
also known as photo-consistency and holds as long as the
sensor is noiseless, the scene is static, and the illumination is
constant. Using this principle we find the camera motion by
maximizing the photo-consistency between the two images.

A similar assumption can be formulated for the depth
measurements. Given a point p and the correct motion g* we
can predict its depth measurement in the second depth map
Z5. Ideally the predicted depth measurement and the actual
measurement are equal. Generalizing, every point should
satisfy this constraint. Therefore, the motion can be estimated
by minimizing the difference between the predicted and the
actual depth measurements. In the following we formalize
our approach.

A. Camera Model

A 3D point is defined in homogeneous coordinates as
p = (X,Y,Z,1)T. We reconstruct a point from its pixel
coordinates x = (x,%)" and a corresponding depth mea-
surement Z = Z(x) using the inverse projection function
1, ie.,

-

T =0y, Y— 0y >

Z, Z,2,1 (1
fa fy

where f,, f, are the focal lengths and o,, o, are the

coordinates of the camera center in the standard pinhole

camera model. The pixel coordinates for a point can be

p=rx2) = (

2101



computed using the projection function 7:

-
x=mn(p) = (Xfw —i—ogE,Y—fy +oy> ) 2)

VA Z
B. Rigid Body Motion

We restrict the camera motion g to the class of rigid
body motions forming the special euclidean group SE(3).
A common representation for rigid body motions g is a
transformation matrix 7',

R t
Tixa = [ 0 31“] (3)

comprising a rotation matrix and a translation vector. The
transformation of a point p with g represented as transfor-
mation matrix is defined as:

gp)=p' =Tp. “4)

The transformation matrix 7" is an overparamatrized rep-
resentation of g, i.e., T' has twelve parameters where as
g only has six degrees of freedom. Therefore, we use the
representation as twist coordinates £ given by the Lie algebra
se(3) associated with the group SE(3). £ is a six-vector. The
transformation matrix 7" can be calculated from & using the

matrix exponential T' = exp(§).

C. Warping Function

With the previously defined projection function and rigid
body motion we can derive a warping function 7, which
computes the location of a pixel from the first image in the
second image given a rigid body motion:

x' =7(x,T) = 7r(T7r_1 (x, Zl(x))). (5)

D. Error Functions

Based on the warping function 7 we define the photometric
error rz for a pixel x as

rr =T(7(x,T)) - Ta(x). 6)
Similarly, the depth error is given as
rz = Z(7(x,T)) — [Tﬂ'*l(x, Zl(x))]z @)

where [-] returns the Z component of a point, i.e., [p]z =
Z . Therefore, the second term is the depth of the transformed
point, which was reconstructed from the first depth image.
It can be shown that the depth error is equivalent to the
formulation of point-to-plane ICP with projective lookup.

E. Probabilistic Formulation

In our previous work [7] we gave a probabilistic formula-
tion for the estimation of the camera motion £ given the
photometric error rz. The formulation allows the use of
different probability distributions for the photometric error
and priors for the motion parameters £. In the following we
give a short summary of the derivation. We seek to determine
the motion £&* by maximizing the probability given the pixel-
wise error, i.e.,

&= argénaxp(ﬁ | rz). )

After applying Bayes’ rule, assuming all errors are indepen-
dent and identically distributed (i.i.d.) and using the negative
log-likelihood, we get

€ = argmin - > log (p(rzi | €)) —log (p(§)). 9

In case p(rz,; | &) is defined as a Gaussian distribution,
this results in a standard least-squares problem. However,
we found the photometric error to follow a t-distribution
pe(0,0%,v) with zero mean, variance o and v degrees of
freedom. We find the t-distribution to be a suitable model, be-
cause it can be interpreted as an infinite mixture of Gaussians
with different variances [33]. Therefore, it relaxes the i.i.d.
assumption in (9). Large errors stem from components with
large variance and get low weights. Conversely, small errors
belong to components with small variance and get higher
influence. Defining p(rz; | ) as a t-distribution leads to an
iteratively re-weighted least squares formulation:
n
& = argmin Z w; 7%1 (10)
¢ i

In this paper, we extend our previous formulation by in-
corporating the depth error rz. Therefore, we model the
photometric and the depth error as a bivariate random vari-
able r = (rz,7z)7, which follows a bivariate t-distribution
p+(0, X, v). For the bivariate case, (10) becomes:

& :argminZwiriTE_lm. (11)
£ i
The weights w; based on the t-distribution are:
1
wi=—2E (12)

v+ 7{2*17“2- '

Note that our formulation is substantially different from
previous formulations [8], [9], [21], because they only com-
bine the photometric and depth error linearly. To balance
the two error terms they used a manually chosen [9] or
heuristically computed weight [8]. Furthermore, the linear
combination assumes independence between the two errors.
In contrast, our model down-weights errors, which have
either a large photometric, or a large depth error, or both
as they are likely to be outliers. Additionally, the weighting
of the error terms by X is automatically adapted.

F. Linearization and Optimization

The error function (11) we seek to minimize is not linear in
the motion parameters §. Therefore, we linearize it around
the current motion estimate &, using a first order Taylor
expansion. The resulting normal equations of this non-linear
least squares problem are:

AAE=D
n n
13
S w IS TAE == w2 (13)
i i

where J; is the 2 x 6 Jacobian matrix containing the deriva-
tives of r; with respect to &, and n is the number of pixels.
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We iteratively solve the normal equations for increments AE.
At each iteration we re-estimate the scale matrix 3 and
the weights w; using a standard expectation maximization
algorithm for the t-distribution [34]. Furthermore, we employ
a coarse-to-fine scheme to account for a larger range of
camera motions.

G. Parameter Uncertainty

We assume that the estimated parameters £ are nor-
mally distributed with mean £* and covariance X, i.e.,
&€ ~ N(&",3¢). The approximate Hessian matrix A in
the normal equations (cf. (13)) is equivalent to the Fisher
information matrix. Its inverse gives a lower bound for the
variance of the estimated parameters &, c.q., X¢ = A7 L.

To summarize, the method presented in this section allows
us to align two RGB-D images by minimizing the photo-
metric and geometric error. By using the t-distribution, our
method is robust to small deviations from the model.

IV. KEYFRAME-BASED VISUAL SLAM

The incremental frame-to-frame alignment method pre-
sented above inherently accumulates drift, because there is
always a small error in the estimate. This error is caused by
sensor noise and inaccuracies of the error model, which does
not capture all variations in the sensor data.

To overcome this limitation we adapt the idea of keyframe-
based pose SLAM methods [1], [11], [28] and integrate it
with our dense visual odometry approach. To limit local drift
we estimate the transformation between the current image
and a keyframe. As long as the camera stays close enough
to the keyframe no drift is accumulated. Every keyframe is
inserted into a map and connected to its predecessor through
a constraint. When previously seen regions of the scene
are revisited additional constraints to older keyframes can
be established to correct for the accumulated drift. These
additional constraints are called loop closures. Therefore, a
SLAM system needs to additionally perform:

« keyframe selection,

« loop closure detection and validation, and

e map optimization.

In the following sections we describe our solutions to these
sub problems.

A. Keyframe Selection

When the current image can no longer be matched against
the latest keyframe a new one has to be used. There exist
several strategies to decide when to choose a new keyframe.
Common strategies are to create a new keyframe: every n
frames, at a certain rotational and translational distance [11],
[27], when the number of features visible in both images
is below a threshold [1]. The dense approach for omni-
directional cameras of Meilland et al. uses a threshold on
the variance and total value of the error [35].

In our approach we found that the values of the error
computed by (11) are not directly comparable, because it
depends on the scale 3 of the error distribution, which varies
between image pairs. Furthermore, we want to reduce the

true distance estimation error

0.3
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]
g 1.3 . loop closure detected
; 1.1 tracking lost
? 09 £+ — — — — — — — — — = - - — -
= 0.7
5 55084 250 , \
0 100 200 300 400 500
frame

(b) estimate uncertainty w.r.t. frame 50
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Fig. 3: Frame 50 of the freiburgl/desk dataset matched
against all frames of the dataset. Plot (a) shows the transla-
tional distance of each frame to frame 50 and the translational
error in the estimate. Plot (b) displays the entropy ratio .
Note how high entropy ratio values coincide with low error in
the estimate. The second peak in the entropy ratio indicates
a loop closure detection.

number of user defined parameters. Therefore, we use the
following strategy.

The differential entropy of a multivariate normal distribu-
tion & ~ N (u, X) with m dimensions is defined as:

H(z)=0.5m(1+1In(27)) + 0.5 In(|Z]).  (14)

Dropping the constant terms the entropy is proportional to the
natural logarithm of the determinant of the covariance matrix,
i.e., H(x) o In(|X|). Therefore, it abstracts the uncertainty
encoded in the covariance matrix into a scalar value.

We observed a relationship between the parameter entropy
H (£) and the error of the estimated trajectory. As the entropy
changes over the course of a trajectory and between different
scenes, simple thresholding is not applicable. To overcome
this limitation we compute the entropy ratio between the
motion estimate &y, j4; from the last keyframe k to the
current frame j and the motion &, ;41 from keyframe k to
the very next frame k£ + 1, i.e.,

— H (5k:k‘+j )
o= —". (15)

H (&pirt1)
The rational is that the first frame matched against a new
keyframe has the smallest distance and the estimate is most
certainly accurate. As a result, we can take this entropy as
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a reference value for future comparisons. When the distance
between current frame and keyframe grows the entropy
increases, i.e, a decreases. Figure 3 shows the entropy ratios
for the 50’th frame registered to all other frames of the
fr1/desk dataset. In this example the denominator in (15)
is the entropy of the relative transformation from frame 50
to 51, i.e., H(&k.kr1) = H(€50.51)- In case « is below a pre-
defined threshold for the current frame, the previous frame
is selected as a new keyframe and inserted into the map.
Our ratio test is similar to the likelihood ratio test for loop
closure validation described by Stiickler et al. [11].

B. Loop Closure Detection

As for the keyframe selection step several approaches exist
for the detection of loop closures. The simplest strategy
is a linear search over all existing keyframes, i.e., a new
keyframe is matched against all others. This quickly becomes
intractable as the number of keyframes grows. Therefore, it
is important to prune the search space efficiently and only
match against the most likely candidates. One common class
of methods are place recognition systems extracting visual
feature descriptors from images and training efficient data
structures for fast search and candidate retrieval [36]. Other
approaches use metrical [1] or probabilistic [11] nearest
neighbour search.

For our application we chose a metrical nearest neighbour
search, because we operate in space restricted indoor envi-
ronments and our visual odometry is sufficiently accurate.
We search loop closure candidates in a sphere with pre-
defined radius around the keyframe position. We compute
for every candidate the relative transformation between the
two keyframes and the associated covariance matrix on a
coarse resolution. To validate a candidate we employ the
same entropy ratio test as for keyframe selection (see (15)).
However, instead of the entropy of the transformation of the
first frame to the keyframe H (&j.p+1) we use the average
entropy of all successful matches of intermediate frames
to the keyframe. The intuition behind this criterion is that
intermediate frames are spatially and temporally closest to
the keyframe and therefore yield the best possible registration
results with the lowest uncertainty. If the parameter estimate
obtained from the low resolution images passes the test, we
compute an improved estimate using higher resolutions as
well. Finally, the same entropy ratio test is applied again. In
case this test is also successful we insert a new edge with the
relative pose constraint into the graph. Figure 3 shows that
the entropy ratio increases again, when the camera returns
to the vicinity where frame 50 was captured (frames 420-
450). Furthermore, Figure 3 shows that a high entropy ratio
coincides with a low error in the estimate.

C. Map Representation and Optimization

We represent the map as a graph of camera poses, where
every vertex is a pose of a keyframe. The edges represent
relative transformations between the keyframes. As we add
new keyframes to the map a chain of keyframes linked
by relative transformations is created. To correct for the

accumulated error in the trajectory we search for loop
closures to previously visited keyframes. Valid loop closures
become new edges in the graph. Afterwards, the error can be
corrected by solving a non-linear least squares optimization
problem. The error correction is distributed over the edges in
the loop. Every edge is weighted with the covariance matrix
X¢ of the relative motion estimate. Therefore, the estimates
of edges with higher uncertainty change more to compensate
the error than the ones of edges with low uncertainty. We use
the g2o0 framework of Kiimmerle et al. as implementation for
the map representation and optimization [37]. At the end of
a dataset we search for additional loop closure constraints
for every keyframe and optimize the whole graph again.

Figure 1 shows an optimized pose graph. The blue cam-
era frustums represent the keyframe poses. The cyan links
indicate loop closures. The loop closures and map optimiza-
tion correct the accumulated drift of the frame-to-keyframe
odometry shown in red. The corrected trajectory allows to
construct a consistent point cloud model of the scene.

In this section, we described a method to assess the quality
of a motion estimate based on the entropy of the parameter
distribution, which we use to select keyframes, detect loop
closures, and to construct a pose graph.

V. EVALUATION

For evaluation we use the RGB-D benchmark provided
by the Technical University of Munich [10]. The benchmark
contains multiple real datasets captured with an RGB-D
camera. Every dataset accompanies an accurate groundtruth
trajectory obtained with an external motion capture system.

In a first set of experiments we evaluated the benefit
of combined photometric and geometric error minimization.
The RGB-D datasets with a varying amount of texture and
structure are suitable for this purpose. Figure 4 shows rep-
resentative images of the different datasets. Table I displays
the results of the experiments. The first two columns indicate
whether the dataset contains structure/texture (x) or not (-).
The third column displays the qualitative distance of the
camera to the scene. The last three columns show the root
mean square error (RMSE) of the translational drift (RPE)
in m/s for the three different estimation methods, RGB-
only, depth-only and combined. The RGB-only odometry
works better on structureless scenes with texture than the
depth-only variant and vice versa. The combined variant
outperforms both methods on these datasets. However, the
combined RGB and depth odometry performs slightly worse
than the RGB-only odometry on the datasets with structure
and texture. Nevertheless, it shows a better generalization
over the different scene types. The depth term also helps to
stabilize the estimate in case of sudden intensity changes due
to auto-exposure.

In a second set of experiments we compared the per-
formance of frame-to-frame (RGB+D), frame-to-keyframe
(RGB+D+KF) and frame-to-keyframe tracking with pose
graph optimization (RGB+D+KF+Opt). We used all of the
freiburgl (fr1) datasets. Table II displays the results. On 11
out of 16 datasets our visual SLAM system has the lowest
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(a) texture (b) structure (c) structure + texture

Fig. 4: Example images of the datasets with varying structure
and texture, which we use to compare the different visual
odometry variants.

TABLE I: Comparison of RGB-only, depth-only and com-
bined visual odometry methods based on the RMSE of
the translational drift (m/s) for different scene content and
distance. The combined method yields best results for scenes
with only structure or texture. The RGB-only method per-
forms best in highly structured and textured scenes. Never-
theless, the combined method generalizes better to different
scene content.

structure  texture  distance RGB Depth  RGB+Depth
- X near 0.0591  0.2438 0.0275
- X far 0.1620  0.2870 0.0730
X near 0.1962  0.0481 0.0207
X - far 0.1021  0.0840 0.0388
X X near 0.0176  0.0677 0.0407
X X far 0.0170  0.0855 0.0390

drift. The high drift values on the frl/floor and frl/plant
(v) datasets stem from incorrect loop closures. Note that
the frame-to-frame tracking failed on the frl/floor dataset
due to missing frames over multiple seconds. The average
improvement due to the use of keyframes is 16%. The
inclusion of pose graph optimization increases this to 20%.
This experiment shows that frame-to-keyframe tracking is
already highly accurate. However, the main benefit of pose
graph optimization lies in the correction of the long term
drift. The average of the RMSE values of the absolute
trajectory error (ATE) for the freiburgl sequences (excluding
fr1/floor) for frame-to-frame tracking is 0.19m. In contrast,
the average of the ATE RMSE values for the frame-to-
keyframe tracking algorithm with pose graph optimization
is 0.07m. Yielding an improvement of 170%.

Finally, we compare our approach to recent state-of-the-art
visual SLAM approaches, namely the RGB-D SLAM system
[2], [31], the multi-resolution surfel maps (MRSMap) [11],
and the PCL implementation of KinectFusion (KinFu) [5].
Table III summarizes the results. The first column contains
the dataset name, the second column shows the number of
keyframes our system created. The following columns show
the RMSE of the absolute trajectory error for our system,
RGB-D SLAM, MRSMap and KinectFusion. Our system
performs best on five of eight datasets for which results of all
systems are available. The difference to the best system on
the three other datasets is small. In contrast, our improvement
on long and complex trajectories, e.g. frl/room, frl/teddy,
over the other systems is notable.

TABLE II: RMSE of translational drift (RPE) in m/s for
frame-to-frame, frame-to-keyframe odometry and frame-to-
keyframe odometry with pose graph optimization for all
freiburgl datasets. Note that (v) marks validation datasets
without public groundtruth that we evaluated using the online
tool. The use of keyframes improves the performance by
16% in comparison to frame-to-frame odometry. Pose graph
optimization reduces the drift further, resulting in an average
improvement of 20%.

Dataset RGB+D RGB+D+KF  RGB+D+KF+Opt
fr1/desk 0.036 0.030 0.024
frl/desk (v) 0.035 0.037 0.035
fr1/desk2 0.049 0.055 0.050
frl/desk2 (v) 0.020 0.020 0.017
frl/room 0.058 0.048 0.043
frl/room (v) 0.076 0.042 0.094
fr1/360 0.119 0.119 0.092
fr1/360 (v) 0.097 0.125 0.096
frl/teddy 0.060 0.067 0.043
fr1/floor fail 0.090 0.232
frl/xyz 0.026 0.024 0.018
frl/xyz (v) 0.047 0.051 0.058
frl/rpy 0.040 0.043 0.032
frl/rpy (v) 0.103 0.082 0.044
fr1/plant 0.036 0.036 0.025
frl/plant (v) 0.063 0.062 0.191
avg. improvement 0% 16% 20%

TABLE III: RMSE of absolute trajectory error (m) for our
visual SLAM system in comparison to three state-of-art
systems. The second column shows the number of keyframes
used by our system. Our system performs best on the
majority of datasets. Note especially the improvement on
datasets with long and complex trajectories (e.g. frl/room,
frl/teddy).

Dataset #KF  Ours | RGB-D SLAM MRSMap  KinFu
frl/xyz 68  0.011 0.014 0.013 0.026
frl/rpy 73 0.020 0.026 0.027 0.133
fr1/desk 67  0.021 0.023 0.043 0.057
fr1/desk2 93 0.046 0.043 0.049 0.420
frl/room 186  0.053 0.084 0.069 0.313
fr1/360 126 0.083 0.079 0.069 0.913
fr1/teddy 181  0.034 0.076 0.039 0.154
fr1/plant 156 0.028 0.091 0.026 0.598
fr2/desk 181 0.017 - 0.052 -

fr3/office 168  0.035 - - 0.064
average 0.034 \ 0.054 0.043 0.297

We performed all experiments on a PC with Intel Core
i7-2600 CPU with 3.40GHz and 16GB RAM. The visual
odometry and the SLAM component run in separate threads.
The time for frame-to-keyframe tracking is almost con-
stant around 32ms. The time for loop closure detection
and optimization depends on the number of keyframes and
edges in the graph. The average processing time for this
map update is 135ms. In the coarse-to-fine optimization for
motion estimation we use three different image resolutions
up to 320 x 240 pixels.
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VI. CONCLUSION

In this paper, we presented a novel approach that combines
dense tracking with keyframe selection and pose graph opti-
mization. In our experiments on publicly available datasets,
we showed that the use of keyframes already reduces the drift
(16%). We introduced an entropy-based criterion to select
suitable keyframes. Furthermore, we showed that the same
entropy-based measure can be used to efficiently detect loop
closures. By optimizing the resulting pose graph, we showed
that the global trajectory error can be reduced significantly
by 170%. All our experimental evaluations were conducted
on publicly available benchmark sequences. We publish our
software as open-source and plan to provide the estimated
trajectories to stimulate further comparison.

As a next step, we plan to generate high quality 3D models
based on the optimized camera trajectories. Furthermore, we
want to improve the keyframe quality through the fusion of
intermediary frames similar to [22], [32]. More sophisticated
techniques could be used to detect loop closures, such as
covariance propagation or inverse indexing similar to [36].
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