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Abstract— This paper presents a methodology to accurately
record human finger postures during grasping. The main
contribution consists of a kinematic model of the human hand
reconstructed via magnetic resonance imaging of one subject
that (i) is fully parameterized and can be adapted to different
subjects, and (ii) is amenable to in-vivo joint angle recordings
via optical tracking of markers attached to the skin. The
principal novelty here is the introduction of a soft-tissue artifact
compensation mechanism that can be optimally calibrated in a
systematic way. The high-quality data gathered are employed
to study the properties of hand postural synergies in humans,
for the sake of ongoing neuro-science investigations. These
data are analyzed and some comparisons with similar studies
are reported. After a meaningful mapping strategy has been
devised, these data could be employed to define robotic hand
postures suitable to attain effective grasps, or could be used as
prior knowledge in lower-dimensional, real-time avatar hand
animation.

I. INTRODUCTION

In the field of robotic grasping with anthropomorphic hands,

robots can learn from the way humans grasp. For example,

postural synergies [1] utilized by humans can be mapped to

a robotic hand, so that hand postures can be more easily

commanded. This paper deals with the challenge of how

to suitably record human finger postures during grasps. To

combine high accuracy with low data dimensionality, optical

position measurements need to be combined with an accurate

kinematic model of the hand. Commonly, such models con-

sist of serial chains with revolute joints, and their kinematics

is quite suitable for modeling the movement of the skeleton.

In [2], a 22 Degree of Freedom (DoF) model of the hand

was employed to reconstruct hand posture based on optical

markers data. However, what was not considered there is

that the skin moves relatively to the bones, introducing

what is called in literature a soft-tissue artifact (STA) when

measuring skeletal movement by tracking skin markers.

In [3], magnetic resonance imaging (MRI) was used to

This work is supported by the European Commission under CP grant no.
248587, “THE Hand Embodied”, within the FP7-ICT-2009-4-2-1 program
“Cognitive Systems and Robotics” and by ERC Advanced Grant no. 291166
“SoftHands: A Theory of Soft Synergies for a New Generation of Artificial
Hands”.

M. Gabiccini is with the DICI and Res. Center “E. Piaggio” University
of Pisa, 56122 Pisa, Italy, and with the Dep. of Advanced Robotics, Istituto
Italiano di Tecnologia, via Morego, 30, 16163 Genova (phone: +39-050-
221.80.77, fax: +39-050-221.80.65, email: m.gabiccini@ing.unipi.it)

G. Stillfried is with the Institute of Robotics and Mechatronics, German
Aerospace Center (DLR), Münchner Straße 10, 82234 Weßling, Germany
(Georg.Stillfried@dlr.de)

H. Marino and Matteo Bianchi are with the Dep. of Advanced Robotics,
Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, and with
the Res. Center “E. Piaggio”, University of Pisa, 56122 Pisa, Italy
(hamal.marino@gmail.com, matteo.bianchi@centropiaggio.unipi.it)

*) Both starred authors contributed equally to the paper.

measure the STA in different hand postures. Based on the

model by Zhang et al. [4], we propose an extension to 3D

and validate it using the aforementioned MRI data as ground

truth.

The skin movement model is then incorporated into a 26 DoF

kinematic hand model, which allows to take into account

the differences between hands of different subjects with a

calibration phase.

To concurrently estimate joint angles and model parameters

we adopt an algorithm based on [5] where a probabilistic

inference framework is exploited, but keeping separated the

calibration phase in order to avoid the drift of parameter

estimates.

A similar approach was used by [6], with a 29 DoF model

(23 + hand position and orientation), static geometric calibra-

tion, an assumption for STA compensation, and linearizing

state estimation to retrieve joint angles. The algorithm here

developed uses instead an optimization to calibrate model

parameters, the used STA compensation mechanism has been

validated, and postures are identified via an iterative state

estimation procedure for improved results.

The proposed methods are used to reconstruct hand postures

of grasps of imagined objects, to then analyze them by

means of Principal Component Analysis (PCA). Results are

compared with the ones described in [7], where authors used

a glove–based hand pose reconstruction system (CyberGlove;

Virtual Technologies, Palo Alto, CA) to record hand postures

of five subjects, who were asked to shape their right hand as

if to grasp and use a large number of familiar objects.

II. DESCRIPTION OF THE KINEMATIC MODEL

The kinematic model of the human hand with respect to the

forearm is devised as a kinematic tree, whose root node con-

sists of the Cartesian reference frame {B} (rigidly attached

to a bracelet fastened to the forearm) and whose leaves are

the frames fixed to the distal phalanxes (PDs) of the five

fingers, as depicted in Figure 1. The five paths to the PDs

have a common segment through the wrist joint, centered

at point W , and then branch out from the MC2 (metacarpal

bone of the index) as serial kinematic chains.

A. Hand posture parameterization

To efficiently parameterize the posture of the j−th phalanx in

the i−th finger chain, we employ the Product of Exponentials

(POE) formula [8], i.e.

gBFij
(θi) =

[ j∏

k=1

eξ̂ikθik
]
gBFij

(0). (1)
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Fig. 1: Human hand kinematic model.

Here, the ξ̂ik’s are the twists of the joints defining the

kinematic chain of the i−th finger, θi = [θi1 · · · θik · · · θij ]
T

are the exponential coordinates of the 2nd kind for a local

representation of SE(3) (Special Euclidean group, 4 × 4
rototranslation matrices) [9] for the j−th phalanx in the i−th

finger, and gPBij
(0) is its initial configuration.

Twist components have to be expressed in the common

base frame {B} and in the reference posture for the hand,

i.e. when θik = 0. Therefore, it is possible to write more

explicitly ξij =
bξij , where the left superscript describes the

reading frame, in accordance with [10]. To express it in a

different frame, one must employ

bξij = Adgba(0)
aξij , (2)

where gba(0) is the posture of {A(0)} w.r.t. {B} and the

Adjoint transformation Adg is a map between different

expressions of the same twist in different reading reference

frames.

B. Hand velocity parameterization

The POE parameterization of the hand posture can be

profitably employed for computing the rigid-body velocity

of each phalanx. As we shall see, this quantity is key for

systematically calculating the linear velocity of the optical

markers attached to the bone or to the skin.

The rigid-body velocity V̂
Fij

BFij
of {Fij} in the moving

frame {Fij} is given (as a 4 × 4 matrix) by the following

formula

V̂
Fij

BFij
:= g−1

BFij
ġBFij

=

[
ω̂
Fij

BFij
v
Fij

BFij

0 0

]
(3)

where, given RBFij
the 3 × 3 rotation matrix from {B} to

{Fij}, ω̂
Fij

BFij
:= RT

BFij
ṘBFij

is the skew-symmetric matrix

of the angular velocity components (in {Fij}) of {Fij} w.r.t.

{B}, and v
Fij

BFij
= RT

BFij
ḋBFij

are the components (in

{Fij}) of the velocity of the origin OFij
with respect to

OB . Equation (3) can be rewritten (as a 6 × 1 vector) in a

convenient form by factoring out the joint velocities θ̇i of

the i−th finger as follows

V
Fij

BFij
= J

Fij

BFij
(θi) θ̇i, (4)

where the distal Jacobian J
Fij

BFij
can be computed as (k =

1, . . . , j)

J
Fij

BFij
(θi) =

[
ξ†1 · · · ξ†j

]
; ξ†k = Ad−1

g k+1,Fij
ξk, (5)

where we defined gk+1,Fij
:= eξ̂k+1θk+1 · · · eξ̂jθjgBFij

(0),
with gj+1,Fij

= gBFij
(0).

Since we will be interested in calculating the velocity

v
B,[OFij

]

BFij
of the origin OFij

w.r.t. OB in {B} components1,

we also define the hybrid rigid-body velocity

V
B,[OFij

]

BFij
:=

[
ω̂B
BFij

v
B,[OFij

]

BFij

0 0

]
= Ad(RBFij

,0) V
Fij

BFij
.

(6)

A convenient form where the joint velocities θ̇i of the i−th

finger are factored out is given by the following expres-

sion

V
B,[OFij

]

BFij
= J

B,[OFij
]

BFij
(θi) θ̇i, (7)

where, defining ξ♯k = Ad(RBFij
,0) Ad gFij,k+1

ξk, the

hybrid Jacobian J
B,[OFij

]

BFij
can be computed as (k =

1, . . . , j)

J
B,[OFij

]

BFij
(θi) =

[
ξ♯1 · · · ξ♯j

]
; , (8)

C. Modeling bone markers

To use the local frame {Mij} with the origin coincident with

the optical marker attached to the same phalanx, we could

simply add a local transformation such that

gBMij
(θi) = gBFij

(θi)gFijMij
. (9)

1It is worth observing that the apparently cumbersome expression

v
B,[OFij

]

BFij
is simply d/dt(pBFij

). The indirect route followed for its

derivation is due to the different meanings of the linear velocities v
Fij

BFij

and vB
BFij

.
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Fig. 2: Model for markers on a joint moving with the skin.

D. Modeling joint markers

For optical markers close to the areas where the skin stretch

is not negligible, a kinematic model considering the marker

frame fixed to some bone would give poor results because of

STA, as shown by the experiments presented in Sec. III. In

order to tackle this, we include a skin stretch compensation

mechanism specific for joint markers.

Joint marker displacement is influenced by the rotations of

the joints above which it is positioned, besides the rotations

of the proximal joints. However, the rotations of the last

joints in the virtual chain θ̃(θ) are (possibly nonlinear)

functions of the joint angles θ. To keep things relatively

simple we modeled this with linear functions

θ̃i(θi) = ciθi . (10)

Then, there is a constant offset transformation to account for

the posture of the marker frame in the initial configuration:

this can be recovered by direct inspection of Figure 2. Each

joint marker is characterized by the parameters ρ, δ, h, ci.
ρ, δ and h are the cylindrical coordinates of the marker

position in the initial configuration, while ci describe the skin

displacement (ci = 0, marker fixed to the proximal bone;

ci = 1, marker fixed to the distal bone). These parameters

can be calibrated once, as described in Sec. IV.

It is important to note that, given the joint marker direct

kinematics, the rigid-body velocity of the marker frame

can be computed by combining the contributions of (i) the

kinematic chain of the bones Jm
l0,m, and (ii) the Jacobian

∂θ̃/∂θ of the joint speeds θ̃ of virtual chain with respect to
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Fig. 3: Placement of the MRI-sensitive markers on the skin.

For validating the marker movement model, markers near the

MCP, PIP and DIP joints are considered.

the independent joint speeds θ, as follows

V m
l0,m(θ, θ̇) = Jm

l0,m[θ1a, θ1b, θ̃2a(θ2a), θ̃2b(θ2b)]
∂θ̃

∂θ

∣∣∣∣
θ̃(θ)

θ̇

(11)

When the linear model in (10) is adopted for the description

of the skin displacement, the explicit expression for ∂θ̃/∂θ
is given by

∂θ̃

∂θ

∣∣∣∣
θ̃(θ)

= diag(1, 1, c2a, c2b). (12)

Then, the hybrid version of (11), can be recovered as shown

in (7), and will be useful in the computation of the residual

Jacobian, as it will be explained in Sec. V, (28).

III. VALIDATION OF THE SKIN MOVEMENT MODEL USING

MAGNETIC RESONANCE IMAGING

Here we use the MRI data measured in [3] as ground truth

to validate the skin movement model described in Sec. II-

D.

A. Measurement of skin movement

MRI-sensitive Soledum oil capsules (Casella-med, Cologne,

Germany; spheroids with diameter 7 mm and long axis

10 mm) are attached to the skin on the dorsal side of the hand

of one subject (Fig. 3) over the metacarpophalangeal (MCP),

proximal interphalangeal (PIP) and distal interphalangeal

(DIP) joints.

One posture (flat hand) is designated as the reference pos-

ture.
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The STA is quantified as the distance between the marker

in the reference posture and the marker in another pos-

ture:

sk = ||Ppm,k − Bpm,ref ||, (13)

where sk is the amount of uncompensated STA in posture

k, Bpm,k is the position of the marker with respect to bone

B in posture k and Bpm,ref is the position of the marker

with respect to the bone in the reference posture. Without

loss of generality, we choose to calculate with respect to the

proximal bone. The mean STA and its standard deviation are

shown in the second column of Table I.

B. Identification of joint axes

Our choice is to model PIP and DIP joints with one axis of

rotation (1 DoF), and the MCP joints with two intersecting

orthogonal axes of rotation (2 DoFs).

In 1-DoF joints, the modeled pose PTD,mod,k of the distal

bone D with respect to the proximal bone P in posture k can

be obtained via an homogeneous transformation:

PTD,mod,k = H
(
Ppa1,

Pa1, q1k
)

PTD,0, (14)

where Ppa1 ∈ R
3 is a point on the rotation axis, Pa1 ∈ R

3

is the rotation axis, q1k is the joint angle in posture k and

the operator H(p, a, q) produces an homogeneous matrix that

describes the general rotation:

H(p, a, q) =

(
Ra(q) (p− Ra(q) p)
0 1

)
, (15)

where Ra(q) is a matrix that describes a rotation around

an axis a that passes through the origin of the coordinate

system, and q is the rotation angle [9].

As initial pose, the measured pose in the reference posture

is taken:
PTD,0 = PTD,ref . (16)

In 2-DoF joints, the rotation takes place around two rotation

axes:

PTD,mod,k = H
(
Ppa1,

Pa1, q1k
)
H
(
Ppa2,

Pa2, q2k
)

PTD,0.
(17)

The assumption of intersecting orthogonal axes im-

poses:
Ppa1 = Ppa2 and Pa1

Pa2 = 0. (18)

The residual transformation Tdiff,k between the modeled

bone pose PTD,mod,k and the measured bone pose PTD,k

is

Tdiff,k = PTD,k (
PTD,mod,k)

−1 =

(
Rdiff,k tdiff,k

0 1

)
. (19)

Rotational rr,k and translational rt,k residuals are:

rr,k = angle(Rdiff,k) and rt,k = ||tdiff,k||. (20)

The optimal axis positions Ppa1,opt and Ppa2,opt, the opti-

mal axis orientations Pa1,opt and Pa2,opt, and the optimal

mean STA (mm) ± SD optim.
joint uncompen- default optimized cross- pars
name sated values values validated c1 c2
MCP1 3.2 ±2.6 2.3 ±1.5 2.0 ±1.4 2.5 ±1.5 0.5 0.4
MCP2 6.8 ±4.0 3.7 ±2.3 3.2 ±1.7 3.7 ±1.7 0.5 0.8
PIP2 2.5 ±3.3 1.4 ±1.0 0.8 ±0.4 1.1 ±0.6 0.8
DIP2 1.7 ±1.9 1.1 ±0.6 0.9 ±0.4 1.1 ±0.5 0.6

MCP3 6.6 ±5.0 2.8 ±2.1 2.0 ±1.2 2.2 ±1.3 0.6 1.2
PIP3 3.6 ±4.4 1.7 ±1.1 1.4 ±0.9 1.6 ±0.9 0.6
DIP3 1.7 ±1.6 1.7 ±1.2 1.2 ±0.9 1.1 ±0.9 0.4

MCP4 7.2 ±5.4 3.1 ±2.5 2.0 ±1.3 2.4 ±1.2 0.8 0.7
PIP4 3.0 ±3.6 1.7 ±1.2 1.5 ±1.1 1.6 ±1.2 0.6
DIP4 1.7 ±1.7 1.2 ±0.8 1.0 ±0.7 1.1 ±0.7 0.6

MCP5 6.9 ±4.5 4.6 ±2.4 2.8 ±1.6 3.5 ±1.8 0.5 0.2
PIP5 2.9 ±3.1 2.3 ±1.4 1.7 ±1.2 1.9 ±1.3 0.7
DIP5 2.1 ±1.7 1.7 ±1.1 1.3 ±1.0 1.4 ±1.0 0.7
mean 3.8 ±3.3 2.3 ±1.5 1.7 ±1.1 1.9 ±1.1

TABLE I: Validation of the skin movement model using MRI

measurements as ground truth.

joint angles Q1,opt = (q11,opt, . . . , q1np,opt) and Q2,opt =
(q21,opt, . . . , q2np,opt), are identified by minimizing the mean

weighted sum of rotational and translational residuals.

C. Compensation of skin movement

The amount sresidual,k of residual STA is the distance be-

tween the modeled and the measured marker position:

sresidual,k = ||Ppm,k − Ppm,mod,k||. (21)

As described in Sec. II-D, the initial marker position Ppm0

and the proportionality factors c1 and c2 can be optimized

to best describe the skin movement. As a starting point, we

set

Ppm0,start =
Ppm,ref ,

c1,start = 0.5,

c2,start = 0.5.

The mean STA and its standard deviation obtained with these

values are shown in the third column of Table I.

The optimal skin movement parameters minimize the mean

amount of residual STA. The simplex algorithm by Nelder

and Mead [11], as implemented in Matlab, is used to find

the optimal parameters.

The mean STA and its standard deviation using the optimized

parameters, as well as the optimal parameters values, are

shown in the fourth, sixth and seventh column of Table I,

respectively.

A leave-one-out cross-validation is performed, and the re-

sulting mean and standard deviation of the STA are shown

in column five of Table I.

Notice that, although optimizing reduces the STA and gen-

eralizes well (cross-validation results are close to optimized

ones), even the starting point we chose is a substantial

improvement over the uncompensated values.
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IV. CALIBRATION OF SUBJECT-SPECIFIC STATIC

PARAMETERS

In order to reconstruct realistic values of the joint angles from

marker data, the kinematic model employed should mimic

as closely as possible the actual kinematics of the subject

being recorded, identifying geometric parameters aG, and

the parameters aB and aJ controlling the location of the

bone and the joint markers, respectively.

At time instant k it is possible to define the residual

rk = r(xk; aG, aB , aJ) := yk − f(xk; aG, aB , aJ), (22)

where yk is the vector of markers coordinates measured by

the marker-based optical tracking motion capture system at

time k, and f(xk; aG, aB , aJ) represent the corresponding

coordinates when the joint angle values are set to xk and the

static parameters are set to the values aG, aB and aJ . Con-

sidering a number Np of training hand postures, being the

residuals in a unique vector R and x = [xT
1 xT

2 · · ·xT
Np

]T , the

following scalar cost function is a measure of misfit:

g(x; aG, aB , aJ) :=
1

2
RTR =

1

2

Np∑

k=1

rTk rk . (23)

The calibration can thus be framed as the following con-

strained least-squares minimization problem

(x∗; a∗G, a
∗
B , a

∗
J) = argmin

xk∈Dx
a∈Da

g(x; aG, aB , aJ), (24)

where D# represents a feasibility region for the associated

quantity (e.g. box constraints for state variables or tolerance

regions around some initial guesses obtained, for example,

via caliper measurements for geometric parameters). In our

implementation, the solution of (24) is obtained employing

a primal-dual interior point method based on [12].

It is worth observing that the problem to be solved for the

calibration works on a high number of variables as it also

concerns finding the value of x∗, which is then discarded, but

this is not avoidable as we do not have any a priori estimate

of joint angles.

V. POSTURE RECONSTRUCTION

Since there are uncertainties in the model description and

noisy measurements, it is appropriate to consider the frame-

work of probabilistic inference.

Let xk denote the vector of all joint angles at time k, and

all parameters are considered known from the calibration. In

the following, let x̂ indicate an estimated quantity.

Let then y denote the coordinates of all markers measured

by the marker-based optical tracking motion capture sys-

tem.

For the process model we consider a random walk in the

state

xk+1 = xk + vk, vk ∼ N (0;Vk) (25)

where N (µ;M) is a normal distribution with mean µ and

covariance M , while, for the observation model of the

measurements yk, we use the direct kinematics relation-

ship

yk = f(xk) + wk, wk ∼ N (0;Wk) . (26)

Hence the residual is:

r(yk, xk) = yk − f(xk) = wk, rk ∼ N (0;Wk) . (27)

By differentiating (27), the equation relating the Jacobian of

the residual Jr(x) and the kinematic (positional) Jacobian

Jf (x) is obtained as

Jr(x) = −Jf (x) , (28)

which can be composed using the elemental hybrid Ja-

cobians J
B,[OMij

]

BMij
, computed as in (7), for all the mark-

ers.

For the estimation phase, an Extended Kalman Filter (EKF)

could be applied, which would linearize the residual and con-

verge in one iteration. However, neglecting O(‖x‖2) terms

in the observation model can lead to inaccurate results. With

this in mind, we implement a recursive estimation procedure

based on an iterative EKF. The function we minimize for

both explaining the measurements and staying close to the

prior is:

h(x) =
1

2
rT (yk+1, x)W

−1
k+1r(yk+1, x)+

+
1

2
(x− x̂k+1|k)

TP−1
k+1|k(x− x̂k+1|k).

(29)

Due to the nonlinearity of the residual r(yk+1, x) w.r.t. x,

the minimization of (29) leads to a nonlinear least-squares

problem. This problem can be easily handled by modern

trust-region methods [13], [14]. These methods progres-

sively minimize (29) by iteratively minimizing quadratic

models of it built at each step and following a policy of

acceptance/rejection of the step based on the agreement

between the reduction in the nonlinear function and its

approximant.

VI. EXPERIMENTS AND RESULTS

The models and techniques described in the previous sections

have been used to reconstruct hand poses using an optical

tracking system in experiments with human subjects. Al-

though a complete movement can be reconstructed, we focus

on “static” grasping poses. To analyze reconstruction out-

comes, we consider only 24 out of 26 DoFs of the kinematic

model previously described (wrist DoFs are neglected); as a

possible application, PCA has been performed and results

are compared with the ones presented in [7].

A. Materials and Methods

Experimental task: Subjects were comfortably seated and

were instructed to shape their right hand as to grasp a

certain amount of objects (n = 20, Table II) which were

not physically present during the experiment. Pictures of the
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objects were instead shown on a computer screen with a

specific timing (3 s with the image displayed, 2 s waiting

for a “beep” sound, then perform the grasping and come

back to the start position –hand in a semipronated position

on the subject adductor– in 7 s; after that a new image is

shown – total cycle length 12 s), and the subject was asked

to grasp them as if they want to use them.

1. Bucket 11. Hammer
2. Calculator 12. Ice cube
3. Chalk 13. Jar lid
4. Cherry 14. Light bulb
5. Computer mouse 15. Pen
6. Dinner plate 16. Rope
7. Espresso cup 17. Telephone handset
8. Fishing rod 18. Tennis racket
9. Frisbee 19. Toothpick
10. Hair dryer 20. Wrench

TABLE II: List of objects used in the task

Each subject performed a total of six trials for each of the

objects, preceded by a few training trials; all trials were

presented in random order.

Subjects: Four right-handed subjects (two males and two

females, age in the interval 20 to 30 years) participated in this

study. All subjects gave informed consent, and the protocols

were approved by the ethical committee of the University of

Pisa.

B. Experimental Procedure and Data Analysis

Hand posture was obtained with the identification procedure

described in Section V, measuring the position of optical

markers using an optical motion capture system (Phase

Space, San Leandro, CA - USA) composed of 10 stereo-

cameras at 480 Hz, undersampling in post-processing down

to 15 Hz. Problems related to marker occlusions are treated

directly via the EKF estimation, which considers only its

prior to generate the estimate, achieving satisfying results for

short-time missing markers. To the authors’ best knowledge,

no means is present to solve the problem of long lasting

occlusions in optical tracking systems. The reconstructed

postural angles were then smoothed with a 5 samples moving

average filter. Subsequently, a selection of the actual frame

to consider for a specific grasp was carried out, based

on the timing of object pictures presentation, via visual

inspection.

Markers were present on a bracelet fastened to the subject’s

forearm, to define the local system of reference; markers

were placed on each bone of the hand and on a selected

group of joints (Thumb CMC, MPC, IP; Index and Middle

MCP; all PIP’s) (see Figure 4).

Data Analysis: The data were then studied using PCA:

the percentage of variance accounted for by each principal

component (table III) and the cumulative variance (table IV)

are lower than the values reported in [7] (where, e.g.,

cumulative variance explained by the first 2 PCs ranges

between 77 and 90%), possibly because we do not reduce

intra-object variability via averaging, considering instead all

the repetitions for each object grasp in data analysis.

However, the main result is that with only five synergies

∼ 80% of data variance is taken into account for all subjects

(except for T.C.), thus suggesting a reduction of the 24 DoFs

to be recorded. This increased number of PCs w.r.t. [7]

needed to account for 80% of total variance is probably due

to the higher number (24 vs. 15) of DoFs. Nonetheless, it

is possible that the kinematic model of the thumb, known

to have complex non-orthogonal base joints (see [15]), is a

major factor: this issue remains however to be studied.

Considering the covariation matrix as reported in Figure 5

(for the sake of space only the covariance matrix for one

subject is reported), what is noticeable is that MCP angles

of adjacent fingers as well as the PIP angles are highly

related to each other, with the extent of correlation decreasing

with the separation between pairs of fingers. A similar result

is attained also in [7]. In Figure 7 the distribution of the

angular differences for all joint angles between hand posture

reconstructed from the first two PCs and the actual posture

recorded is shown; for a large percentage of poses (∼ 70%)

the angular difference is within ±5o. This can be seen

also from Figure 6, where the distribution of normalized

amplitudes of the first five PCs are reported. The amplitudes

are normalized to the maximum (absolute) value of the

first PC. Notice that the amplitude to the third through

the fifth PCs are uniformly small, although not as small

as in [7] where they almost never (less than 1%) reach

a normalized value of 0.5. Finally, in Figure 8, postural

synergies defined by the first two principal components in 24

DoFs are reported. The central hand posture is the average

over 120 postures (20 different objects 6 times each) for one

subject (A.C.) (for the sake of space). The postures to the

Fig. 4: The hand of one subject after all markers were placed,

showing the protocol for marker placement.

3743



3744



−30 −20 −10 0 10 20 30
0

5

10

15

20

25

30

35

40

N
u

m
b

e
r 

o
f 

C
a

s
e

s
 (

%
)

Angle Difference (deg)

Fig. 7: Distribution of the angular differences for all joint

angles between hand postures reconstructed from the first 2

PCs in 24 DoFs and the actual postures recorded. For the

sake of space, the data are for all objects from one subject

(D.R.).

Fig. 8: Postural synergies defined by the first two principal

components. The central hand posture is the average over

120 postures (20 different objects 6 times each) for one

subject (A.C.). The postures to the right and left are for

the maximum and minimum values of the first principal

component (PC1), while other principal components have

been set to zero. The postures at the top and bottom are the

same for the second principal component (PC2).

used as a priori information for hand avatar animation [16]

or for the improvement of the design and the performance of

glove-based Hand Pose Reconstruction (HPR) systems [17],

[18].
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