
2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

978-1-4673-6357-0/13/$31.00 ©2013 IEEE 2500



framework of Quadratic Programming (QP), with a quadratic

objective function to be minimized (typically, a norm) and

linear equality and inequality constraints [8]. The robotic

application of this optimization method puts the emphasis

on the proper formulation of tasks, on the handling of their

priorities, and, foremost, on the computational efficiency

for real time execution. The inclusion of linear inequality

constraints in a task priority approach was considered first

in [9] and [10]. Several numerical issues were then addressed

for the faster resolution of a hierarchy of inverse kinematics

problems with inequality constraints [11], [12], including

the concepts of active constraints (and related Karush-Kuhn-

Tucker multipliers), QR factorizations (of task Jacobians and

null-space projection matrices), ‘warm start’ (reusing part of

the previous solution in a time sequence of closely related

QP problems), and so on.

In [13], we reformulated our SNS approach in the context

of quadratic programming with linear task equalities and

box (inequality) constraints. In doing so, we modified the

basic algorithm (essentially, tuning the order in which the

single overdriven commands are being saturated, based on

the analysis of the multipliers) so as to guarantee optimality

of the solution (Opt-SNS algorithm). The main outcome is

that the SNS (or the Opt-SNS) algorithm is faster than a

general QP solver (e.g., the one used in [10]), because it

exploits the structure of the given problem.

Nevertheless, apart from the efficiency in finding a solu-

tion, there are some fundamental differences between our

SNS approach and the general formulation of [10], [11].

First, the box inequality constraints that characterize robot

motion capabilities are taken out of the stack of tasks and

enforced separately. Second, the hard bounds on the com-

mands include also a prediction of violation of joint ranges,

resulting in an overall smoother behavior (if not continuity).

Third, when the set of equality tasks cannot be realized by the

robot capabilities, task scaling is automatically considered

in the problem formulation. This prevents the output of an

approximate minimum error solution that would however

violate the hard bounds1.

As a matter of fact, possible differences between the

provided solutions with the approach of [10], [11] and with

our SNS method arise only when the problem admits no

feasible region (i.e., no command satisfy simultaneously all

equality task constraints and all box inequality constraints).

Hard inequality constraints should always be set at the top of

the priority stack in [10], [11]. But the handling of such hard

inequalities is not fully clear (e.g., whether these constraints

need to be enforced at any priority level, or if a backtrack

to previous tasks occurs in case the k-th one needs more of

the robot capabilities), and unacceptable violations may still

occur if they correspond to an approximate solution with the

1An underlying hypothesis in SNS operation is that the origin of the
command space (e.g., the velocity q̇ = 0) is always a feasible choice for
a relaxed problem with equality constraints being sufficiently scaled. When
the generic k-th equality task is not feasible (i.e., the task velocity ẋk does
not belong to the range space of the Jacobian R{Jk}, then the problem is
addressed using a damped least squares approach and the SNS algorithm is
applied using the damped Jacobian pseudoinverse as a basis.

least possible error in norm —a situation ruled out within

our SNS approach.

The main goal of this paper is to improve the numerical

performance of the SNS [5] and Opt-SNS [13] algorithms,

by using similar machinery as in [11], [12]. After recalling

some basic results in Sects. II and III, we introduce in Sec. IV

another formulation of the problem based on task augmen-

tation [14], where the information on saturated commands

is inserted as additional equality constraints (this is quite

similar to the active set idea). The QR factorization of the

main involved matrices is used to speed up computations,

leading to the Fast-SNS algorithm of Sect. V and to the

FastOpt-SNS algorithm of Sect. VI. Section VII gives a few

details on the warm start of the method, while numerical

results are presented in Sect. VIII for a hyper-redundant

planar robot (see Fig. 1), with up to n = 200 degrees of

freedom (DOF) and under very severe saturation conditions.

II. REDUNDANCY RESOLUTION

Let q ∈ R
n be the generalized (joint) coordinates of a

robot, xk ∈ R
mk the variables describing a generic task,

with mk ≤ n, and Jk = Jk(q) the associated mk × n task

Jacobian matrix. At a given robot configuration q, the task

differential kinematics is

ẋk = Jk q̇. (1)

Inversion of the differential map (1) provides an infinity of

solutions, all of which can be generated as

q̇k = J
#

k ẋk + P kq̇N , (2)

where J
#

k is the (unique) pseudoinverse of the task Jaco-

bian [15], P k = I−J
#

k Jk is the n×n orthogonal projector

in the Jacobian null space, and q̇N ∈ R
n is a generic joint

velocity.

The problem can be extended to l tasks in the form (1),

each of dimension mk, k = 1, . . . , l (typically, but not

necessarily, with
∑l

k=1 mk ≤ n), that are ordered by their

priority, i.e., task i has higher priority than task j when i < j.

The execution of a task of lower priority should not interfere

with the execution of tasks having higher priority, and this

hierarchy is guaranteed by projecting the execution of the

k-th task of the stack in the null space of all higher priority

tasks. This is obtained by using the recursive formula [3]

q̇k = q̇k−1 + (JkP A,k−1)
# (

ẋk − Jkq̇k−1

)

, (3)

initialized with q̇0 = 0 and P A,0 = I , and where P A,k is

the projector in the null space of the augmented Jacobian of

the first k tasks

JA,k =
(

JT
1 JT

2 . . . JT
k

)T
. (4)

Matrix P A,k can also be expressed recursively as [4]

P A,k = P A,k−1 − (JkP A,k−1)
#

JkP A,k−1. (5)

Different numerical methods can be used to compute the

solutions (2) or (3). The most common is to resort to a

Singular Value Decomposition (SVD) of matrices. Using

2501



SVD provides the singular values of a matrix, and thus its

rank and condition number. It is then possible to check if

the task is singular or close to a singularity, and in that case

obtain a damped pseudoinverse as an approximate solution

(selectively damping the singular values [16]). However, the

SVD is computationally quite expensive. On the other hand,

a QR decomposition is certainly faster [17]. In addition, for

the case of multiple tasks with priorities, using the approach

presented in [18], it is possible to progressively reduce the

dimension of the matrices to be (pseudo)inverted.

Consider the QR decomposition of (the transpose of) the

generic task Jacobian

JT
k = Qk

(

Rk

0

)

, (6)

where Qk = (Y k Zk) is a n × n orthogonal matrix,

decomposed in a n×mk matrix Y k and a n×(n−mk) matrix

Zk, and the upper triangular matrix Rk has dimension

mk × mk. The solution (2) for a single task is obtained as

q̇k = Y kR−T
k ẋk + ZkzN . (7)

The columns of Zk provide a (minimal) basis for the

Jacobian null space, and zN ∈ R
n−mk is a generic vector

in the reduced space of redundant DOFs. The standard null

space projector can be obtained as P k = ZkZT
k .

For the multi-task case, it is possible to derive a recursive

formula based on eq. (3). It is

q̇k = q̇k−1 + ZA,k−1Y A,kR−T
A,k

(

ẋk − Jkq̇k−1

)

, (8)

initialized with q̇0 = 0 and ZA,0 = I , and using the QR

decomposition

(JkZA,k−1)
T

= (Y A,k Zk)

(

RA,k

0

)

. (9)

Moreover, we compute recursively

ZA,k = ZA,k−1Zk. (10)

The dimension of JkZA,k−1 is mk × (n − ∑k−1

i=1 mi).
Therefore, adding the contribution of a low priority task will

become faster as we go down the stack of tasks.

For simplicity, equations (7) and (8) have been written

assuming that the generic task k is non-singular (and no

algorithmic singularities [2] occur in the stack up to task

k), so that matrices Rk or RA,k are invertible. When the

determinant, e.g., of matrix Rk (the product of its diagonal

elements) is smaller than a given threshold, the task will

be considered singular, and a damped solution is obtained

through the damped pseudoinversion of Rk, achieved using

the SVD of Rk. This operation is computationally fast, being

Rk a square upper triangular matrix (of dimension mk).

III. SNS ALGORITHMS

The robot motion capabilities are limited by the following

box constraints set on joint-space quantities:

Qmin ≤ q ≤ Qmax (joint range)

−V max ≤ q̇ ≤ V max (max joint velocity)

−Amax ≤ q̈ ≤ Amax (max joint acceleration)

(11)

Indeed, these limits can never be violated. In this paper, we

assume that the robot is commanded with joint velocities q̇,

so that only the first two sets of 4n inequality constraints

in (11) can be enforced. To handle directly also acceler-

ation limits, the command should be defined at the same

differential level—see [5] for more details. At the current

configuration q, we can derive from (11) the following

equivalent hard bounds on q̇

Q̇min(q) ≤ q̇ ≤ Q̇max(q), (12)

which specify that, for each joint i = 1, . . . , n, the velocity

command q̇i must guarantee i) that the joint range limits

will not be exceeded in the next step, ii) that q̇i is within its

limits, and iii) that the joint will be able to stop its motion

before reaching its closest joint limit, taking into account the

maximum acceleration limits.

The basic Saturation in the Null Space (SNS) algorithm

has been developed to resolve redundancy for a single

task [5], or for multiple tasks with priorities [6], under the

hard bounds (12). The core idea of the algorithm is to modify

a pseudoinverse solution by removing at each step the most

critical command that exceeded its bounds, and reintroducing

its contribution at the saturation level through the null space

of the task. When a task velocity ẋk is not feasible for the

robot capabilities, the SNS scales its magnitude preserving

the desired task direction.

The SNS redundancy resolution formula for multiple tasks

with priority is

q̇k = q̇k−1+
(

JkP̄ k

)# (

skẋk − Jkq̇k−1

)

+P̃ kq̇N,k, (13)

where q̇0 = 0 and

P̄ k =
(

I − ((I − W k) P A,k−1)
#
)

P A,k−1 (14)

is the projector in the null space of the augmented task (4),

considering only non-saturated joints (i.e., the contribution

of
(

JkP̄ k

)# (

skẋk − Jk ˙̄qk−1

)

is zero for saturated joints).

The n × n selection matrix W k = diag{Wk,ii} with 0/1

elements specifies which joints are currently enabled or

disabled: if Wk,ii = 0, the velocity of joint i is at its satu-

ration level and the joint is disabled (for norm minimization

purposes). The matrix

P̃ k =
(

I −
(

JkP̄ k

)#
Jk

)

((I − W k)P A,k−1)
#

(15)

is a special projector that allows to accommodate a joint

velocity saturation, without deforming the task nor the hi-

erarchy of priorities. The i-th element of q̇N,k contains the

desired value for the i-th joint. If the i-th joint is saturated

and Q̇sat,i (sat = {min,max}) is its saturation value, then

q̇N,k,i = Q̇sat,i − q̇k−1,i; otherwise, it is equal to zero. The

scalar sk represents the task scaling factor and is computed

with Algorithm 1, where a =
(

JkP̄ k

)#
ẋk and b = q̇k−a.

If sk ≥ 1, the task is feasible with the current solution.

Else, Algorithm 1 identifies the most critical joint commands

that will be saturated. When rank
(

JkP̄ k

)

< mk, no

more saturations are possible: the task is unfeasible and the

solution with the highest scale factor computed so far is used.

2502



Algorithm 1 (Task scaling factor)

function getTaskScalingFactor(a, b)

for i = 1 → n do

Smin,i =
(

Q̇min,i − bi

)

/ai

Smax,i =
(

Q̇max,i − bi

)

/ai

if Smin,i > Smax,i then

{switch Smin,i and Smax,i}
end if

end for

smax = mini {Smax,i}
smin = maxi {Smin,i}
the most critical joint = argmini {Smax,i}
if smin > smax .OR. smax < 0 .OR. smin > 1 then

task scaling factor = 0
else

task scaling factor = smax

end if

In [13], the SNS method for the k-th priority task has been

reformulated as the solution of the QP problem:

q̇k = arg min
q̇∈Rn

1

2
‖q̇‖2

s.t. Jkq̇ = skẋk,

JA,k−1q̇ = JA,k−1q̇k−1,

Q̇min ≤ q̇ ≤ Q̇max,

(16)

where the task scaling factor sk is the highest found with the

SNS algorithm. Based on the Karush-Kuhn-Tucker (KKT)

conditions [19] for this QP problem, the Opt-SNS algorithm

has been derived. It allows to verify if a saturated joint

velocity has to be removed from saturation, by checking the

sign of the multipliers

µk = P̃
T

k q̇k, (17)

leading to the optimal solution of the QP problem (16).

IV. A NEW APPROACH TO SNS

It is possible to show that the same SNS redundancy

resolution formula (13) can be obtained using a suitable task

augmentation [14], which will then allow the use of a faster

QR decomposition. Let2

q̇k = q̇k−1 + J
#
T q̇T

= q̇k−1 +

(

JkP A,k

JW

)#(

skẋk − Jkq̇k−1

q̇W

)

,
(18)

where JT is the augmentation of JkP A,k with a p × n
matrix JW , and being p the number of saturated commands.

If joint i is saturated, the associated row JW,i of the auxiliary

Jacobian JW contains all zeros, except a 1 as i-th element.

The vector q̇W = JW q̇N,k, related to the SNS vector q̇N,k,

is composed by the saturation values associated to JW . The

2From now on, to reduce notational burden, some intermediate quantities
that are used only within the solution of the k-th task will bear no k index.

result of eq. (18) coincides with that of eq. (13) if there

exists at least a feasible solution. Otherwise, equation (18)

provides the smallest violation (in a least squares sense) of

the constraints, producing however a relaxation of the box

constraints that is forbidden in the SNS framework. This

situation is in fact related to the SNS exit condition, namely

rank
(

JkP̄ k

)

< mk.

By simple inspection, the pseudoinversion of JT can be

partitioned as

J
#
T =

(

(

JkP̄ k

)#
B
)

, (19)

with B a n × p matrix containing the columns of P̃ k

associated to the saturated joints, i.e., B = P̃ kJT
W . Taking

into account that at each step of the SNS algorithm only

one joint is inserted in (or removed from) the saturation list,

equation (18) can be obtained from the previous step as a

rank one update [20] of the pseudoinverse of the augmented

Jacobian. Moreover, due to the simple structure of the row

that has to be appended to JT , namely JW,i if the i-th joint

saturated, the update reduces to very simple formulas.

We detail next the operations associated with a new

command (the (p+1)-th) reaching saturation. Removal from

saturation is done following similar steps. Introducing the

n×n orthogonal projector P̂ A,k, initialized to P k as in (5)

and composed by the columns p̂k,i (i = 1, . . . , n), the update

vector bi is obtained as

bi =
p̂k,i

p̂k,ii

, (20)

where p̂k,ii denotes the i-th element of vector p̂k,i. Then,

matrix B is updated and augmented by one column as

B =
(

(I − biJW,i) B bi

)

, (21)

and the SNS solution becomes

q̇k = q̇k−1 + BJW q̇N,k

+ (I − BJW ) (JkP A,k−1)
# (

skẋk − Jkq̇k−1

)

.
(22)

Finally, the introduced projection matrix P̂ k is updated as

P̂ k = P̂ k + BJW

(

I − P̂ k

)

. (23)

Note that the columns of P̂ k associated to saturated joints are

equal to the columns of P̃ k in (15), and to the corresponding

columns of B.

V. THE FAST-SNS ALGORITHM

Based on the results of the previous section, the update of

the SNS solution can be achieved with a minimum amount

of operations. If the joint i saturates, the update vector bi is

obtained directly from the QR decomposition of (9) and (10)

as

bi = ZA,k z
#
i = ZA,k

zT
i

ziz
T
i

, (24)

where zi represents the i-th row of ZA,k.

2503



For the Fast-SNS algorithm update, it is useful to split the

SNS solution in four terms

q̇k = q̇k−1 + sk ˙̄q, + ˙̄q,, + ˙̄qW , (25)

with initializations ˙̄q, = q̇,, ˙̄q,, = q̇,,, ˙̄qW = q̇W , where

q̇, = ZA,k−1Y kR−T
k ẋk

q̇,, = −ZA,k−1Y kR−T
k Jkq̇k−1

q̇W = 0

(26)

come from the solution (8), which is obtained without

considering the inequalities (12). In the following, we will

call (26) the unconstrained solution. At each new saturation,

these terms are updated as

˙̄q, = ˙̄q, − bi ˙̄q
,
i

˙̄q,, = ˙̄q,, − bi ˙̄q
,,
i

˙̄qW = ˙̄qW + bi

(

Q̇sat,i − q̇k−1,i − ˙̄qW,i

)

,

(27)

where Q̇sat,i is the saturation value. The scaling factor sk is

given by Algorithm 1, called with a = ˙̄q, and b = q̇k − a

(this is the reason for splitting the second and third terms

in (25)). The null space projector is then updated as

ZA,k = ZA,k − bizi. (28)

VI. THE FASTOPT-SNS ALGORITHM

The algorithm of Sect. V yields in general a suboptimal

solution in terms of the QP problem (16). Namely, only the

norm of the velocity vector of non-saturated joints is mini-

mized. Following the results of [13], as recalled in Sect. III,

we need then i) to compute and update the multipliers (17),

and ii) to update the solution when a joint command is

removed from its saturation state. This is the core of the

FastOpt-SNS algorithm presented next.

The multiplier associated to a new saturated joint com-

mand of index i (the (p + 1)-th saturated one) is given by

µk,i = bT
i q̇k. (29)

All other p multipliers associated to previously saturated

joints have to be updated as

µk,j = µk,j − bj,i µk,i, j = 1, . . . , p, (30)

where bj,i is the i-th element of the update vector bj for the

j-th saturated joint. Equation (30) shows that these vectors

need to be stored and updated at each new saturation. This

can be done with

bj = bj − bibj,i, j = 1, . . . , p. (31)

Since the p vectors bj compose the matrix B, eq. (31)

executes the same update as eq. (21).

Using the multipliers, it is possible to identify a saturated

joint command, say with index o, that should not saturate

in the optimal solution. In this case, joint o has to be

removed from the list of p saturated commands and the

solution downgraded. The first step is to downgrade the

update vectors associated to the p−1 joints that will remain

in saturation:

bj = bj − bo

(

bT
o bj

bT
o bo

)

, j = 1, . . . , p. (32)

Indeed, bo becomes zero and will be discarded. Next, the

solution is downgraded as

˙̄q, = ˙̄q, + bo



q̇,
o −

p
∑

j=1

bj,oq̇
,
j





˙̄q,, = ˙̄q,, + bo



q̇,,
o −

p
∑

j=1

bj,oq̇
,,
j





˙̄qW = ˙̄qW − bo



Q̇o −
p
∑

j=1

bj,o

(

Q̇j − q̇k−1,j

)



 ,

(33)

where q̇, and q̇,, compose the unconstrained solution ob-

tained with eqs. (26). The null space projector has to restore

the additional direction given by the o-th joint. Thus, ZA,k

is downgraded as

ZA,k = ZA,k − b0



z̃o −
p
∑

j=1

bj,oz̃j



 , (34)

where z̃i is the i-th row of ZA,k−1Zk. Finally, the p − 1
multipliers associated to joints that will remain in saturation

are downgraded by

µk,j = µk,j + bj,o µk,o j = 1, . . . , p, j 6= o. (35)

After the downgrade, µk,o will be set to zero.

VII. WARM START

With the robot in motion, the stack of tasks needs to be

executed at every control sampling time. If the variation of

a desired task is small between one sample and the next

one, the new redundancy resolution problem will be close

to the previously solved one, and so its solution. Therefore,

almost the same set of saturated commands can be expected.

In a warm start, we assume to know which joints were in

saturation for the k-th task at the previous time sample, e.g.,

the matrix JW is known. The new solution can be efficiently

computed starting from the same previous set of saturated

joints and proceeding as follows.

We first obtain the update vectors associated to all satu-

rated joints as

B = ZA,k (JW ZA,k)
#

. (36)

The update vectors allow to obtain the SNS solution from

the unconstrained solution in (26)

˙̄q, = q̇, − BJW q̇,

˙̄q,, = q̇,, − BJW q̇,,

˙̄qW = q̇W + BJW q̇N,k,

(37)

2504



where q̇N,k was introduced in Sect. III. The directions

associated to the saturated joints are removed from the null

space projector by

ZA,k = ZA,k − BJW ZA,k, (38)

and the multipliers associated to the saturated joints are

obtained by

µk = BT q̇k. (39)

Note finally that, in the actual implementation, multiplica-

tion by JW represents only an extraction/reordering of a

submatrix or subvector from the multiplied quantity.

VIII. NUMERICAL RESULTS

To evaluate the performance of the new redundancy

resolution algorithms Fast-SNS and FastOpt-SNS, a high-

dimensional planar robot with a (varying) number n of rev-

olute joints and links of unitary lengths has been considered

(see Fig. 1). The planar case makes a parametric analysis

easier. However, the outcome would be very similar also

in case of spatial redundant robots moving in 3D. All SNS

versions have been developed in C++, using the Eigen library

[21] for algebraic computations. Simulations were performed

using the ROS environmenton a Intel Core i7-2600 CPU

3.4GHz, with 8Gb of RAM.

First test. The planar positioning of the end-effector of

the n-DOF robot is the single task considered (m1 = 2).

The joint limits (11) are, for i = 1, . . . , n,

Qmax,i = −Qmin,i = 90 [deg]

Vmax,i = 1 [deg/s]

Amax,i = 3 [deg/s2],

(40)

with a (non-time based) task velocity

ẋ = VC sin

((

1 − ‖xd − x‖
‖xd − x0‖

)

π + ε

)

xd − x

‖xd − x0‖
, (41)

where x, xd, and x0 are the current, desired, and initial

Cartesian positions of the end effector, and ε = 10−4 is a

small parameter that allows motion ignition. The robot starts

from the stretched configuration q0 = 0, corresponding to

x0 = (n 0)T (along the y = 0 axis). The desired Cartesian

position of the tip of the generic link r ∈ {1, . . . , n} is

xd(r) =

( √
2

2
r

√
2

2
r

)T

, (42)

with r = n being the case of the robot end-effector

considered first. The task velocity contains a scalar that was

set to VC = 2n [m/s], a relatively large value. Note that the

joint limits and desired task velocity have been designed so

as to induce a maximal number (i.e., up to n−m1) of joint

velocity saturations during the execution of the task.

Figure 2 shows the worst-case execution times obtained

when increasing the number n of DOF of the robot. The

Opt-SNS, which was already found to be much faster than a

standard QP solver [13], becomes too slow when n increases.

Assuming 10 [ms] as the maximum limit of execution time

20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

700

800

degrees of freedom

w
o

rs
t 

c
a

s
e

 e
x
e

c
u

ti
o

n
 t

im
e

 [
m

s
]

 

 

FastOpt−SNS

Fast−SNS

Opt−SNS

Fig. 2. Worst-case execution times to accomplish a single two-dimensional
task with a n-DOF robot, when varying n from 20 to 200. The redundancy
resolution algorithm considers m1 = 2 task equalities and the equivalent
of 4n box inequalities

for on-line use, the Opt-SNS cannot be used for a hyper-

redundant robot with more than 60 DOF, while the Fast-

SNS and the FastOpt-SNS can handle up to 120 DOF.

Note that the Fast-SNS does not guarantee the optimality

of the solution (in terms of the QP problem (16)), and does

not compute multipliers nor update the associated vectors.

Therefore, its execution time is smaller than the one of

FastOpt-SNS, especially when the n grows larger than 120.

Second test. In the second test, the number of DOF of

the planar robot is fixed to n = 50 and the number l of

prioritized two-dimensional position tasks is varied from 2

to 10. Each task is characterized by a final desired position

for the tip of link r in the kinematic chain, as given by

eq. (42). The considered links were extracted from the

following list, ordered according to the priorities of the

tasks: {50, 30, 40, 10, 20, 45, 5, 35, 15, 25}. The same joint

limits (40) of the first test have been used, with the same

type of desired velocity law (41) for each task.

2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

20

number of 2−dimensional tasks

w
o

rs
t 

c
a

s
e

 e
x
e

c
u

ti
o

n
 t

im
e

 [
m

s
]

 

 

FastOpt−SNS

Fast−SNS

Opt−SNS

Fig. 3. Worst-case execution times to accomplish l prioritized two-
dimensional tasks with a robot having n = 50 DOF, when varying l from
2 to 10. The redundancy resolution algorithm considers a total of 2l task
equalities and the equivalent of 200 box inequalities

The worst-case execution times of the redundancy reso-

lution algorithms are plotted in Fig. 3. It is clear that this

execution time increases only slightly with the number of

tasks for all version of SNS. The two Fast versions run at

worst in 2 [ms] even when 10 tasks are considered, thus

being eligible for applications in real time. The video clip

accompanying the paper shows the animation of the 50-DOF

robot for l = 1, l = 3, and l = 5 tasks with priority

when using FastOpt-SNS. Figure 4 shows the execution

2505



times obtained while the 50-DOF robot is running 5 position

tasks in the form (41–42), taking into account the joint

limits (40). The final robot configuration obtained once all

tasks are completed is the one shown in Fig. 1. The number

of joint command saturations occurring during robot motion

are plotted in Fig. 5. The practical independence of execution

times from the number of saturated commands is quite

evident with the Fast versions of the SNS algorithm.

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

14

16

18

20

time [s]

e
x
e

c
u

ti
o

n
 t

im
e

 [
m

s
]

 

 

FastOpt−SNS

Fast−SNS

Opt−SNS

Fig. 4. Evolution of the execution time while running l = 5 prioritized
two-dimensional tasks with a robot having n = 50 DOF

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

30

35

40

45

50

time [s]

#
 s

a
tu

ra
te

d
 c

o
m

m
a

n
d

s

Fig. 5. Number of saturated joint commands in the simulation of Fig. 4

IX. CONCLUSIONS

We have presented computationally efficient versions of

our basic and optimal SNS algorithms for resolving redun-

dancy in high-dimensional robots that execute prioritized

sets of tasks, under hard bounds on joint variables and

commands. The achieved performance is compatible with

real-time control applications. This has been obtained by

exploiting the problem structure and thanks to the use of

QR factorizations of the augmented/saturated task Jacobians

and associated null-space projection matrices. In view of the

need to solve the problem recurrently during robot operation,

a warm start procedure was adopted. The algorithms are

competitive or superior to the state-of-the-art in hierarchical

quadratic programming, but still with unique features: i)

hard bounds are never violated under any circumstance,

ii) correct priority of tasks is preserved even in unfeasible

cases, thanks to the pre-emptive strategy, and iii) task scaling

(preserving the desired direction and relaxing just intensity)

is automatically performed on the equality constraints, only

when strictly needed to guarantee command feasibility.

This last feature is useful when the robot shares the

workspace with a human, and their safe coexistence requires

the robot to be driven away from potential collisions detected

on the fly. The tuning of control parameters, e.g., of the

repulsive potential field used in [22], is no longer a critical

issue, and even very large gains could be used. In fact,

the SNS algorithm will automatically scale the commanded

motion according to the robot capabilities, while keeping the

(best) escape direction.

REFERENCES

[1] S. Chiaverini, G. Oriolo, and I. Walker, “Kinematically redundant
manipulators,” in Springer Handbook of Robotics, B. Siciliano and
O. Khatib, Eds. Springer, 2008, pp. 245–268.

[2] Y. Nakamura, Advanced Robotics: Redundancy and Optimization.
Addison-Wesley, 1991.

[3] B. Siciliano and J. J. Slotine, “A general framework for managing
multiple tasks in highly redundant robotic systems,” in Proc. 5th Int.

Conf. on Advanced Robotics, 1991, pp. 1211–1216.
[4] P. Baerlocher and R. Boulic, “Task-priority formulations for the

kinematic control of highly redundant articulated structures,” in Proc.

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 1998, pp. 323–
329.

[5] F. Flacco, A. De Luca, and O. Khatib, “Motion control of redundant
robots under joint constraints: Saturation in the null space,” in Proc.

IEEE Int. Conf. on Robotics and Automation, 2012, pp. 285–292.
[6] F. Flacco, A. De Luca, and O. Khatib, “Prioritized multi-task motion

control of redundant robots under hard joint constraints,” in Proc.

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2012, pp.
3970–3977.

[7] P. Baerlocher and R. Boulic, “An inverse kinematic architecture
enforcing an arbitrary number of strict priority levels,” The Visual

Computer, vol. 6, no. 20, pp. 402–417, 2004.
[8] D. Luenberger, Linear and Nonlinear Programming. Addison-Wesley,

1984.
[9] N. Mansard, O. Khatib, and A. Kheddar, “A unified approach to

integrate unilateral constraints in the stack of tasks,” IEEE Trans. on

Robotics, vol. 25, no. 3, pp. 670–685, 2009.
[10] O. Kanoun, F. Lamiraux, and P.-B. Wieber, “Kinematic control of

redundant manipulators: Generalizing the task-priority framework to
inequality task,” IEEE Trans. on Robotics, vol. 27, no. 4, pp. 785–792,
2011.

[11] A. Escande, N. Mansard, and P.-B. Wieber, “Fast resolution of
hierarchized inverse kinematics with inequality constraints,” in Proc.

IEEE Int. Conf. on Robotics and Automation, 2010, pp. 3733–3738.
[12] ——, “Hierarchical Quadratic Programming, Tech. Rep. LAAS

no. 12794, Oct. 2012. [Online]. Available: http://hal.archives-
ouvertes.fr/hal-00751924.

[13] F. Flacco and A. De Luca, “Optimal redundancy resolution with task
scaling under hard bounds in the robot joint space,” in Proc. IEEE Int.

Conf. on Robotics and Automation, 2013, pp. 3954–3960.
[14] P. Chiacchio, S. Chiaverini, L. Sciavicco, and B. Siciliano, “Closed-

loop inverse kinematics schemes for constrained redundant manipula-
tors with task space augmentation and task priority strategy,” Int. J.

of Robotics Research, vol. 10, no. 4, pp. 410–425, 1991.
[15] T. L. Boullion and P. L. Odell, Generalized Inverse Matrices. Wiley-

Interscience, 1971.
[16] A. Maciejewki and C. Klein, “Numerical filtering for the operation of

robotic manipulators through kinematically singular configurations,”
J. of Robotic Systems, vol. 5, no. 6, pp. 527–552, 1988.

[17] G. Golub and C. Van Loan, Matrix Computations. Johns Hopkins
University Press, 1996.

[18] O. Kanoun, “Real-time prioritized kinematic control under inequality
constraints for redundant manipulators,” in Proc. of Robotics: Science

and Systems VII, 2011.
[19] H. W. Kuhn and A. Tucker, “Nonlinear programming,” in Proc. of 2nd

Berkeley Symp., 1951.
[20] T. Greville, “Some applications of pseudoinverse of a matrix,” SIAM

Review, vol. 2, pp. 15–22, 1960.
[21] G. Guennebaud, B. Jacob, et al., “Eigen v3,” http://eigen.tuxfamily.org,

2010.
[22] F. Flacco, T. Kröger, A. De Luca, and O. Khatib, “A depth space

approach to human-robot collision avoidance,” in Proc. IEEE Int. Conf.

on Robotics and Automation, 2012, pp. 338–345.

2506


