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Abstract— This paper presents a method for humanoid push
recovery in the general context of multiple non-coplanar con-
tacts. The method consists of a controller that minimizes the
kinetic energy of a perturbed whole body humanoid system,
while controlling the support change to achieve the stabilization
(or push recovery) of the system. The controller uses a simple
model based approach to determine the necessity of support
change and in this case to approximate a new contact position
that allows to stabilize the system. The controller is tested on
a simulated humanoid robot and it succeeds in stabilizing the
robot in coplanar and non-coplanar environments.

I. INTRODUCTION
This study has been motivated by safety issues at perturbed

workplaces. [5] gives the statistics of accidents that occur in
leveled environments of such workplaces. In order to assess
safety, tests are usually performed on passive dummies or
human subjects, which are respectively non representative
and too costly. Within this context, our objective is to develop
new controllers for Virtual Humans (VH) in order to make
them react to environmental perturbations in a sufficient
realistic way. This paper presents a push recovery method for
a whole body humanoid system, that we test on a simulated
VH with 45 degrees of freedom (dof) to control its push
recovery in coplanar and non-coplanar environments.

A. Related Work

The addressed push recovery problem is widely treated in
literature. It is mainly based on various stability criteria and
on the study of simple and whole body humanoid models.
The most usual stability criteria are the Zero Moment Point
(ZMP) [22] and the Foot Rotation Indicator (FRI) [6]. They
present main limitations as the ZMP deals with coplanar
contacts and the FRI requires one single foot contact. An
interesting extension of the ZMP has been proposed in [13],
[8] for multiple non-coplanar contacts, but the Generalized
ZMP on a virtual plane assumes sufficient friction, similarly
to ZMP. [7] proposes the Rate of change of Angular Momen-
tum (RAM) about the Center Of Mass (COM) as a general
criterion for rotational stability; the derived Zero RAM point
that measures rotational instability is limited to bipeds with
coplanar feet or with one foot support.
A lot of works on push recovery consider the simple Linear
Inverted Pendulum Model (LIPM). Introducing the notion of
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Capture Points, N-Step capture points and Capture Regions
[21], the step to make for push recovery is calculated for
LIPM in [19], [24], [26]. In [25], the authors propose a push
recovery approach based on predictive control with LIPM
and that is very similar to [4] with additional objectives for
the COM. Some works went beyond the LIPM by varying
the COM height as in [20], or by adding an inertia about
the COM in [19], [24], [26] to recover the stability through
a change of angular momentum. Still, all these methods are
restricted to coplanar feet contacts. Non coplanar stepping
is treated in [27]; a planar rimless wheel model with two
massless spokes is used to compute the Generalized Foot
Placement Estimator which is the step position, on level or
non level ground, that assures push recovery. This method
based on a 2D model is for bipeds that have coplanar contacts
in initial state and sufficient friction is assumed.
Some works consider whole body humanoid models to treat
push recovery. In [1], the rate of change of angular and linear
momentums of a biped are controlled to compensate the
perturbation by maintaining the COM and Center Of Pressure
(COP) above the feet. The control does not deal with contact
change when it can not recover from perturbation. In [14]
and [10], [11], [9], a desired and heuristically chosen COM
position and a desired null COM velocity are predefined to
perform a momentum control.
In [14], the desired COM state and a desired null centroidal
AM determine, through a feedback law, the desired rate of
change of centroidal momenta. Then an optimization based
controller makes the actual momenta converge to the desired
values while respecting the model dynamics and constraints.
In [10], [11], [9], the desired COM state determines the
desired change in centroidal linear momentum through a
feedback and feedforward law. Then the desired contact
forces are calculated using an inverse pendulum model.
Finally, a passivity based force control is performed under
quasi-static assumptions to achieve the desired forces and
though push recovery. This control is valid for a biped with
quasi-coplanar feet contacts. When the controller fails to
stabilize the model, symmetric foot steps are performed.

B. Scope and contribution

Our main contribution consists in proposing a push recovery
control that dynamically stabilizes a whole body humanoid
system, in the general case of multiple non coplanar contacts.
In our previous work, we developed two algorithms based
on a simple humanoid model, that determine the necessity
of support change for stabilization and that compute new
contact positions (not restricted to feet contacts) that assure
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push recovery in the general contact case. In this paper, we
apply the developed algorithms on a whole body humanoid
model to control its push recovery. We present:
• A complete approach for the push recovery of the sim-

ple model in case of multiple non-coplanar contacts. In
our previous work, we assumed an instantaneous support
change. In this paper, the proposed approach considers all
the push recovery phases and time durations; it takes into
account the time duration of support change during which
it controls the model and considers its dynamics for a
proper computation of new stabilizing contact positions.

• A push recovery method for a whole body humanoid
model. It consists of a whole body controller that min-
imizes the kinetic energy of the perturbed model during
all the push recovery stages. The controller uses the
results of the simple model approach as approximations to
control the support change of the whole body model. The
controller does not predefine desired and heuristic COM
and posture references; the controlled system automatically
reaches a final stable state, when possible. This control is
valid in the case of multiple non-coplanar contacts.

Although no guarantees on push recovery can be made for
the whole body humanoid model using the simple model
approach, we show in this paper that it works in practice; a
VH with 45 dof, perturbed in different directions, recovers
its stability in coplanar and non-coplanar environments,
when we control it using the proposed method.

In section II, we present the push recovery approach
based on a simple humanoid model; we first review some
algorithms we developed in previous papers; we then
present the push recovery approach that involves the
reviewed algorithms. In section III, we develop the push
recovery method for a whole body humanoid model; we
first describe a whole body controller; we then present the
push recovery method that combines the controller with the
simple model based approach developed in section II, to
achieve stabilization.

II. PUSH RECOVERY APPROACH BASED ON A SIMPLE
HUMANOID MODEL

The approach is based on a simple humanoid model and it
uses two algorithms that we proposed in previous papers.
The first algorithm is a fall indicator that determines the
necessity of support change to stabilize the perturbed model.
The second is a support change algorithm that computes
the new stabilizing contact configuration, in case of support
change. We first review the simple model. We then describe
the push recovery approach and finally we review the two
algorithms used by the approach.

A. Review of the simple model and related assumptions

The simple model is detailed in [16] and is illustrated in
Fig.1. It has completely actuated massless limbs. It consists
of a point mass m at the COM and of n non-coplanar
contact surfaces. We assume a null inertia of the body
about the COM. The control variables of the system are the

ground reaction wrenches with Wi =
(

ft
i τττ t

i
)t being the

wrench at the ith contact and fi ∈ IR3 and τττ i ∈ IR3 being
respectively the contact force and torque.

The dynamics of the model are described by Newton-
Euler equations and the model is subject to several
constraints:
• The COP of each contact belongs to the contact surface.
• To avoid slipping contacts, forces fi belong to friction

cones defined by ‖fi− (ft
ini)ni‖ ≤ µift

ini with µi and ni
being respectively the friction coefficient and the normal
vector to the ith contact surface. We discretize the cone
into several facets to linearize the constraint

• The normal force of the ith contact is limited to a maximum
admissible normal force: nt

ifi ≤ fnimax
• To avoid rotational slipping of contacts, the friction torque

at the COP of the ith contact is limited proportionally to
the contact normal friction force and friction coefficient:∥∥τττ iCOP

∥∥≤ αµi (nt
ifi)

Fig. 1: Simple Model

Discretization of the model
We discretize the model dynamics using a simple Taylor
series expansion. Let

(
X, Ẋ

)
be the COM state and T

the time sampling period. We have for X (t ∈ ]tk, tk+1]):
Xk− = Xk+ , Ẋk− = Ẋk+ , Ẍk+ 6= Ẍk− , and we assume
d3X
dt (t ∈ ]tk, tk+1]) = 0.

The dynamics and constraints of the model are linearly
expressed in terms of the wrench vector Wk with
Wk =

(
Wt

1k . . .W
t
ik . . .W

t
nk

)t where Wik is the wrench at the
ith contact for t ∈ ]tk−1, tk].

Perturbation of the model
We consider that the simple model, initially at rest, is subject
to a horizontal instantaneous perturbation (force impulse)
that implies an initial non static COM state

(
X0, Ẋ0

)
, with

Ẋ0 negligible about the vertical gravity axis. The COM
trajectory is assumed to keep the same horizontal direction d
impulsed by the perturbation and determined by choosing d
collinear to Ẋ0. We propose to stabilize the perturbed model
(or make it recover from perturbation) by minimizing its
kinetic energy until it stops in a static state

(
Ẋ = 0, Ẍ = 0

)
.

B. Push recovery approach for the simple model
The model, initially at rest, is perturbed. We define:
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• tI : time at the onset of the perturbation
• tB: time at the end of the perturbation
• tBR: time at which a subject triggers a support change

reflex, if necessary
• Reflex time (tBR − tI): time duration, after the onset of

perturbation, needed by a human to trigger a support
change. On the basis of human biomechanical data in [23],
we determine a Reflex time of 100 ms

Since we consider that the simple model is instantaneously
perturbed, we have tI = tB.

Given the model initial contact configuration and the
COM state

(
XB, ẊB

)
upon perturbation at tB, the approach

consists of a linear step by step optimization formulated in
terms of the wrench variable Wk and that minimizes the
model kinetic energy along the direction of perturbation d
collinear to ẊB while satisfying the model dynamics and
constraints. This optimization is performed while keeping
or changing the contact configuration and it pursues until
the model reaches a full stop.

The approach is illustrated in Fig.2. The fall indicator,
described in section II-C, is called at tBR to indicate the
necessity of support change to stabilize the model:

a) If no support change is necessary, the kinetic energy is
minimized until the model is stabilized.

b) Otherwise, we arbitrarily choose to add one contact
(contact addition) or to change the position (contact change)
of a contact already established in the initial contact config-
uration. The limb changing/adding contact is also arbitrarily
chosen. The chosen limb moves during a Step time towards
its new contact position and it establishes the contact at
time tE (tE = tBR+Step time); we choose a Step time of 200
ms (average time obtained in experiments led on 20 human
subjects in [15]); the limb new contact position is computed
by the support change algorithm described in section II-D.
Overall, in this case of support change, at tBR the support
change is triggered (if contact change, the chosen limb
establishing a contact, removes its contact; in both contact
change or addition, the chosen limb starts moving towards
its new position) and the push recovery approach operates
as described in Fig.2. If the support change algorithm does
not find a feasible stabilizing contact position P, successive
contact changes/additions can be envisaged with the same
method.

C. Review of the Fall indicator [17]

Given an initial contact configuration of the model and a
COM perturbed state

(
XBR, ẊBR

)
, the fall indicator informs

whether the simple model can be stabilized while maintain-
ing the same contact configuration.
Bretl generates in [2], for a given contact configuration, a
convex static stability region over which the COM of a static
system must lie. A direct fall indicator consists of a linear
step by step optimization formulated in terms of the variable

Fig. 2: Push recovery approach for the simple model

Wk (details in [17]) and that minimizes the simple model
(Fig.1) kinetic energy, which is a point mass kinetic energy,
along the direction of perturbation d collinear to ẊBR (See
Fig.3) while satisfying the model dynamics and constraints;
if the model reaches a static state inside the initial static
region (before reaching Xbd), then the system can remain
in a static state and is therefore stabilized without support
change; otherwise, the COM goes beyond Xbd and the static
region should change to include the COM and allow it to
stop inside the new static region; a support change is then
necessary to obtain a new different static region.

Fig. 3

A more generalized fall indicator is elaborated in [17].

D. Review of the support change algorithm

In case of a support change and given the current model
contact configuration and COM state

(
XE , ẊE

)
, the support

change algorithm computes the position of the contact to add
to the current configuration that allows to stabilize the model
during a predetermined time duration that we call Post step
time.
The support change algorithm is a feasibility problem for-
mulated over a predictive horizon of length (Post step time=
hPstT ) with hPst being a positive integer.
We define the vector of wrenches over the hPst

time steps as Wh =
(

Wt
1 . . .W

t
k . . .W

t
hPst

)t
where Wk =(

Wt
1k . . .W

t
ik . . .W

t
nk

)t and Wik is the reaction wrench at ith

contact for t ∈ ]tk−1, tk]. We also define ẊF and ẌF as the
velocity and acceleration of the COM, after a Post step time
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starting from
(
XE , ẊE

)
.

The variables of the problem are Wh and the position P of
the contact to add:
• We formulate the Newton equation of the model over the

window hPst and then we write ẊF and ẌF in terms of
Wh (details in [16])

• We formulate the model dynamics and constraints, at each
time step h = (1 . . .hPst) , in terms of Wh and P

The support change algorithm consists in finding Wh and one
reachable position P that assure to the model a final static
state ẊF = 0 and ẌF = 0 and that satisfy the dynamics and
constraints of the model at each time step h = (1 . . .hPst).
This feasibility problem is solved by using a non linear
optimization method (interior-point).

III. PUSH RECOVERY METHOD FOR A WHOLE BODY
HUMANOID MODEL

We apply the simple model based push recovery approach
developed in section II-B on a whole body humanoid model
to control its push recovery. The control is valid in case of
multiple non-coplanar contacts. The whole body model is a
poly-articulated branching structure where each branch is a
rigid body and each joint is one or more perfect pivot joints.
We chose the hip body as the root base. The dynamics of
the whole body model are written as a classical set of Euler-
Lagrange equations:

M̃
(
Ṫ−G

)
+NT = Lτ + JtF (1)

where:

• T =

(
Vroot

q̇

)
is the velocity vector in generalized co-

ordinates. Vroot =

(
ωroot

vroot

)
is the twist of the root base

and ωroot and vroot are the angular and linear velocities of
the root base. q is the vector of joint angles.

• F = Fpert +Fcontact with Fpert being the vector of external
perturbation wrenches and Fcontact the vector of contact
wrenches.

• τ is the vector of joint torque, L expresses τ in generalized
coordinates, N is related to Coriolis and centrifugal effects,
J is the basic jacobian that transforms the joint velocities
to cartesian velocities (twists), M̃ is the symmetric inertia
matrix and G is gravitational acceleration with J, M̃ and
G expressed in generalized coordinates.

The whole body push recovery method interfaces the simple
model based approach presented in section II-B with a
whole body controller. The former makes the support change
decision and computes the position at which the model
establishes a contact to regain its stability (as in Fig.2). These
results are given as inputs to the whole body controller; this
controller minimizes the whole body model kinetic energy
while controlling the support change according to the inputed
results.
In the following, we first describe the whole body controller
then we elaborate the push recovery method.

A. Whole body controller

The controller consists of step by step minimizing the kinetic
energy of the whole body model, while satisfying the model
dynamics and constraints. The total kinetic energy EK of the
model can be divided into the COM kinetic energy EKCOM

and the ”postural” kinetic energy EKINT also called internal
kinetic energy [12]:

EK = EKCOM +EKINT (2)

The whole body controller minimizes EKCOM and EKINT with
different weights. Actually, if we assimilate the whole body
model to a flywheel centered at the COM, EKINT and EKCOM

turn out to be respectively the rotational and the COM
translational kinetic energies; the minimization of EKCOM

results in a minimization of the norm of the centroidal
linear momentum and the minimization of EKINT results
in a minimization of the norm of the centroidal angular
momentum (See appendix VI-A for a simple illustration of
EKCOM , EKINT and the centroidal momentum). We have (See
appendixVI-B for details):

EKCOM = 1
2 TtMvT with: Mv =

1
m M̃t (4 : 6, :)M̃ (4 : 6, :)

(3)
where m is the mass of the whole body model

EKINT = 1
2 TtMω T with: Mω = M̃−Mv (4)

The optimization problem of the controller, illustrated in
Fig.4, can now be presented as follows:
1) Cost function

We minimize the following multi-objective cost function:

wvEKCOM +wω EKINT + s wt ‖ ac−ades
c ‖ (5)

• EKCOM and EKINT are minimized with the respective
weights wv and wω

• When a support change is needed for the stabiliza-
tion, we arbitrarily choose to add one contact (con-
tact addition) or to change the position of an already
established contact (contact change). The model body
adding/changing contact is arbitrarily chosen (e.g. body
applying minimum contact force at the onset of contact
change). The body tracks a desired trajectory leading
after a predetermined Step time, to a desired final
position where a new contact is established. The track-
ing task is assured by minimizing the third objective
function (s wt ‖ ac−ades

c ‖) with weight wt and during
Step time. (s = 1) during Step time and (s = 0) in the
remaining times.
ac and ades

c are respectively the controlled and desired
accelerations of the chosen body. ades

c is determined
with a PD law:

ades
c = Kp (4P)+Kd

(
Vdes−V

)
(6)

where Kd is the derivative PD gain, 4P is the deviation
in translation and orientation between the desired and
current body frames and V and Vdes are the current and
desired body twists.
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The desired body frame and twist are given by the
desired trajectory. This trajectory and the triggering of
support change (or activation of tracking task) are given
as input parameters to the controller (Fig.4).

2) Equality constraints:
a) The model dynamics (1) are respected. Since the

controller has no knowledge about the external dis-
turbances, we consider (F = Fcontact ).

b) The established contacts have a null acceleration
(JciṪ+ J̇ciT = 0) with Jci being the jacobian at the
ith established contact.

3) Inequality constraints:
a) The joint torques τ are bounded to limit the actuation

capacity.
b) To avoid slipping unilateral contacts, their contact

forces belong to friction cones that we discretize into
several facets to linearize the constraint.

c) The joint angles q are bounded similarly to human
articulations.

The humanoid is torque controlled. The above optimization
problem is quadratic and as in [3], the cost function and
the constraints are expressed in terms of the optimization
variables

(
Ṫt τ t Ft

contact
)t . This real time control is

performed using a linear quadratic programming solver.

Fig. 4: Whole body controller

B. Push recovery method for the whole body model

We consider that the whole body model, initially at rest,
is subject to horizontal perturbations during a short time
duration. We use the times (tI , tB, tBR, tE , Reflex and Step
times), described in section II, to characterize the push
recovery; for the whole body model, the application of Fpert
begins at tI and ends at tB, with (tB 6= tI) and we consider
short time disturbances, such that tBR ≥ tB.
The whole body model is controlled by the whole body
controller until it recovers its stability at full stop. The
recovery method consists of combining the simple model
based approach with the whole body controller as follows
(Method illustrated in Fig.5):

1) Between tI and tBR, the controller minimizes the kinetic
energies (EKCOM , EKINT ) of the whole body model.

2) At tBR, the whole body model and its control are sus-
pended and offline operations are conducted using the
simple model based approach (See Fig.5):
• The simple model is initialized with the same COM

state and contact configuration of the whole body
model at tBR. Since we consider short time horizontal
perturbations, the vertical COM velocity is negligible
at tBR; which is consistent with the simple model.

• The fall indicator determines the necessity of support
change for stabilization.

• If a support change is necessary, the simple model
based approach is performed between tBR and tE as in
Fig.2, in the same geometric environment of the whole
body model; we call P the reachable contact position
computed by the support change algorithm at tE and
that stabilizes the simple model during a predetermined
Post step time.

• In case of support change, the desired trajectory (of
the chosen body adding/changing contact in the whole
body model) that leads to P during Post step time, is
determined by interpolation. The triggering of support
change and the desired trajectory are inputted to the
whole body controller.

3) The whole body model and its control are resumed at tBR,
after the offline operations. In case of necessary support
change, it is controlled between tBR and tE as described
in Fig.5. The control pursues until a full stop is reached.

We make the same choices (times, contact change or con-
tact addition, contact to change/add) for the simple and
whole body models. Various biomechanical investigations
have determined that a large class of human movements
conserve the total angular momentum and regulates it to zero
for example during walking [18] and running. Moreover,
[15] presents push recovery experiments led on 20 human
subjects who are asked to spontaneously recover from a
perturbation in uncluttered environments; [15] shows that
the non null centroidal RAM used by the subjects had no
significant effect on the stabilization. Therefore, we mostly
choose (wω >> wv). This limits the variation of centroidal
angular momentum of the whole body model, which reduces
the disparity between the whole body model and the simple
model (that has null inertia) and justifies the combination
between the simple model based approach and the whole
body controller.

IV. SIMULATION RESULTS OF A WHOLE BODY MODEL
PUSH RECOVERY

We present different simulation results of the push recovery
of a VH, which is a virtual whole body humanoid model
that we stabilize using the proposed push recovery method.
The results are supported by a video provided with this
paper. The VH in our simulations has 45 dof, is 1.46 m
tall and weighs 79 kg. In order to show some assets of
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Fig. 5: Push recovery method for the whole body model

the proposed push recovery method, the VH is perturbed
in different directions and is stabilized in both coplanar and
non-coplanar environments. The simulations are performed
using XDE1.

A. Context

Initial posture of the VH:
Prior to perturbation, the VH is standing on a level ground,
with an upright posture. Thereafter, the vectors are expressed
in an inertial frame, where the x-axis and y-axis are respec-
tively the left-right axis and dorsoventral axis of the VH in
its initial posture. The VH initial contact configuration is
presented in table I.

TABLE I: VH contact configuration prior to perturbation

Left ankle position (m) O1 =
(
−0.1 0 0

)t

Right ankle position (m) O2 =
(

0.1 0 0
)t

Normal to contact surface n1 = n2 =
(

0 0 1
)t

Friction coefficient µ1 = µ2 = 0.8

VH perturbation and parameters of push recovery

1XDE: Environment of interactive physical simulation developed by
CEA-LIST (see:http://www.kalisteo.com/lsi/aucune/a-propos-de-xde)

method:
A perturbation is modeled as a horizontal force (fpert ) applied
during a short time interval 4t = 0.1 (s). 4t is equal to
the Reflex time and then tBR = tB. When a support change
is necessary, we choose a contact change reaction. The
predetermined parameters of the push recovery method are
presented in table II.
Geometric environments:

TABLE II: Predetermined input parameters for the push
recovery method

Parameters of push recovery approach based on simple model
(offline operations Fig.5)
• Step time: 0.2 (s)
• Post step time: 0.55 (s) with hPst = 4
Parameters of the whole body controller
• wω and wv are defined for each simulation
• Time period of the controller: 0.01 (s)

The VH is perturbed in two different geometric environ-
ments. The first environment Env1 consists of a level ground.
The second Env2 consists of a level ground and a plane with
a 30

◦
slope, on which a foot step can be made (with a friction

coefficient equal to 0.8, normal vector
(

0 −0.5 0.87
)t

and a point in plane
(

0 0.5 0
)t ). We note that a 30

◦

slope is acceptable for our humanoid simulations; it is close
to the 25

◦
slope of the plane we used in push recovery

experiments with human subjects in [15]. The geometric
environments are known to the push recovery method.

B. Simulation results

In the following simulations, the VH is stabilized using the
push recovery method for the whole body model(Fig.5). The
whole body controller performs a real time control. For each
simulation, we determine the computation time of the offline
operations (Fig.5) of the simple model based approach. The
offline operations are implemented in Matlab with a machine
of a 2GHz core2 duo processor and 2GB RAM.
1) Recovery from a forward push by a non-coplanar stepping

(see table III).
2) Recovery from a backward push by coplanar stepping

(see table IV).
3) Recovery from a diagonal push by coplanar stepping (see

table V).
The presented simulations show that the combination be-
tween the simple model based push recovery approach and
the whole body controller works to stabilize the VH. The
computation time of the offline operations is small, still not
real time.

V. CONCLUSION

In this paper, we proposed a push recovery control for
a whole body humanoid system that may have multiple
non-coplanar contacts. A whole body controller minimizes
the kinetic energy of the perturbed system and its uses
simple model based algorithms to predict the necessity of
support change and to control the support change achieving
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TABLE III: Example of recovery from forward push in Env2

Perturbation force: fpert (N)
(

0 600 0
)

Duration of fpert application: 4t (s) 0.1
COM position after 4t (m)

(
0 0.11 0.86

)
COM velocity after 4t (m/s)

(
0.01 0.83 0.

)
wω 1
wv 1
Position of new foot contact P (m)

(
−0.17 0.73 0.13

)
computation time of offline operations (s) 0.71

TABLE IV: Example of recovery from backward push in
Env1

Perturbation force: fpert (N)
(

0 −400 0
)

Duration of fpert application: 4t (s) 0.1
COM position after 4t (m)

(
0 0.01 0.86

)
COM velocity after 4t (m/s)

(
0.01 −0.58 0.02

)
wω 2
wv 1
Position of new foot contact P (m)

(
−0.14 −0.44 0.

)
computation time of offline operations (s) 0.77

the system stabilization. We finally tested the controller
to stabilize a simulated VH in coplanar and non-coplanar
environments.
• For a real-time context, the offline operations of our

method are still time consuming. However, their low com-
putation time promotes to use of the simple model based
approach (offline operations) as a training for learning
control. Which would allow a real time push recovery
control.

• In our method, we heuristically choose the contact to add
or change in case of support change. We will refine these

TABLE V: Example of recovery from diagonal push in Env1

Perturbation force: fpert (N)
(
−300 400 0

)
Duration of fpert application: 4t (s) 0.1
COM position after 4t (m)

(
−0.02 0.08 0.86

)
COM velocity after 4t (m/s)

(
−0.32 0.49 0.06

)
wω 2
wv 1
Position of new foot contact P (m)

(
−0.44 0.29 0.

)
computation time of offline operations (s) 0.93

parameters through push recovery experiments that we led
on human subjects.

• Finally, we compared the results of the simple model based
approach to human push recovery through the experiments
we led on human subjects [15]. We obtained a first
promising feedback on the realism of the approach.

VI. APPENDIX

A. Illustration of the COM and internal kinetic energies
using a Linear Inverse Pendulum (LIP) plus flywheel model

A planar LIP plus flywheel model is shown in Fig.6. The
flywheel represents the inertia about the COM. EKCOM and
EKINT are then respectively the translational and rotational
kinetic energies. We have:

Fig. 6: Planar LIP plus flywheel model

• EKCOM = 1
2 m ẋ2, EKINT = 1

2 J f θ̇ 2, J f θ̈ = τ

where J f is the inertia about the COM and m is the mass
of the model. x and θ are defined in Fig.6. τ is the torque
generated by the flywheel; it is the RAM about the COM
We now consider the case when the COM is moving in
the x positive direction and EKCOM and EKINT are minimized
respectively with the weights wv and wω :
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1) If wv >> wω : a large positive τ allows greater max-
imum horizontal forces used to decelerate the COM.
The minimization of EKCOM is though enhanced with the
RAM. EKINT is increased and should be minimized before
exceeding joint limits.

2) If wω >> wv : the priority of EKINT minimization tends
to keep the flywheel stationary while the EKCOM is less
minimized through a COP control. The model behaves
more like a simple LIP with zero inertia.

B. Expression of the COM and internal kinetic energies of
the whole body humanoid model

• The linear momentum of the whole body model about the
COM is expressed in the root body frame as:

M̃ (4 : 6, :)T = mẊr (7)

with: m being the model total mass.
• The COM kinetic energy EKCOM can be written as:

EKCOM =
1
2

mẊt
rẊr (8)

EKCOM in terms of T becomes:

EKCOM = 1
2 TtMvT with: Mv =

1
m M̃t (4 : 6, :)M̃ (4 : 6, :)

(9)
• The internal kinetic energy EKINT can be written as:

EKINT = EK−EKCOM with: EK = 1
2 TtM̃T (10)

EKINT in terms of T becomes:

EKINT = 1
2 TtMω T with: Mω = M̃−Mv (11)
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