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Abstract— We present a novel survey path planning tech-
nique which minimizes the robot’s position uncertainty along
the planned path while taking into account area coverage per-
formance. The proposed technique especially targets bathymet-
ric mapping applications and respects application constraints
such as the desire to survey in parallel tracks and to avoid
turns in the target area to maximize sonar measurements
quality. While accounting for uncertainty in the survey planning
process can lead to more accurate data products, existing survey
planning tools typically ignore it. Our method bridges this
gap using the saliency on an a priori map to predict how the
terrain will affect the robot’s belief at every point on the target
area. Based on this magnitude, we provide an algorithm that
computes the order in which to trace parallel tracks to cover the
target area minimizing the overall uncertainty along the path.
A particle filter keeps track of the robot’s position uncertainty
during the planning process and, in order to find useful loop-
closures for mapping, crossing tracks that visit salient locations
are added when the uncertainty surpasses a user-provided
threshold. We test our method on real-world datasets collected
off the coasts of Spain, Greece and Australia. We evaluate
the expected robot’s position uncertainty along the planned
paths and assess their associated mapping performance using a
bathymetric mapping algorithm. Results show that our method
offers benefits over a standard lawnmower-type path both in
terms of position uncertainty and map quality.

I. INTRODUCTION

The measurement of underwater depth of lake or ocean
floors is known as bathymetric mapping. Bathymetric map-
ping supports safe navigation, helps protect and monitor
marine areas of biological interest and is key to geology,
archaeology and military applications, to name a few. Thanks
to technology breakthroughs in the last two decades,
autonomous underwater vehicles (AUVs) have become a
standard tool supporting these applications [1], [2], [3], [4].
AUVs provide high resolution maps thanks to near-bottom
surveys and require little human supervision compared to
their ship- or remotely operated vehicle (ROV)-assisted coun-
terparts, and hence at a lower cost. Incorporating uncertainty
when planning a survey path for an AUV mapping mission
can lead to more accurate maps. This is because most
bathymetric mapping algorithms rely on the vehicle pose
estimates during a mission to build the map. Therefore,
the more accurate the vehicle pose estimates are the more
accurate the resulting map will be.
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While the general problem of path planning under un-
certainty has been addressed in several research works (see
Related Work below), little attention has been given to incor-
porating uncertainty when planning paths for area coverage.
Moreover, no uncertainty-aware path planning algorithms ac-
count for the application constraints of bathymetric mapping,
such as the desire to survey in parallel tracks and to avoid
turns on the target area to maximize sonar readings quality
and to find useful loop-closures for the mapping algorithm.
In fact, off-the-shelf survey design tools typically plan a
lawnmower-type path on the target area completely ignoring
uncertainty. Optionally, one or more crossing tracks are then
appended seeking to provide loop-closures for the mapping
process. However, these crossing tracks are placed arbitrarily,
again ignoring uncertainty.

Aiming to bridge this gap, we present a survey path
planning technique which takes into account the robot’s
motion and sensing uncertainty and seeks to minimize this
uncertainty along the planned path. Bathymetry sonars pro-
vide noisy, highly corrupted range measurements under pro-
nounced orientation changes. Therefore, our method operates
on a parallel track basis to confine turns to the boundaries of
the target area. We compute the saliency for every point of an
a priori bathymetry of the target area∗ using the saliency map
[5], a tool borrowed from the Computer Vision community.
Based on the saliency, we provide an algorithm to decide
the order in which to trace the parallel tracks to minimize
uncertainty while also keeping extra path length into account.
Once the order is determined, the algorithm uses a particle
filter with the a priori bathymetry and simulated multi-
beam sonar measurements to estimate the robot’s position
uncertainty. Whenever the uncertainty after a parallel track
exceeds a user-provided threshold, a crossing track through
a salient area is inserted, seeking to reduce uncertainty and
to find useful loop-closures for mapping. This contrasts with
traditional survey path planning methods, which concatenate
arbitrarily placed crossing tracks to a lawnmower-type path.

We test our algorithm on real-world datasets collected
off the Formigues islands in Spain; the Santorini island
in Greece; and Tasmania in Australia. We calculate the
position uncertainty along the planned paths using terrain-
aided particle filter localization and compare them to stan-
dard lawnmower-type paths. Additionally, we compare the
mapping performance of a path planned using our method
to a standard survey path on one of the datasets using
a bathymetric mapping algorithm. Results show that our

∗It is common in marine robotics applications to have prior knowledge
of the target area in the form of low resolution bathymetry. The objective
of a mapping mission is usually to obtain a more refined data product.
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method offers benefits in terms of position uncertainty and
map quality over a standard lawnmower-type path.

II. RELATED WORK

A considerable body of recent research has addressed the
problem of motion planning under uncertainty. However,
these works mostly address the “start-to-goal” path planning
problem rather than area coverage and do not account for
the aforementioned particulars of bathymetric mapping.

Many researchers propose extensions to the sampling-
based Rapidly-exploring Random Trees (RRTs) and Prob-
abilistic Roadmaps (PRM) path planning algorithms [6], [7]
to handle uncertainty. The RRT extensions by Melchior and
Simmons and Kewlani et al. explicitly handle uncertainty
associated with terrain parameters (e.g., friction) [8], [9].
By taking this uncertainty into account these planners try to
avoid rough terrain. However, sensing or state observation
uncertainty is not considered in these works. Generaliza-
tions of the RRTs and PRM algorithms were proposed
by Chakravorty and Kumar to obtain hybrid hierarchical
motion planners that are robust to the motion uncertainty
and to the uncertainty in the environment [10]. However,
the generalizations proposed in this work assume perfect
knowledge about the state of the robot.

Other path planners focus on the uncertainty in the map of
the environment to generate paths with minimum probability
of collision with obstacles [11], [12], [13], [14].

Active perception algorithms increase robot localization
efficacy by specifically considering the expected uncertainty
of the localization algorithm while planning the next control
input the robot will receive [15], [16], [17]. Particularly re-
lated to the underwater domain are the next-best-view visual
simultaneous localization and mapping (SLAM) approach by
Kim and Eustice [18] and the active localization technique
using multibeam sonar by Fairfield and Wettergreen [19].
However, these algorithms select a control action to minimize
uncertainty at the next stage, but do not optimize over an
entire path.

Another class of approaches use Markov decision pro-
cesses (MDPs) with motion uncertainty to define a global
control policy over the entire workspace, providing a con-
nection between planning and control [20]. In order to
also include sensing uncertainty, partially observable Markov
decision processes (POMDPs) can be used [21], [22], [23].
Although POMDPs are theoretically satisfactory, these ap-
proaches require the discretization of the environment, and
as a result they suffer from scalability problems.

Some planners seek to maximize the probability of success
or rather to minimize an expected cost by taking into account
the sensing uncertainty [24], [25], [26], [27], [28]. However,
these approaches, either implicitly or explicitly, assume that
maximum likelihood measurements are received from the
sensor. As a result, the probability distributions of the robot’s
state are only approximated. In [29], by considering the con-
troller used to execute the path, the true a priori probability
distributions of the robot’s state along its future path can
be computed. By using these probability distributions, this

method can select a path among several candidates such that
maximizes the probability of arrival to the goal and at the
same time minimizes the probability of collision.

In relation to the graph structure we use to represent
parallel tracks, coverage path planning algorithms for en-
vironments that can be represented as a graph, such as a
street or road network, were presented in [30]. However,
uncertainty is not considered in this work.

III. UNCERTAINTY-DRIVEN SURVEY PATH
PLANNING

As previously stated, in this work we deal with the
application constraints of surveying the target area in parallel
tracks and avoiding turns in the target area in order to
maximize the quality of the sonar readings. We therefore
operate on a parallel track basis by constructing a graph
representing the parallel tracks required to cover the target
area, which we call the coverage graph. Then, we plan a
survey path in the two following steps:

1) Find the best possible order in which to cover the
parallel track edges of the graph which minimizes the
overall uncertainty along the path;

2) Insert crossing track edges in the path found in the first
step if, after tracing a parallel track, the uncertainty
surpasses a given threshold.

Finding the order in which to trace the parallel track edges
raises two important concerns that need to be addressed.
First, note that finding the optimal coverage path implies
dealing with n! candidate solutions, for a graph with n edges,
which is an intractable problem [31]. Therefore, finding
the optimal solution is computationally infeasible and some
heuristic must be applied in order to find a good approxima-
tion in reasonable time. Second, commonly used heuristics
do not apply to this problem due to the expansion and
contraction of uncertainty (that is, the uncertainty through
the path is non-monotonic). We address these concerns by
determining the parallel track order based on the saliency of
the terrain, which can be computed quickly. Then, we keep
track of the robot’s belief uncertainty along the determined
path using a particle filter. When the estimated uncertainty
surpasses a user-provided threshold, a crossing track that
visits salient locations of the terrain is inserted, seeking to
reduce the uncertainty.

Next, we first describe the construction of the coverage
graph (Sec. III-A). Then, we discuss how the saliency
map is used to compute the average saliency associated to
each parallel track and to determine salient locations upon
which to trace crossing tracks (Sec. III-B). The vehicle and
measurement models and the particle filter algorithm used to
keep track of the robot’s position uncertainty are described in
Sec. III-C and Sec. III-D, respectively. Finally, we describe
our proposed survey path planning algorithm (Sec. III-E),
which builds upon the coverage graph, the saliency map, the
models and the particle filter.
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A. Coverage Graph Construction

We construct a coverage graph consisting of equally
spaced, parallel edges (tracks) with vertices lying on their
endpoints. The vertices on each side of the parallel edges
are then linked with the other vertices on the same side
by vertical edges, forming a connected graph. In this work
we consider tracks at a certain constant altitude from the
seafloor, which together with the sonar swath aperture de-
termine the inter-track spacing. Fig. 2 shows the coverage
graphs on the datasets we later use to test our algorithm.

B. Saliency Calculation

When using the terrain’s elevation profile for localization
and/or mapping, we observe that profile measurements are
less uncertain where the terrain is more salient. Based on
this observation, in this work we propose to use the saliency
map [5] over the a priori bathymetry as an estimation of
the effect of the terrain on the robot’s belief uncertainty. The
saliency map assigns a saliency score to every pixel in an
image (the bathymetry in this case).

We use the saliency map in two respects. First, for each
parallel track, we compute the average saliency score in the
rectangle determined by the bathymetry sonar footprint and
the parallel track itself. Second, we determine key salient
points through which our algorithm will later trace crossing
tracks. We select regions surpassing a user-provided saliency
threshold δ on the saliency map and take the weighted
centroid of each high-saliency region as a key point. Fig 1
shows the saliency map and its corresponding segmentation
(δ = 0.5) and key salient points for the Formigues islands
dataset.

C. Vehicle and Measurement Models

Given a bathymetric map, B, and a path to be ana-
lyzed defined as a sequence of K 3-dimensional waypoints,
Π = [x0, y0, z0]>, [x1, y1, z1]>, ..., [xK , yK , zK ]>, we define
a vehicle model and a measurement model as follows.

1) Vehicle Model: The state vector st of the vehicle model
is the 3 degrees of freedom (DOFs) vehicle position at path
step k:

sk = [xk, yk, zk]>. (1)

This state vector is updated according to a constant-
velocity vehicle model

sk = f(sk−1, uk) +N (0, σf ), (2)

f(sk−1, uk) = sk−1 + uk, (3)

where uk is the control vector at step k, in this case
determined by the last and current path steps

uk = Πk −Πk−1 (4)

and σf is additive Gaussian noise.

(a)

(b)

(c)

Fig. 1: Saliency computation for a bathymetric map (a):
saliency map (b) and saliency map segmentation with δ =
0.5 and the weighted centroids of each region marked as “x”
(c).

2) Measurement Model: We model a typical multibeam
sonar providing an array of beams spread in a downward-
facing swath perpendicular to the vehicle’s direction of travel.
At path step k, the vector of beam measurements is given
by rk = [rk,1, . . . , rk,N ]> and the measurement model for
each beam i is given by

rk,i = Bi(x, y)− dk +N (0, σr),∀1 ≤ i ≤ N , (5)

where Bi(x, y) is the map elevation at the point where the
sonar beam i intersects the map surface, N is the number
of beams, dk is the vehicle’s depth and σr is measurement
noise which is assumed to be Gaussian. We simulate the
sonar beams by shooting multiple rays against the map and
computing their intersections.

D. Particle Filter

We use a particle filter based on the the SIR (sequential
importance resampling) filter [32] to estimate the position
and uncertainty of the robot along a given path Π. The
distribution on the state sk is approximated by the weighted
set of particles s(i)k , w

(i)
k , i ∈ [1,M ] as

p(sk|Rk) =

M∑
i=1

w
(i)
k δ

s
(i)
k

(sk), (6)
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where Rk = r0:k. The particle weights are recursively
updated according to the equations [32]

ŵ
(i)
k = w

(i)
k−1

p(s
(i)
k |s

(i)
k−1)g(rk|s(i)k )

q(s
(i)
k |s

(i)
k−1,Rk)

, (7)

w
(i)
k =

ŵ
(i)
k∑M

i=1 ŵ
(i)
k

(8)

where the prior p(s
(i)
k |s

(i)
k−1) is given by Eq. (2), q(·|·)

represents the proposal distribution and g(·|·) represents the
likelihood function. Here, we use the prior distribution as
the proposal distribution which results in simplification of
the weight update. The particles are sampled according to

s
(i)
k ∼ N (f(s

(i)
k−1, uk), σ2

f I3), i ∈ [1,M ]. (9)

The likelihood function is given by

g(rk|s(i)k ) = N (rk; r̂
(i)
k , σ2

rIN ) (10)

where r̂
(i)
k is the vector of expected elevations:

r̂
(i)
k = [r̂

(i)
k,1, . . . , r̂

(i)
k,N ], (11)

r̂k,i = Bi(x(i)k , y
(i)
k )− dk. (12)

Resampling with replacement is carried out at each time to
limit the degeneracy of the particles.

In this work, we are interested only in the uncertainty
of the robot’s belief rather than in the position estimate. We
estimate the uncertainty by evaluating the trace of the sample
covariance of the distribution p(sk|Rk) as

tr(Σk) = tr(
1

M − 1

M∑
i=1

(s
(i)
k − s̄k)(s

(i)
k − s̄k)T ). (13)

E. Survey Path Planning Algorithm

Our survey path planning algorithm addresses the afore-
mentioned intractability and application constraints with a
saliency-based heuristic.

It first sorts the n parallel track edges in two groups of
n
2 or n

2 − 1 edges each: one with the highest saliency edges
and one with lowest saliency edges (the edges being scored
as described in Sec. III-B). Then it alternatively selects one
edge from each group. The idea behind this heuristic is
that the uncertainty growth incurred by a low saliency edge
will be compensated by the high saliency of the next edge,
avoiding high uncertainty peaks. To take also path distance
into account, the closest edge on the next group is selected
at every step.

To further bound the uncertainty, the algorithm estimates
the robot’s position uncertainty by tracing the parallel tracks
in the order determined by the heuristic using the particle
filter. If, after a track, the uncertainty surpasses a user-
provided threshold α, a crossing track through the closest
key salient point is inserted before continuing on the next
parallel track.

It is worth noticing that our heuristic, inherently, does
not guarantee an optimal path with respect to uncertainty.

However, it tackles the intractability of the planning problem
by producing a low uncertainty solution, as demonstrated
by our experimental results (see Sec. IV below). On the
other hand, small values of the uncertainty threshold α can
lead to lengthened paths due to the addition of multiple
crossing tracks seeking to reduce the uncertainty. However,
our results show that a reasonably restrictive value of α does
not lengthen the resulting path significantly. The choice of
α strongly depends on the uncertainty tolerance of the target
application. Evaluation of the effect of several values of α on
the path produced by the algorithm can be used to determine
a good fit for the application at hand.

The survey planning algorithm is detailed in Algorithm 1.
The parallel track edges are classified in two groups accord-
ing to their average saliency in line 2 (a low saliency group,
EL, and a high saliency group, EH ). The particle filter’s
particles, P , and weights, W , are initialized according to
some initial distribution (line 4). PopClosestNextEdge()
alternatively selects the closest edge from each group ac-
cording to the h flag (line 8), and removes it from the
group. In contrast, GetClosestNextEdge() accesses the
appropriate edge, but does not remove it from the group
(line 13).

Algorithm 1: Minimum Uncertainty Survey Path Plan-
ning

Input: List of parallel track edges in the coverage
graph, E. A priori bathymetry, B.

Parameters: Uncertainty threshold, α.
S ← SaliencyMap(B)1

(EL, EH)← ClassifyEdges(E,S)2

K ← KeySalientPoints(S)3

(P,W )← InitParticleFilter()4

Π̂← ∅5

h← true6

while not EL.empty() and EH .empty() do7

e← PopClosestNextEdge(EL,EH ,h)8

h← not h9

Π̂.append(e)10

(P,W,Σk)← ParticleFilter(e,P ,W )11

if tr(Σk) > α then12

n← GetClosestNextEdge(EL,EH ,h)13

c← BuildCrossingTrack(e,n,K)14

Π̂.append(c)15

return Π̂16

IV. RESULTS

We show the effectiveness of our proposed method in
regions of interest of three different real-world bathymetric
datasets collected at sea. For each dataset, we generate a
survey path using our method and compare its performance
to a standard lawnmower-type path. For the comparison, we
simulate the path execution and keep track of the robot’s
belief using the particle filter algorithm presented above.
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Additionally, on one of the datasets, we compare the effect on
mapping performance of the paths planned using our method
to a standard survey path planning method.

A. Datasets

The three bathymetric datasets upon which we evaluate
our proposed planning method were collected: 1) near the
Formigues islands off Girona, Spain, in the Mediterranian
Sea; 2) in the Santorini caldera, Greece, in the Aegean
Sea; and 3) off the island of Tasmania, Australia, in the
Pacific Ocean. The Formigues and Santorini datasets were
collected by our team in 2009 and 2012, respectively. The
Tasmania dataset, recorded in 2009, was kindly provided
by the School of Aerospace Mechanical and Mechatronic
Engineering of the University of Sydney [33]. Fig. 2 shows
the three datasets with their coverage graphs and their key
salient points, obtained using a saliency threshold δ = 0.5.
The parallel tracks keep a constant 6 m altitude from the
bottom and the inter-track spacing is determined by the
footprint of a down-looking 120◦ swath aperture multibeam
sonar. The Formigues islands dataset, shown in Fig. 2(a) was
collected in a shallow coastal area; the Santorini dataset,
shown in Fig. 2(b), was collected on an underwater volcanic
site spreading from 290 m down to 360 m depth; the
Tasmania dataset, shown in Fig. 2(c) was collected in a
region including several hydrothermal vents.

B. Position Uncertainty Results

We run our algorithm on each dataset, using the coverage
graphs depicted in Fig. 2, with an uncertainty threshold α =
20. We compare the paths planned using our method with
a standard lawnmower-type path, the construction of which
is well-documented in the literature [34], [35]. We append
the same number of equally-spaced crossing tracks to the
standard survey path as crossing tracks are inserted by our
algorithm.

Fig. 3 shows the belief uncertainty, tr(Σk), and its mean
vs. path length for a standard lawnmower-type path and a
path planned using our proposed method on each dataset.
It can be observed that our method produces a path with
a lower average uncertainty than the standard lawnmower-
type path. We also notice that our method tends to avoid the
high uncertainty peaks present in the standard lawnmower-
type path. Regarding path length, our crossing track insertion
procedure lengthens the path due to the requirement of
visiting a (potentially distant) key salient point. However,
the enhancement in navigation quality compensates the extra
path length.

C. Mapping Results

We next compare the mapping performance associated to
a path planned using the method proposed in this paper to
the mapping performance of a standard survey path on the
Formigues islands dataset.

We do so by executing the paths in simulation using
UWSim [36], an open source tool for visualization and high-
fidelity simulation of underwater robotic missions. UWSim

(a)

(b)

(c)

Fig. 2: Bathymetric datasets upon which we test out al-
gorithm, with their corresponding coverage graph and key
salient points (marked as “x”): (a) Formigues islands dataset,
(b) Santorini dataset, (c) Tasmania dataset.

allows us to use models of our GIRONA 500 AUV [37], a
multi beam sonar and a navigation sensor suite to collect
a complete bathymetric dataset in simulation. Moreover,
UWSim is seamlessly integrated with GIRONA 500’s control
architecture [38], which means that the very same software
that runs onboard the AUV in real missions is used in our
simulations.

After executing the paths in simulation we apply a map-
ping algorithm to the multibeam sonar data collected along
the paths. Once the maps are constructed we assess their
quality and compare the results obtained using each type of
path. We use the mapping algorithm by Zandara et al. [39]
to build the bathymetric map and assess the map error. The
map error is calculated as the standard deviation of the map
points lying in every cell of a 3-dimensional grid. The maps
obtained with our method and with the standard survey path
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(a)

(b)

(c)

Fig. 3: Belief uncertainty, tr(Σk), evolution and mean vs.
path length for a standard lawnmower-type path and a path
planned using our proposed method on each dataset: (a)
Formigues islands dataset, (b) Santorini Caldera dataset, (c)
Tasmania pockmarks dataset.

are shown in Fig. 4 together with their associated map errors.
The path planned using our method produces a higher quality
map, with an average map error of 0.0893 m in contrast to the
average error of 0.1136 m produced by the standard survey
path.

V. CONCLUSION AND FURTHER WORK

In this paper, we proposed a survey path planning method
for area coverage aimed at minimizing uncertainty which
takes into account the application constraints of bathymetric
mapping. We compared the proposed method performance to
standard lawnmower-type paths in terms of position uncer-
tainty along the path on three different real-world datasets.
Additionally, we compared the mapping performance as-
sociated to our method to a standard survey path using a
bathymetric mapping algorithm. Results showed the benefit
of incorporating uncertainty in the survey path planning
phase both in terms of position uncertainty and mapping
quality enhancement. Although this work focuses on bathy-

(a) Map (standard survey path) (b) Mapping error (standard survey
path)

(c) Map (our method) (d) Mapping error (our method)

Fig. 4: Mapping results for the Formigues islands dataset:
map obtained with a standard lawnmower-type path (a) and
its corresponding map error (b); map obtained with the path
planned using our method (c) and its corresponding map
error (d).

metric mapping, we believe that many underwater robotic
applications can benefit from the techniques presented in
this paper, especially those relying on the AUV trajectory
estimate such as optical and sonar mosaicing. Likewise, data
products obtained with different sensors, such as forward-
looking and side-scan sonars, can benefit from the improved
trajectory estimates enabled by our planning method.

Our method can easily be integrated into common survey
planning tools for marine robotics, such as MB-System [40],
which is freely available to the scientific community. The
integration of the method presented in this paper can endow
the users with a tool that capitalizes on the benefits of
incorporating uncertainty in the survey planning. Therefore,
immediate efforts will explore this possibility. Further work
will consider incorporating a priori map errors into the
robot’s belief estimation, thereby accounting for the uncer-
tainty in the environment’s map. Exploring the theoretical
uncertainty and optimality bounds of the proposed method
is also a topic for future work. Finally, we would like to
study the possibility of using multi-objective optimization
techniques to balance the trade off between uncertainty and
path length in our planning method.
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