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Abstract— The effect of ocean flow on the motion of au-
tonomous underwater vehicles (AUV) is often crucial in the
development of underwater localization algorithms and should
not be treated as small disturbances. The domination of strong
ocean currents and the requirement of low power consumption
prohibit AUVs to move against a background flow to obtain
localization correction in a timely manner. Our recent studies,
among others, enable an unmanned vehicle to follow a near
optimal trajectory found by Lagrangian coherent structures
based fluid control algorithm with minimal fuel usage, which
improves the vehicles’ runtime and the path following accuracy
in the presence of strong background flow. Here, we propose a
three-dimensional fully distributed localization hierarchy to im-
prove the localization of low-cost mobile marine data collection
underwater sensor networks using intra-vehicle communication
and measurements. The proposed algorithm is realized by using
the extended Kalman filter. Correlation terms in covariance
matrices are considered independently to meet the distributed
feature. Resulting simulated localization errors are bounded at
satisfactory levels and the relationship between the number of
AUVs and the performance of the algorithm is investigated.

I. INTRODUCTION

In the formation of tropical storms and hurricanes, the
air pressure, air humidity, air or water temperature and
water salinity change drastically. The gradient distribution of
these factors through air, ocean surface and undersea areas
will help us to obtain a better understanding and forecast
of them. The implementation of autonomous underwater
vehicles (AUV) has shown increasing success and promise
in meeting specific marine data collection requirements.
However, the localization accuracy of these AUVs directly
determines the quality of the collected data.

Underwater localization is a challenging topic since AUVs
can rarely take advantage of the global position system
(GPS) due to the rapid attenuation of radio frequency (RF)
signals in water. Much related works have been done during
the past decades [1], [2], [3], [4]. However, to the best of
our knowledge, the effect of ocean flow has not been well
accounted for in the development of underwater localization
methods. In applications like marine data collection, impacts
of background flow on AUVs cannot be considered as small
disturbances. In most cases, small AUVs are not capable of
moving against flow to approach localization references and
to correct localization errors on time. Lipinski and Mohseni
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Fig. 1. Intra-vehicle cooperation illustration. The DAUV uses better-
localized MAUVs as references to correct the location estimate at location
A and performs dead reckoning (DR) during the translation from location
A to location B, where it takes relative measurements and gets localization
information from other DAUVs in the neighborhood if any of them has
better localization estimates.

[5] have developed a ridge tracking algorithm for the com-
putation and extraction of Lagrangian coherent structures
(LSC). The proposed algorithm tracks ridges of the finite
time Lyapunov exponent (FTLE) field at each time step and
then approximates locations of ridges at the next time step
by advecting the LCS forward with the flow. Relationships
between optimal trajectories and coherent structures in back-
ground flow have been studied in several works [6], [7]. A
procedure for trajectory planning based on LCS is outlined in
[8]. In the presence of strong background flow, the proposed
hybrid approach yields near fuel optimal trajectories given a
cost function that combines fuel and time costs. These works
enable AUVs navigating in strong background flow with
moderate fuel usage. LCS based trajectories enable AUVs
move as drifters and avoid moving against strong flow for
the most of run-time, which ensures both navigation accuracy
and endurance. Using these AUVs as moving references,
we propose a three-dimensional fully distributed cooperative
localization method to help the localization of other low-cost
marine data collection AUVs. This work provides the essence
of the proposed algorithm, describes the development of
resultant covariance matrices and lays a foundation of further
studies on cooperative data collecting systems of unmanned
aerial vehicles (UAV) and AUVs.

II. PROBLEM STATEMENT

AUVs can be divided into two groups, i.e. mother AUVs
(MAUVs) and daughter AUVs (DAUVs) (Fig. 1). We assume
that all AUVs have the two-way communication ability with
others in the communication range. MAUVs are equipped
with the standard AUV sensor suite, including inertial mea-
surement units (IMU), magnetometers and Doppler velocity
logs (DVL). Due to their relatively valuable equipment, the
number of MAUVs is small. Autonomous surface crafts
(ASCs) have access to the GPS, which helps MAUVs to
sustain a relatively more accurate localization estimate by
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P(Di,k,D−i,k,Mk|Zk,Uk) = η · P(zDk |Di,k,D−i,k)︸ ︷︷ ︸
CL Update

∫
P(D−i,k|D−i,k−1) P(D−i,k−1|ZD,k−1,Uk−1) dD−i,k−1︸ ︷︷ ︸

CL Prediction

P(zMk |Di,k,Mk)︸ ︷︷ ︸
DSLAM Update

∫∫
P(Di,k|uk, Di,k−1) P(Mk|Mk−1) P(Di,k−1,Mk−1|ZM,k−1,Uk−1) dMk−1 dDi,k−1︸ ︷︷ ︸

DSLAM Prediction

. (1)

Fig. 2. Our fifth generation AUV “CephaloBot” [13], [14], [15], [16].

combining dead reckoning (DR) with moving long base-
line (MLBL) [9], [10]. Based on coarse knowledge of the
background flow, all MAUVs navigate along periodic near
optimal paths generated by algorithms developed in [7] and
[8]. The number of DAUVs is large and they are used specif-
ically to collect marine data of interests. Assume all DAUVs
are equipped with low-cost IMUs, scope-limited range and
bearing sensors, and underwater communication units, along
with data collection sensors. They are not capable enough to
perform MLBL or high accuracy DR.

To mathematically represent the problem in the probability
theory, we denote the collection of MAUVs’ locations at time
k as Mk, where Mk = {M1,k,M2,k, . . . ,Mm,k} and m is
the total number of MAUVs. For DAUV i, whose state at
time k is denoted as Di,k, the collection of positions of all
other DAUVs at time k is D−i,k = {Dn,k |n = 1, 2, · · · , d ∩
n ̸= i} and d is the total number of DAUVs. The state of
DAUV i, Di,k, can be inferred using a probabilistic function
given the previous position Di,k−1 and the control input
uk, which could be an IMU measurement from time k − 1
to time k. A relative distance measurement at time k is
denoted as zk. For simplicity, we have following collection
definitions: Uk = {u0, u1, . . . , uk} = {Uk−1, uk} and Zk =
{z0, z1, . . . , zk} = {Zk−1, zk}.

In the probability theory, the joint posterior of all AUVs’
locations, given all measurements and control inputs, is
p(Di,k,D−i,k,Mk|Zk,Uk) when initial locations of all
AUVs are known. This work does not depend on any static
physical map features or landmarks. Instead, MAUVs are
considered as dynamic landmarks, which turns the MAUV-
aided localization correction problem into a dynamic si-
multaneous localization and mapping (DSLAM) problem.
The multi-DAUV cooperation is a standard cooperative lo-
calization (CL) process. Related works have been done by
Martinelli et al. [11] and Roumeliotis and Bekey [12]. Both
works indicate the necessity of having at lease one vehicle
with the global localization ability to bound the overall error.

Inspired by the decomposition method used by Wang et
al. [17], a dynamic Bayes filter with Markov property for the

formulated problem is developed. Assume that measurements
at different time steps are mutually independent such that
we can group them as zk = zDk + zMk , where zDk are
measurements among DAUVs and zMk are measurements
between DAUVs and MAUVs. Hence, for a collection of
measurements till time k, Zk = ZD,k + ZM,k. Dividing
measurements in the joint posterior and performing necessary
mathematical manipulations based on Markov property yield

P(Di,k,D−i,k,Mk|Zk,Uk)

∝ P(zMk |Di,k,Mk) P(Di,k,Mk|ZM,k−1,Uk)︸ ︷︷ ︸
Dynamic SLAM

× P(zDk |Di,k,D−i,k) P(D−i,k|ZD,k−1,Uk)︸ ︷︷ ︸
Cooperative Localization

.

(2)

The posterior updating process has been factorized into
DSLAM and CL. By using the theorem of total probability,
(1) is the result of further factorizing (2) to introduce the
updating process. The joint posterior is divided into two
separated posteriors, P(D−i,k−1|ZD,k−1,Uk−1) for CL, and
P(Di,k−1,Mk−1|ZM,k−1,Uk−1) for DSLAM. This indi-
cates that the recursive updating process for these two
posteriors can be performed separately without interferences,
which is crucial in a fully distributed algorithm.

III. REALIZATION IN THE EXTENDED KALMAN FILTER

A. Motion model
1) Single vehicle motion model: Unlike most ground

SLAM applications, AUVs are modeled in 3D with six
DOFs. Proprioceptive sensors (IMUs) provide changes in
positions and orientations in a real-time manner. Since DR is
an error accumulation process, at least one exterior reference
must be provided to bound the drift in long distance move-
ments. The IMU provides three-axis Euler angles or quater-
nions, it is more convenient to directly use yaw/pitch/roll
angles in Tait-Bryan conventions. Assume the vehicle’s ini-
tial position is chosen as the origin of the North/East/Down
(NED) earth fixed coordinate system, denoted as G, and
current Euler angles in this system are (ϕ, θ, ψ) (Fig. 2).
Denote the local coordinate system attached to the vehicle
as A and let the orientation of A be the result of rotating the
coordinate system, initially aligned with the NED coordinate,
around x axis by angle ψ, followed by a rotation along the
resultant y axis by angle θ, and again along the resultant z
axis by angle ϕ. Then the rotation matrix can be written as

G
AR =

cϕcθ cϕsθsψ − sϕcψ cϕsθcψ + sϕsψ
sϕcθ sϕsθsψ + cϕcψ sϕsθcψ − cϕsψ
−sθ cθsψ cθcψ

 ,
where sϕ = sin(ϕ) and cϕ = cos(ϕ). Intuitively, given
the rotation matrix from frame G to frame A, G

AR, and
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the rotation matrix from frame A to frame B, A
BR, the

rotation matrix from frame G to frame B can be computed
through G

BR = G
AR × A

BR. In the Euclidian space, the six-
DOF state vector of the vehicle at time k can be expressed
as xk = [ pT

k oT
k ]T = [ xk yk zk ϕk θk ψk ]T ,

where pk = [ xk yk zk ]T is the position and ok =
[ ϕk θk ψk ]T is the orientation in Euler angles.

In original 2D SLAM problems and most other mobile
robots applications, odometry or inertia sensor measure-
ments are often used as control inputs to vehicles’ dynamic
models. Since three-dimensional rotations cannot be intu-
itively expressed in terms of increases in Euler angles and
the IMU can directly provide Euler angles relative to the
NED coordinate system, we use Euler angle measurements
as orientation control inputs and the double integration
of three-axis accelerations as position control inputs. The
control driving the vehicle from xk to xk+1 is τ k+1 =
[ δxk+1 δyk+1 δzk+1 ϕk+1 θk+1 ψk+1 ]T , which
is assumed to be corrupted by white Gaussian noises. Given
aforementioned definitions, the motion model is

xk+1 = f (xk, τ k+1, ϵk+1) , (3)

where ϵ are control noises and the noise-free single vehicle
motion model is
x−
k+1 = f (xk, τ k+1,0)

= Iα τ k+1 + Iβ
(
Iγ xk + G

k+1R Iγ τ k+1δt
)
,

(4)

Iα =

[
03×3 03×3

03×3 I3×3

]
, Iβ =

[
I3×3 03×3

03×3 03×3

]
, Iγ =

[
I3×3

03×3

]T
.

The superscript “−” indicates that corresponding variables
are estimates before corrections. The rotation matrix G

k+1R
denotes the orientation relationship between the NED coor-
dinate and the vehicle fixed coordinate at time k + 1.

2) Full-state model: Since this work focuses on the
localization of DAUVs, for each DAUV, orientations of
MAUVs and other DAUVs in the sensor range do not provide
useful localization information. Even though the relative
orientation relation among AUVs is important in cooperative
measurements fusion, such topics are out of the scope of
this work. Thus, the full-state vector for DAUV 1 is µ =[
xT
D1

pT
D2

· · · pT
Dd

pT
M1

pT
M2

· · · pT
Mm

]T
, of

which the dimension is L× 1 and L = 6 + 3(d− 1) + 3m.
Since motion models and paths of other AUVs are not known
by DAUV 1, they submit their position estimates when
entering the communication range of DAUV 1. Therefore,
the total control input is also a L× 1 vector in the form of
u = [τT

D1
pT
D2

· · · pT
Dd

pT
M1

pT
M2

· · · pT
Mm

]T .
pDi (i = 2, 3, · · · , d) and pMj (j = 1, 2, · · · ,m) are
position estimates of the other DAUVs and MAUVs
respectively, updated when they enter the sensor range or
kept as old values otherwise. This is reasonable since we
only concern the position of DAUV 1, and positions of
other AUVs are trivial unless they are used in the estimate
correction. Then the full-state motion model is

µ−
k+1 = f ( µk,uk+1,ωk+1 ) , (5)

where ω are control noises with mean 0 and covariance Q.

B. EKF prediction
The EKF linearizes the nonlinear motion model using

Taylor series expansion. The motion prediction is based on
the noise-free full-state time updating method, which is

µ−
k+1 = f ( µk,uk+1,0 )

= ITL
(
ILµk + G

k+1R ILuk+1δt
)
+ ICuk+1. (6)

IL =
[
I3×3 03×(L−3)

]
,

IC =

 03×3 03×3 03×(L−6)

03×3 I3×3 03×(L−6)

0(L−6)×3 0(L−6)×3 0(L−6)×(L−6)

 .
Equation (6) is the motion propagation of DAUV 1. The

first term translates the DAUV 1 to a new position based on
the control input. The second term updates the orientation
based on the latest Euler angle measurement. This motion
updating process repeats at each time step, during which the
covariance matrix Σ also updates based on

Σ−
k+1 = FµΣkF

T
µ + FωQk+1F

T
ω, (7)

where Fµ and Fω are Jacobian matrices.

C. Observation model
Assume DAUV 1 takes range and bearing measurements

of neighbor DAUVs and MAUVs every a fixed number of
time steps. Among all vehicles, MAUVs carry more accurate
localization information. DAUVs first search for available
MAUVs in the sensor range to take measurements and
perform positioning corrections. Each measurement is a 3×1
vector in spherical coordinates

[
rn αn βn

]T
in the form

zn =
[
s arccos (δznD1

/s) atan2 (δynD1
/δxnD1

)
]T (8)

for { n | n ∈ {D2, · · · , Dd,M1, · · · ,Mm} ∩ rn ≤ S },
where s =

√
δxnD1

2 + δynD1

2 + δznD1

2, S is the range of
the sensor and δxnD1 = xn − xD1 . Hence the measurement
model can be written as

z̃k+1 = h
(
µ−

k+1,νk+1

)
=

[
zT2,k+1 zT3,k+1 · · · zTd+m,k+1

]T
+ νk+1,

(9)

where ν are measurement noises with mean 0 and covariance
R.

D. Intra-AUV data fusion
The correlation among AUVs is the key to the algorithm.

Roumeliotis and Bekey [12] investigated the propagation
of covariance matrices in robot group in centralized form
and discussed how this problem can be decomposed into
a distributed form. The computation is distributed among
multiple robots while the whole estimated state vector and
covariance matrix are still stored in a centralized manner.
Our algorithm, on the other hand, is fully distributed. Each
DAUV has a unique state vector and covariance matrix. In
general, in the three-vehicle case, the covariance matrix used
by Vehicle 1 can be described as

Σ =

Σ11 Σ12 Σ13

Σ21 Σ22 0
Σ31 0 Σ33

 .
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(a) (b)
Fig. 3. Data structure in the 5 DAUVs and 2 MAUVs case. (a) shows
the information stored in DAUV 1. Black squares stand for the state or
the variance of DAUV 1. Grey squares in the covariance matrix stand for
variances of other AUVs. Grey squares in the Jacobian multiplier stand for
accumulated multipliers for the corresponding vehicles since the last meet.
Dashed squares stand for the cross-correlation between DAUV 1 and other
AUVs. Similarly, (b) shows information stored by DAUV 3.

Due to the distributed feature, the motion update of Vehicle
1 can affect the covariance matrix to the degree of

Σ =

Fx1Σ11F
T
x1

+ FωQFT
ω Fx1Σ12 Fx1Σ13

Σ21F
T
x1

Σ22 0
Σ31F

T
x1

0 Σ33

 .
After l steps of movements without information exchange
with other vehicles, cross-correlation terms in the covariance
matrix turn into Σk+l

1j = Fk+l
x1
· · ·Fk+2

x1
Fk+1

x1
Σk

1j , (j =
2, 3). But these cross-correlation terms need to be multiplied
by F ji = Fk+l

xj
Fk+l−1

xj
· · ·Fk+2

xj
Fk+1

xj
or FT

ji, denoted as
the Jacobian multiplier stored in vehicle j for vehicle i, to
complete the prediction. These multipliers are also used in
the motion updates of the covariance matrices of Vehicle 2
and Vehicle 3 respectively. As a result, information needed
from other vehicles are their own variances Σjj and accu-
mulated Jacobian multipliers F j1 since their last meet with
Vehicle 1. Cross-correlation terms among all other vehicles
except for j are set to zeros. This is crucial since for Vehicle
1, the Kalman gain used to update its own position estimates
includes all terms of the covariance matrix. Terms related to
other vehicles out of the sensor range are not updated and
hence are not correct. The new covariance matrix after fusing
information from Vehicle 3, for example, will be

Σ̂ =

F11Σ11FT
11 +FωQFT

ω F11Σ12 F11Σ13FT
31

Σ21FT
11 Σ22 0

F31Σ31FT
11 0 Σ33

 ,
where all underlined terms are updated and can be used in
the correction step. Fig. 3 shows structures in which this
information is stored in particular DAUVs.

a) DAUV-MAUV Data Fusion: Even though MAUVs
have errors in their position estimates using DR and MLBL,
better on-board equipment and intermittent accesses to global
positioning references through MLBL guarantee that they
possess much more accurate localization information than
all DAUVs. When DAUVs take measurements, they first
search for MAUVs for localization corrections. There may
be more than one MAUV in the sensor range, all of which
will be used in such a case. MAUVs’ position estimates
used in the DAUV’s measurement model are submitted by
corresponding MAUVs, along with their variance Σjj (j =
1, 2, . . .m) and the accumulated Jacobian multiplier F ji. At
the same time, acquired marine date can also be transferred
to MAUVs. After performing corrections with any MAUVs,

further “corrections” with any other neighbor DAUVs at
the same time step will result in no better state estimates.
However, the intra-DAUV correction will contribute a lot to
some DAUVs when MAUVs are not detected, especially for
a very long time.

b) Intra-DAUV Data Fusion: The intra-DAUV data
fusion takes place when two DAUVs enter into the sensor
range of each other, which needs to be carefully accounted
for because of the distributed feature. It is known that the
measurement being used by a particular AUV for more than
once leads to inconsistent or overconfident estimates [18].
We use one-way data fusion to avoid measurement reusing.
In addition, each DAUV performs relative measurements
and communications with only one neighbor DAUV in the
sensor range during its measurement stage. When there are
more than one neighbor DAUV in the sensor range, a proper
selection technique is necessary to ensure that the DAUVs
get the best localization correction in intra-DAUV data
fusion. Since the absolute localization error is not known,
one reasonable alternative is the variance of the position
estimates, which stands for the degree of spreading out of the
estimates distribution. For example, in the three-dimensional
case, we take the trace of the variance of DAUV n, i.e.
trace(Σnn), evaluated by DAUV n itself.

E. EKF correction

Since only vehicles in the sensor range can provide poten-
tial localization correction information for vehicles out of the
sensor range, the full-state vector still keeps their old location
information submitted when they were detected earlier. But
actual measurement data are all zeros. For these vehicles,
naively applying the correction equation will introduce large
modeling errors. This can be fixed by introducing a selection
matrix Ξ with submatrices

ξi =

{
I3×3 for n = Di ∪ {n ̸= Di | rn ≤ S};
03×3 for {n ̸= Di | rn > S} . ,

where n ∈ {D1, · · · , Dd,M1, · · · ,Mm} such that Ξ is a
diagonal matrix with ξD1

, ξD2
, · · · , ξMm

as diagonal sub-
matrices and 0 anywhere else. Define Σ̂

∗−
k+1 = ΞΣ̂

−
k+1 Ξ

T

as the covariance matrix only with fully updated terms and
zeros anywhere else, then the EKF correction is based on

µk+1 = µ−
k+1 +Kk+1 [z̃k+1 − h (µ,0)] , (10)

where Kk+1 is the Kalman gain, which has the form

Kk+1 = Σ̂
∗−
k+1H

T
µ

(
HµΣ̂

∗−
k+1H

T
µ +Rk+1

)−1

, (11)

and the covariance matrix correction will be

Σ̂k+1 = Σ̂
−
k+1 −Kk+1HµΣ̂

∗−
k+1. (12)

Selection matrices filter out terms with dated data in covari-
ance matrices to make sure the correctness of the updating
process. In the three vehicles case, when Vehicle 3 is
observed by Vehicle 1, the covariance matrix before being
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updated and the selection matrix stored by Vehicle 1 are

Σ−
k+1 =

Σ11 Σ12 Σ13

Σ21 Σ22 0
Σ31 0 Σ33

 and Ξk+1 =

I3 03 03

03 03 03

03 03 I3

 .
Σ∗−

k+1 = Ξk+1 Σ
−
k+1 Ξ

T
k+1 =

Σ11 03 Σ13

03 03 03

Σ31 03 Σ33

 . (13)

If we use a Cartesian measurement model, h =[
dx dy dz

]T , to simplify the form of Hµ for a better
explanation, the innovation covariance can be computed as

Sk+1 = HµΣ
∗−
k+1H

T
µ +Rk+1

= Σ11 −Σ13 −Σ31 +Σ33 +Rk+1,
(14)

where Hµ =
[
−I3 03 I3

]
and all terms are updated

correctly. The second term in (12) can be calculated as

Kk+1HµΣ
∗−
k+1 =

X 11 03 X 13

03 03 03

X 31 03 X 33

 , (15)

where all X terms only include Σ11, Σ13, Σ31, Σ33, and
Rk+1. The correction just affects corresponding terms in
Σ−

k+1 and only correctly updated terms are used. When
there are p MAUVs in the sensor range of DAUV i, it
updates corresponding terms and correct estimates based
on Algorithm 1. When there are no MAUVs but neighbor
DAUVs in the sensor range, DAUV i updates corresponding
terms and correct estimates according to information from
the DAUV with the smallest variance trace.
Algorithm 1 DAUV-MAUV Data Fusion

1: for j = 1 to p do
2: µ−

i,k+1 ← {µ
−
i,k+1,µj,k+1}

3: Σ̂
−
i,k+1 ← {Σ−

i,k+1,Σjj,k+1,F j,k+1}
4: Reset F ij,k+1

5: Ki,k+1 ← {Σ̂
−
i,k+1,Hµ,i,Ri,k+1,Ξi,k+1}

6: µi,k+1 ← {µ−
i,k+1,Ki,k+1, z̃i,k+1, zi,k+1}

7: Σi,k+1 ← {Σ̂
−
i,k+1,Hµ,i,Ki,k+1,Ξi,k+1}

8: end for

IV. SIMULATIONS AND RESULTS

We consider an extended double-gyre flow type in 3-
dimensional space by wrapping four convection cells around
a cylinder. The resulting finite-time Lyapunov exponent
(FTLE) and LCS are generalized by Lekien and Ross in
[19]. Fig. 4 shows simulated paths of one MAUV and
three DAUVs. The performance comparison between using
pure DR and the proposed algorithm is shown in Fig. 5.
Deviations of estimated paths from real paths are bounded
because of localization information provided by the MAUV.
The improvement will be more obvious as the run-time in-
creases. The effect of the number of MAUVs is examined in
Fig. 6. Improvements on upper bounds are noticed. Average
errors decrease since DAUVs have more chances to perform
localization corrections with MAUVs. When a particular
DAUV finishes the correction with at least one MAUV, it acts
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Fig. 5. Positioning errors of three DAUVs when (a) only using DR and
(b) performing the proposed algorithm with 1 MAUV.
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Fig. 6. Positioning errors of three DAUVs when performing the proposed
algorithm with (a) 2 MAUVs and (b) 3 MAUVs.

as a virtual MAUV for a short time due to its small variance
after the correction. The upper bound is affected by DR
errors of MAUVs, actual paths of AUVs under the influence
of background flow and the noise level of intra-vehicle
measurements. It can also be concluded that a good MAUV
path planning method adapted to the flow will increase the
occurrence rate of DAUV-MAUV measurements and data
fusion, and hence improve the localization of DAUVs, which
is one of our further research focuses.

A more common flow pattern, the flow generated by
vortices on a sphere, is widely used in geophysical fluid dy-
namics when considering large-scale atmospheric or oceano-
graphic flow with coherent structures that persist over a
long period of time and move over large distances. This
flow pattern is used as a simplified model of global ocean
currents by ignoring interactions with lands. Ocean vortices
are simulated by moving point vortices and the resulting flow
pattern can be used in meteorology study including hurricane
simulations. We focus on a special solution discussed by
Kidambi and Newton in [20]. Three vortices move under the
impact of the others (Fig. 7) and the vortices paths can be
expressed in the Cartesian coordinate as
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Fig. 7. Non-dimensional vehicle path driven by the background flow
generated by three vortices on a unit sphere.

TABLE I
80% UPPER BOUNDS OF THE AVERAGE LOCATION ERROR

Number of Error of 3 5 10
MAUVs MAUVs (m) DAUVs DAUVs DAUVs

1 [-1,1] 7.48m 7.30m 7.37m
3 [-1,1] 4.82m 4.37m 4.19m
3 [-3,3] 7.80m 7.21m 6.42m

ẋi =
1

4πR

N∑
j ̸=i

Γj
xj × xi

R2 − xi · xj
, (16)

where xi is the location of vortex i, Γj is the vorticity of
vortex j located at xj , N is the total number of vortices and
R is the radius of the sphere [21]. In each simulation, we
evaluate the 80% upper bounds of average location errors
among all DAUVs, under which the average location error
lies for 80% of the run-time. Table I shows results of these
simulations. For a given number of MAUVs, increasing
the number of DAUVs slightly decreases bounds. This is
because a larger number of DAUVs increase the propagation
rate of localization information from MAUVs. While, the
decrease in the 80% upper bounds caused by increasing the
number of MAUVs is dramatic. Since more references are
available, DAUVs have a bigger change to meet MAUVs.
When localization errors of MAUVs increase, upper bounds
also rise. Due to the randomness of Gaussian noises in
different simulations, the increase is not strictly linear.

V. CONCLUSIONS

We use several mother AUVs with bounded localization
errors as moving references to improve localization of low-
cost daughter AUVs based on recent progresses on optimized
path planning in strong background flow fields. Daughter
AUVs take relative measurements and exchange information
to slow down increases of DR errors and to propagate
localization correction information from mother AUVs. The
proposed algorithm is fully distributed, making it practical
in large-scale applications. The correlation among AUVs is
properly accounted for. Simulation results are consistent with
the theory. The accuracy of MLBL, the stability of range
and bearing sensors, the Gaussian noise assumption and
linearization errors using EKF require further investigations.
Further work will also focus on the robustness of the algo-
rithm and we believe that background flow can also provide
localization information if properly considered. Experiments
will be done to prove the thoery and to identify limitations.
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