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Abstract— Continuum manipulators, inspired by invertebrate
structures in nature, such as octopus arms and elephant trunks,
do not contain rigid links, can deform, and are passively com-
pliant, which make them particularly flexible for manipulation
in cluttered space. A key open issue here is how to make such a
manipulator autonomously grasp an object in cluttered space,
especially if the object cannot be completely seen or known
before being grasped. In this paper, we address this issue by
introducing an approach that enables a multi-section continuum
manipulator to probe an object with its tip while gradually
form a whole-arm, force-closure grasp by following closely the
contour of the probed object. This real-time approach is both
effective and efficient for grasping an object in a cluttered space,
as evident from the test examples.

I. INTRODUCTION

Unlike conventional articulated manipulators, continuum
manipulators [1], [2] are inspired by invertebrate structures
found in nature, such as octopus arms [3] and elephant trunks
[4]. As such they are whole-arm manipulators, and their
shapes can continuously deform to adapt to grasping a wide
range of objects of different sizes and shapes via changing
the controllable or active degrees of freedom. Moreover, they
are also passively compliant due to their infinite number of
passive degrees of freedom. Almost all continuum robots
feature constant-curvature sections (modulo external loading
due to gravity or payload) [2] because of actuating the
(theoretically infinite) degrees of freedom of the continuously
bendable backbone with finite actuators. A representative
continuum manipulator is the OctArm (Fig. 1). Smaller
scale continuum manipulators are also developed for medical
surgery applications [5], [6].

Fig. 1. An OctArm manipulator (by the courtesy of Ian Walker)

Research on autonomous grasping for continuum manipu-
lators has been fairly recent, and the existing methods [7]–[9]
are not specifically concerned with limiting the motion of the
manipulator in a tight space. [7] determines grasping poses
of the OctArm manipulator based on some bounding circle of
the target object. [8] introduces an approach to progressively

generate a spiral, force-closure grasp for a multi-section
continuum manipulator by wrapping the manipulator around
the target object section by section, from a section close to
the base to the tip section. However, this approach requires
sufficient free space to accommodate a fairly open (i.e.,
unwrapped) and extended initial arm pose and the sweeping
motion of each arm section. Such kind of a space may not
be available in a cluttered environment.

In this paper, we tackle the problem of continuum grasping
constrained by a tight space in a cluttered environment
and introduce an algorithm that enables a multi-section
continuum manipulator to probe an object with its tip while
gradually form a force-closure grasp by molding the arm
closely along the contour of the probed object. The object
may not even be fully visible before the simultaneous prob-
ing and wrapping begins. The process can start by having the
manipulator in a contracted straight-line pose, as if a stick,
and fit into the space along one side of the target object.
Next, the tip of the manipulator is made to move a small
step along the contour of the object, which is enabled by
extending and curling every arm section, starting from the
tip section. This process is repeated until the tip of the arm
travelled around the object and carried the arm to form a
force-closure grasp of the object, which can be a spiral grasp.
During the whole process, the arm extends along the contour
of the object to fit into the tight space surrounding the object
and avoid colliding into other obstacles. The arm movement
can be adaptive based on how far ahead along the object
surface the tip can aim at.

The rest of the paper is organized as follows. Section II re-
views the manipulator model, introduces assumptions about
objects, and explains detections of contacts or collisions
between the manipulator and objects. Section III describes
our real-time grasping approach. Section IV presents exper-
imental results. Section V concludes this paper and presents
possible future research.

II. MANIPULATOR AND OBJECTS

As an example of a multi-section continuum manipulator,
let us consider the OctArm, which consists of three sections
(see Fig. 1). Each section has a constant curvature, which can
change values continously [10]. If a section has a non-zero
curvature, then it is a truncated torus (when not in contact),
with its central axis bent into a circular curve, and if the
curvature becomes zero, the section becomes a (straight)
cylinder. The length of each section can also be contracted
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or extended. The orientation of each section, indicated by
an angle with respect to an adjacent section, can also be
changed. Curvature, length, and orientation angles are the
three controllable variables for each section.

A. Manipulator model

Inspired by the OctArm, we use the following model for
an n-section continuum manipulator. We represent the i-th
section, denoted as seci, in terms of its central circular axis
segi with two end points: a base point pi−1 and a tip point
pi, and the radius of the (curved) cylinder wi. If segi has
a non-zero curvature, we call the circle of segi the section
i’s circle, denoted by ciri, with radius ri, and the plane that
contains segi the section plane, denoted by Pi, as shown in
Fig. 2.

Fig. 2. An arm section seci, its central axis segi on the circle ciri and
the plane Pi

The base frame of the robot is set at p0 with z0 axis
tangent to seg1. The frame of section seci is formed at pi−1

with the zi axis tangent to segi at pi−1. The base of segi is
the tip of segi−1. Adjacent segi−1 and segi are connected
tangentially at the connection point pi−1 as shown in Fig.
3(a), i.e., the two sections share the same tangent at pi−1.

Each section i has three degrees of freedom, or control-
lable variables: curvature κi, length si, and orientation angle
φi from yi−1 axis to yi axis about zi axis. Fig. 3(b) shows
one example segi, its frame, and controllable variables.

(a) Frames of different sections (b) Section i and its control-
lable variables

Fig. 3. Section frames

The configuration of the entire arm is determined
by the control variables of each section. We denote
an n-section continuum arm configuration as C =
{(s1, κ1, φ1), ...., (sn, κn, φn)}.

B. Objects in the environments
An object in the environment is modeled as a polygonal

mesh. To wrap around an object, each section seci of the
manipulator can be viewed as following the cross section
polygon polyi of the object mesh by the plane Pi of seci,
as shown in Fig. 4

Fig. 4. The manipulator section seci and polyi of the target object

If a target object for grasping is in a cluttered space, as
shown in Fig. 5, not all parts of the object may be visible
by the manipulator before grasping. This is modeled as not
all vertices of polyi is visible for arm section seci.

(a) A ”U” shape obstacle
(blue) surrounding a target
object (red)

(b) Top view of an obstacle
(blue), a target object (red)

Fig. 5. Obstacle (blue) and the target object (red)

C. Determination of feasible configurations and contacts
For continuum manipulation in a cluttered environment,

we need to make sure that the manipulator arm will make
necessary contacts with the target object for grasping while
avoiding collisions with other objects in the environment.
We call a manipulator configuration that neither penetrates
into the target object nor collides with obstacles a feasible
configuration. A feasible configuration of the manipulator
arm may involve multiple contacts with the target object.
We use the Algorithm 1 in [8] to check whether a given
arm configuration is feasible or not, which also returns the
list of pairs of contact points between the manipulator and
the target object for a feasible configuration. This algorithm
builds upon an efficient method that we introduced in [11]
to detect collisions between a continuum manipulator and
objects. It further determines whether a contact happens
by checking the minimum distance between the continuum
manipulator and the target object; a contact happens if the
minimum distance is less than a small threshold dcontact.

III. GRASP GENERATION

Now we are ready to introduce our on-line algorithm to
generate progressively a whole-arm, force-closure grasp of
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an object in a cluttered space with a continuum manipulator.
Initially, the manipulator is put in a contracted straight-line
configuration C0, as if a stick, and fit into the (narrow)
space along one side of the target object (see Fig. 6). The
manipulator is put close to the nearby obstacle to maximize
the clearance from the target object for maneuverability.

Fig. 6. The initial configuration of the manipulator besides the target object
(teapot)

A. Main algorithm

The algorithm is outlined in Algorithm 1. It moves every
section of the arm in small steps repeatedly to follow the
contour of the target object while avoiding penetration into
the object or collision with surrounding obstacles, led by
the tip of the arm. We call such steps feasible moves. The
Algorithm 1 calls Algorithm 2 to generate a move for each
arm section and the corresponding feasible arm configuration
Cnew, which is considered a knot configuration on the path
towards a feasible grasping configuration.

Each section can move at most max steps, where max is
computed by the maximum extendable length of a section
divided by the amount of extension per small step. Note that
sometimes a feasible move may not be possible for seci
so that Algorithm 2 returns “wrapping paused”. However,
after a feasible move for another section secj is generated, a
feasible move for seci may again be possible. Moreover,
different sections can have different value limits on its
changeable variables. Hence, a section may not be moved
exactly max steps.

After all arm sections have reached their limits in curling
and extending, if a force-closure grasp [12] is achieved,
Algorithm 1 returns the entire path of knot configurations
that leads to the force-closure grasp. Otherwise, it reports
that no force-closure grasp is found.

B. Generation of a knot configuration

Algorithm 2 curls and extends arm section seci in a small
step towards a targeted vertex on the cross section polygon
polyi of the object to generate a new, feasible knot config-
uration. It returns the corresponding feasible configuration
and the list of contacts (i.e., list of pairs of contacting points
between seci and the target object). Let v1 be the closest
vertex that seci’s tip point pi has not reached in the wrapping
direction on polyi, and vm be the farthest visible vertex that
has not been reached. Algorithm 2 chooses a target vertex
v between v1 and vm (see Fig. 7) and tries to move seci’s
tip towards v without penetrating into the object or colliding
with nearby obstacles.

Algorithm 1: GenGrasp
input : arm model in the initial configuration C0

output: corresponding grasping configuration C, a
contact list contactlist and a path from C0

to C
1 begin
2 Ccurrent ← C0;
3 path← {C0};
4 count← 0;
5 while count < max do
6 for section i← 1 to n do
7 call Algorithm 2 to move seci with a

small step and obtain a new arm
configuration Cnew and the list of
contact points and normals conlisti;

8 path← path ∪ {Cnew};
9 contactlist← ∪n1 conlistk;

10 Ccurrent ← Cnew;
11 end
12 if all sections have returned “wrapping

paused” then
13 if ForceClosure(contactlist) = true

then
14 return path and contactlist;
15 end
16 return “no force-closure grasp is

found”;
17 end
18 count← count+ 1;
19 end
20 return “no force-closure grasp is found”;
21 end

How to choose a target vertex v among v1, .., vm is an
interesting issue. We experimented with three strategies:
(1) searching and choosing the farthest visible and reach-
able vertex along the wrapping direction, (2) searching and
choosing the nearest visible and reachable vertex, and (3)
randomly searching and choosing a reachable vertex between
the nearest and the farthest visible vertices. Fig. 7 shows an
example of both nearest and farthest reachable vertices for
seci.

We determine whether a vertex v on polyi is reachable by
first computing the arm configuration Cr where seci’s tip is
at v (via inverse kinematics [13]) and then checking if Cr is
feasible, i.e., no collision with obstacles and no penetration
with the object; if so, v is reachable by seci; otherwise,
v is not reachable. If no vertex is reachable by seci, then
Algorithm 2 returns “wrapping paused” for seci.

All these strategies lead to a force-closure grasping config-
uration for the manipulator. However, strategy (1) generates
fewer knot configurations but a longer path for the manipula-
tor and requires less (total) planning time and fewer collision
checks. Strategy (2) generates more knot configurations and
requires longer (total) planning time (with more collision
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Algorithm 2: SecWrap

input : arm model and configuration Ccurrent and
object models

output: a list of contact points and normals (cList)
between seci and object mesh, and the
corresponding feasible arm configuration
Cnew

1 let V = {v1, ..., vm} be the ordered list of
unreached and visible vertices of polyi, as shown in
Fig. 7;

2 if V = ∅ then
3 return “wrapping paused”;
4 end
5 search a vertex v in V based on strategies (1), (2)

or (3), so that seci’s tip can reach v in a feasible
arm configuration Cr;

6 if no vertex in V is reachable then
7 return “wrapping paused”;
8 end
9 compute a new configuration Cnew after making

one step linearly towards Cr from Ccurrent and
check if Cnew is feasible;

10 call Algorithm 3 to repair an infeasible Cnew;
11 if “repair fails” then
12 return “wrapping paused”;
13 end
14 cList ← the list of contact points and normals at

configuration Cnew (see section II.C);
15 return Cnew and cList.

Fig. 7. The unreached vertices of polyi as an ordered list {v1, v2, ..., vm}
in the wrapping direction of seci, where the nearest and farthest reachable
vertices in the visible range are indicated

checks), but the path is shorter and closer to the target object
contour. The performance of strategy (3) is between that
of strategy (1) and strategy (2), as expected. In section IV,
we will further present and discuss the experimental results
comparing the three strategies.

Once the target vertex v for the arm tip is determined, a
new knot configuration Cnew is obtained by making a small
straight-line move in the configuration space from the current
arm configuration Ccurrent to Cr.

C. Repair of an infeasible knot configuration

If the new knot configuration Cnew generated is not fea-
sible, then Algorithm 3 is called to repair the configuration
to obtain a feasible one. Algorithm 3 categorizes infeasible
cases in the following four types and takes different repair
actions on an infeasible section seci accordingly.

• Case 1: arm section seci collides with obstacles at tip
point pi, as shown in Fig. 8 (a).

• Case 2: arm section seci collides with obstacles at a
point between base point pi−1 and tip pi, as shown in
Fig. 8 (b).

• Case 3: arm section seci penetrates the object at tip
point pi, as shown in Fig. 8 (c).

• Case 4: arm section seci penetrates the object at a point
between base point pi−1 and tip pi, as shown in Fig. 8
(d).

If a collision occurs near the tip pi of seci, repairing
simply involves either curling or flattening seci. Curling is
achieved by increasing the curvature of seci, and flattening
means decreasing the curvature of seci. However, if a
collision occurs near the base pi−1 of seci, repairing also
involves adjusting the neighboring arm section seci−1, by
either curling, flattening, or extending the length of seci−1. If
seci collides with itself or another arm section, a (physical)
loop is formed by the arm section(s). Thus, the algorithm
increases the orientation angle φi of seci to break the loop
and form a spiral wrap around the object.

Note that repairing starts from the infeasible section of
smallest index, i.e., the infeasible section closest to the base
of the manipulator. Let seci be such a section. After seci
is repaired, the other infeasible sections seci+k, where 0 <
k ≤ n-i is an integer, may also be repaired. If not, or if a
section newly becomes infeasible due to the repair of seci,
Algorithm 3 continues to repair infeasible sections from the
section of the smallest index, and so on. On the other hand,
if seci cannot be repaired after several tries or has reached its
limits, the algorithm returns “repairfails”, since repairing
other infeasible sections seci+k will not change the pose of
seci and thus will not make seci feasible.

IV. IMPLEMENTATION AND TESTS

We have implemented all the algorithms on a 2.40GHz
Intel(R) Xeon(R) CPU with 4.00 GB RAM and tested them
on a four-section continuum manipulator for the task of
grasping a teapot in a tight space as shown in Fig. 6. We
tested the three alternative strategies for choosing target
vertices used in Algorithm 2, as described in Section III.B,
and compared the results, as shown in Table I.

We use the following parameters of performance:

• # knot configurations: number of feasible knot config-
urations generated for a path;

• Planning time per knot: average time required for gen-
erating one knot configuration in a path;

• Total planning time: the total time needed for generating
all knot configurations in a path;
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(a) Case 1: seci (green) col-
lides with obstacle at seci’s
tip pi

(b) Case 2: seci (green) col-
lides with obstacle between
pi−1 and pi

(c) Case 3: seci (green)
penetrates with object at
seci’s tip pi

(d) Case 4: seci (green)
penetrates object between
pi−1 and pi

Fig. 8. Illustration of four infeasible cases between an arm section and the
object or the obstacles

• Avg. # collision detection: the average number of colli-
sion detections performed in generating a feasible knot
configuration;

• Total path length: the sum of distances between adjacent
knot configurations in a path.

How to compute the distance between two configurations
is an important issue in obtaining the length of a path. We
have found that using the straight-line distance between two
configurations in the configuration space of the manipulator
is not a good metric. This is because a shorter straight-line
distance in the configuration space does not correspond to
closer distance between volumes of arm points corresponding
to the two poses in the physical (i.e., Cartesian) space.
Thus, for two arm configurations Cj and Cj+1 on a path,
we compute the distance between them using the following
metric:

d(Cj , Cj+1) = Σn
i=1|p

j+1
i − pji |

where pi is the tip point of section i for an n-section
continuum manipulator.

Now the length of a path with N knot configurations can
be computed as:

l(path) = ΣN
j=1d(Cj , Cj+1)

The above measure for path length provides a more intuitive
characterization consistent with the arm pose changes in the
Cartesian space.

As shown in Table I, strategy (1) generates the longest
path, while strategy (2) generates the shortest one. The reason
is that strategy (2) generates paths that are closer to the

Algorithm 3: RepairConfiguration
input : infeasible configuration C, the set of

infeasible arm sections S, and models of
colliding objects

output: a feasible arm configuration Cnew or
“repair fails”

1 repeat
2 seci ← section of smallest index in S;
3 count← 0;
4 while seci is infeasible do
5 if count = #tries + 1 then
6 return “repair fails”;
7 end
8 Case 1: update C by curling seci with a

small step;
9 Case 2: update C by curling seci−1, i > 1,

and seci with small steps;
10 Case 3: update C by flattening seci with a

small step;
11 Case 4: update C by flattening and

extending seci−1, i > 1;
12 if seci collides with itself or another arm

section then
13 increase |φi| by a small δφ;
14 end
15 if C is out of the physical limits of the arm

then
16 return “repair fails”;
17 end
18 count← count+ 1;
19 end
20 update S by deleting seci and adding new

infeasible arm sections (if any) at configuration
C;

21 until S = ∅;
22 Cnew ← C;
23 return Cnew.

contour of the object, see Fig. 9. The length of the path
generated by strategy (3) is between those of strategies (1)
and (2). Aslo note that strategy (1) generates the fewest
number of knot configurations for a path and requires the
least amount of total time to generate a path. However,
it takes the most amount of time for generating one knot
configuration on average. This is because strategy (1) takes
more time to search for the furthest reachable vertex of the
object by the tip of the arm (among the visible vertices) and
the corresponding feasible configuration, which also involves
more collision checks. The attached video also compares
the motions generated by these three different strategies
respectively.

Fig. 10 shows a path generated by our algorithm using
strategy (3), leading the arm to a stable, force-closure grasp
while avoiding collision with the ”U” shaped structure and
penetration into the object.
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TABLE I
COMPARISON OF RESULTS FROM USING THE THREE ALTERNATIVE STRATEGIES IN Algorithm 2

Strategies to choose a vertex # knot config. Planning time per knot Total planning time Avg.# collision checks Path length
Strategy (1) (farthest) 50 26(ms) 1.3(s) 14 311.41(cm)
Strategy (2) (nearest) 210 12.38 (ms) 2.6(s) 6 279.62(cm)
Strategy (3) (random) 160 13.75 (ms) 2.2(s) 7 298.49(cm)

(a) Configuration by strategy (1) (b) Configuration by strategy (2)

Fig. 9. Two example configurations generated by strategies (1) and (2)
respectively, where the configuration generated by strategy (2) is closer to
the target object

(a) Initial config. C0 (b) Knot config. where sec4 is
close to the upper obstacle

(c) Knot config. where sec4
and sec3 avoid collisions with
the upper obstacle

(d) Knot config. where sec4
contacts the teapot

(e) Knot config. where sec4
compliantly wraps around the
teapot

(f) Final force-closure grasping
config. where sec4 is twisted to
avoid collision with sec1

Fig. 10. Snapshots of knot configurations leading to a force-closure grasp
by a four-section continuum manipulator while avoiding obstacles

V. CONCLUSIONS AND FUTURE WORK

We have introduced a real-time approach for continuum,
whole-arm grasping of objects in cluttered environments.
Our approach allows an n-section continuum manipulator
to progressively generate a force-closure grasp by following
closely the contour of the target object in a narrow space.
It enables grasping an object not fully visible initially by
gradually extending the manipulator to explore the surface
of the object, if the manipulator is equipped with sensors,
e.g., a camera at its tip. Our approach can also be extended
to inspection applications in cluttered environments. For the
next step, we plan to incorporate external sensors and apply
our method to grasping in cluttered real-world environments
with a real continuum manipulator.
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