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Abstract— Effective robot navigation in the presence of hu-
mans is hard. Not only do human obstacles move, they react
to the movements of the robot according to instinct and social
rules. In order to efficiently navigate around each other, both
the robot and the human must move in a way that takes the
other into account. Failure to do so can lead to a lowering of
the perceived quality of the interaction and, more importantly,
it can also delay one or both parties, causing them to be less
efficient in whatever task they are trying to achieve.

In this paper, we present a system capable of creating more
efficient corridor navigation behaviors by manipulating existing
navigation algorithms and introducing social cues from the
robot to the human. We give the results of a user study,
demonstrating the effectiveness of our system, and discuss how
it can be applied more generally to a wide variety of situations.

I. INTRODUCTION

Subtle differences in robot behavior can lead to significant
differences in how humans react to that behavior, and to their
perception of the robot. These subtleties can be the difference
between behaviors that are socially acceptable and those that
are not, between clear and meaningful gestures and ones that
are confusing. In many cases, how a robot performs an action
is just as important as what it does.

Our overall goal is to improve the interactions between a
human and a robot, by making subtle changes to the robot’s
behavior. Before we begin, however, we must define what
we mean by improve. For the purposes of the work reported
here, there are three ways to improve an interaction: (1) to
increase the efficiency with which the robot performs the task
in which the interaction happens; (2) causing the human’s
subjective perceptions of the robot to become more positive;
and (3) to increase the efficiency with which the human
performs whatever task they are engaged in. This third aspect
is one that is often neglected, but is one of the main reasons
that we want people to interact with robots; to make the
humans more efficient at what they do.

Take, for example, the seemingly simple task of navigating
in an indoor office environment, as seen in figure 1. Suc-
cessful algorithms to ensure collision-free obstacle-avoiding
paths have existed for decades. However, with the addition
of humans to the environment, the problem becomes more
difficult. Not only do obstacles around the robot move, they
adjust their movements in relation to how the robot moves.
As a result, the robot must take into account the fact that
some obstacles are intelligent, independent agents. We claim
that the robot needs to use some form of predictive model for
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Fig. 1. An Example of Standard vs. Social Navigation - These diagrams
show results from an experiment as a robot (blue square) and a human
participant (yellow circle) pass each other in a hallway. In the top example,
using the standard navigation, the person is forced to slow down drastically
while the robot passes (c). With the social navigation in the bottom example,
the person is able to pass the robot passes the robot with much greater ease
and ends up completing the task quicker as a result.
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how such agents are likely to behave around it, and navigate
accordingly.

Furthermore, a human interacting with a robot is likely
going to develop their own predictive model, often known
in the psychology and philosophy literatures as a theory
of mind, for the robot. Prior studies [1], [2] have shown
that people subconsciously treat technology socially. They
attribute to it a rational mind similar to their own, capable
of making decisions and interacting in traditional human
ways. If the robot does not conform to this theory, if it does
not fit their predictive model, then the person will initially
be confused by the robot’s behavior, and will be forced to
learn how it is likely to behave. This is a slow process and
will impede the progress of the interaction. However, if the
robot fits their expectations, then they are able to use all of
their (often implicit) prior knowledge of social interactions to
predict how the robot will behave, leading to a more efficient
interaction.

In this paper, we describe the use of two different social
cues on a mobile robot as it passes a human in a corridor:
changing the path that the robot takes, and whether or
not it makes eye contact with the human. We measure the
effectiveness of these two cues by their effect on the time
taken for both the robot and the human to traverse the
corridor, and verify their effectiveness with a user study.

II. RELATED WORK

Several systems have addressed the problems of navi-
gating [3]–[5] and localizing [6] robots in the presence
of people. However, most systems effectively ignore the
problem, treating all obstacles, human or not, equally (see,
for example [7]).

Algorithms that do adjust their navigation in people-
specific ways take a number of forms. The patrol robot
studied by Hayashi et. al [8] is an excellent example of a
robot that uses different paths and gaze behaviors around
people in order to affect the interaction. However, that effect
was only studied using subjective survey-based measures,
and did not look at the resulting efficiency of the interaction.

Kirby [9], [10] also addressed problems of social naviga-
tion by altering the robot’s paths with respect to people’s
personal space and other social conventions. The resulting
interactions were evaluated using both qualitative measures
(people’s opinion) and analysis of where the robot passes
the humans. There is also similar work which considers
proxemic behavior as a way to find optimal positioning for
interactions [11]. None of these works consider the human’s
behavior and efficiency as measures of the quality of the
interaction.

The work of Sisbot et. al [12] integrates the relative
positioning of the human and robot, the human’s field of view
and other concerns into the robot’s internal representation of
the world, and uses that information to plan more human-
friendly paths. In order to justify how such a system would be
socially beneficial, the authors use human evaluation studies
that occurred prior to the design of the algorithm rather than
evaluations of the algorithm itself.

There is also work that views pedestrians as dynamic
obstacles, which the robot then uses to create a spatio-
temporally optimal plan [13]. However, this work assumes
fixed human trajectories, and thus does not take into account
how the humans might react to the robot’s behaviors as it
approaches them.

In addition to manipulating the path, many robots also
use gaze to communicate information about the task [14].
Gaze communicates “joint attention” and helps establish
mutual understanding of the scope of the interactions [15].
Such gazes can also help to resolve ambiguities that are
not otherwise communicated [16], and can help the human
decide on an appropriate action to take. Gaze has also been
shown to affect a person’s proxemic preferences around
a robot [17], resulting in people varying their approach
distance to a robot based on the robot’s gaze.

III. SOCIAL NAVIGATION BEHAVIORS

As a robot and a person approach each other in a hallway,
it is often unclear what the robot should do in order to most
efficiently pass the person. When two people pass each other,
they have a shared body of implicit knowledge about social
situations, and swap a multitude of subtle social cues in order
to manage the interaction. Both of these are typically missing
in the human-robot setting. One source of problems is the
path taken by the robot; most path-planning algorithms used
for navigation will direct the robot to drive straight down the
center of the hallway until it gets close to the person. Only
when it cannot move any further without risking a collision
will it move to the side or steer around the person. While this
approach is valid for inanimate objects, or even other robots,
it introduces two problems when dealing with humans. First,
the robot does not make clear to the human which side of the
hallway they should pass on, forcing them to guess, or to rely
on the prevailing social norms (which are not implemented
in traditional path-planners). Worse yet, the robot will likely
not make any indication that it has even detected the human.
This makes it unclear whether the robot is driving straight
forward because it has not seen the human, or because it
has seen them, but has chosen not to react. Both of these
problems can lead to an uncomfortable interaction for the
human, because of an inability to predict what the robot will
do and, often, the physical proximity of the robot as it treats
the human as just another obstacle.

In this paper, we address these two problems, inappropriate
paths and poor signaling of intent, with two techniques.
Similarly to the work discussed in section II, we modify the
robot’s costmaps to reflect the social behaviors we want to
show in the planned paths. To better communicate the robot’s
intent to the human, we use a gaze behavior that directs the
robot’s head at either the human or at the hallway ahead.

Our goal in implementing these behaviors is to make the
interaction more natural, and hence efficient, for the human.
In a pilot study with two human actors in a motion-capture
environment [18], we explicitly studied the scenario of two
people passing each other in a hallway. We observed that
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both gaze and the relative position of each person played a
role in the passing behavior.

Our general hypothesis is that by employing some combi-
nation of these two behaviors, we can improve the interac-
tions in the three ways discussed in the introduction: improv-
ing robot performance, improving the person’s impression of
the robot, and affecting the person’s behavior. We hypothe-
size that these changes will lead to more predictable robot
behavior, ultimately resulting in a more efficient interaction.

A. The Robot

The work reported in this paper was done on a PR2
robot, a mobile manipulation platform developed by Willow
Garage, running the open-source Robot Operating System
(ROS) software [19]. The robot has a quasi-holonomic base,
two arms, and a pan-tilt head. In this work, the arms are
not used and were kept in the folded position. The PR2 is
equipped with two laser range-finders, one at ankle height,
and one below the head that tilts up and down, and multiple
cameras. The cameras in the head give the appearance of
eyes, which is important for a gaze behavior, but the data
from the cameras are not used in the experiment reported
here.

B. Lasers for People Detection

Before causing the robot to act appropriately in the pres-
ence of people, we must first determine where the people
are. In the work reported here, we use the laser range-
finders to detect people, primarily because of their accuracy
in our experimental environment. We note, however, in a
more general setting, another more powerful people-detector
might be more appropriate.

We reduce the problem of detection people to that of
detecting legs. Our leg detection technique is based on the
algorithm of Arras et al [20] and extends an implementation
developed at Willow Garage by Caroline Pantofaru.1 Like
Arras and Pantofaru, we use a group of low-level classi-
fiers to determine the probability that a sequence of laser
readings is a leg or not. These leg probabilities are then
passed to an algorithm that pairs the individual legs, based
on distance constraints, and tracks the resulting leg-pairs,
which correspond to a person under our assumptions. While
there may be more advanced information about the person
beyond their location through time that may help adjust the
robot’s behavior, this approach uses less processing than
more advanced state recognition and provides an adequate
advance over the previous implementation.

C. Gaze Behavior

We use the detected locations of humans to control the
gaze behavior. The default behavior is to have the robot
looking straight ahead. When a person is detected, the
position of their head is estimated approximately, using the
center of their detected legs and an average human height.
The robot’s pan/tilt head is then pointed at this position,
simulating gaze. Initial prototyping revealed that having the

1http://ros.org/wiki/leg_detector

robot look at the person constantly gave an impression
of being “creepy”, which is consistent with psychological
studies with two human subjects [21]. Furthermore, this
persistent gaze lowered the person’s confidence that the
robot knew where it was going, since it was constantly not
looking in the direction it was traveling. Hence, for the
actual experiment, we chose the robot’s gaze to be on a
cycle: 5 seconds of looking at the person, followed by 5
seconds of looking ahead. The intent was to give the person
acknowledgement that the robot saw them, while avoiding
the downsides of a constant leer. We acknowledge that more
sophisticated models are possible, but chose instead to focus
on improving the robot’s path planning, which turned out to
be much more problematic.

D. Socially Aware Costmaps

We choose to implement our changes to the paths the robot
drive along within the existing ROS navigation and costmap
architecture. This allowed for flexibility in choosing which
path planning algorithm to use and retains the space-oriented
nature of our navigation constraints. Another possible ap-
proach is to create waypoints that reflect the desired paths
we would like to create. However, this approach runs into
trouble in confined environments such as the corridor where
the points along the desired path may result in colliding with
the wall.

1) Standard Navigation Algorithm: The navigation ca-
pabilities in ROS [7]2 are used on many different robot
platforms. The navigation system is flexible in terms of the
variety of sensor information it can use. This information
is fed into the costmap and then different path planning
algorithms (e.g. Dijikstra’s, A*) can be used to find a
path that minimizes the total cost of the cells the robot
passes through. Dynamic/moving obstacles are dealt with by
replanning often enough to avoid the obstacles. Implicitly,
the robot assumes that people will get out of the way on
their own.

However, in the ways discussed earlier, it does not work
optimally in the presence of people. First, it treats all obsta-
cles read in by its sensors equally; steering around people
as though they were any other obstacle. The resulting paths
often move uncomfortably close to people. Furthermore, the
path taken is designed to be as short as possible, due to
the nature of the default costmaps, not to communicate any
information about where it is going to go.

Unfortunately, ROS does not have features that allow us
to solve this problem. By manipulating the costmap, we can
indirectly affect the paths that the robot chooses to take,
while retaining compatibility with all of the existing robots
using ROS. The implementation of the navigation system
only allows users to manipulate the costmap in certain ways,
treating the input data in one of two ways: cells in the
costmap are either marked as occupied, or are cleared when
a sensor ray passes through them. Free space is set to a
low default cost (0), whereas obstacles are marked with a

2http://ros.org/wiki/navigation
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Fig. 2. Three different paths with three different costmaps. The robot is
marked in blue, the detected person in red and the path in yellow. The white
areas show the locations of obstacles (either the walls or the person’s legs).
The tints of green show the other costs, ranging from bright green lethal
points to darker tints for lower values.

high lethal cost (255). All nearby points that would put the
robot in collision with the obstacles are assigned a slightly
lower lethal cost (254). Points immediately surrounding the
lethal points are assigned a cost that exponentially decays
relative to the distance to the lethal points, ensuring that the
robot does not drive too close to the wall unless it must. A
visualization of this costmap schema can be seen in the top
portion of figure 2.

The default implementation of the navigation system often
results in the robot often driving within 50cm of obstacles,
which can be quite unsettling when that obstacle is a per-
son. People are generally not be comfortable with a robot
entering what Hall defines as the person’s intimate proxemic
space [22], despite the fact that the robot does not collide
with them.

The problem is that the current implementation only deals
with hard constraints on the costmap space. If we were to
try to increase the space around each person with these
constraints, many paths that are valid (non-colliding) would
be excluded. If the environment is cluttered, then there may
be no possible path with hard constraints applied. A more
appropriate approach would use softer constraints on the
planned paths, where we can specify that we would rather
a robot did not enter certain spaces, but would allow it if
needed.

2) Flexible Costmap Changes: We have implemented an
alternate version of the navigation system which allows
for arbitrary changes to be integrated into the costmap.
After the sensor information is added and the costs are
updated around each obstacle, our version allows for user-
specified, independently-compiled plugins to make changes

to the costmap. This architecture enables users of the new
costmap to be able to insert any manner of changes to
the costmap without requiring recompilation of the core
navigation system. This architecture also runs the plugin code
in the same process as the rest of the system, avoiding the
large memory transfers that would be required if the costmap
changes were specified in another process, and transmitted
over the normal ROS communication channels.

We experimented with the use of Gaussian costmap ad-
justments, as suggested by Kirby [10] and others, as seen in
the middle portion of figure 2.

In this approach, values are added to the costmap around
the human’s detected location, according to a 2d Gaussian,
possibly taking into account the person’s direction of travel.
This approach works well in the general case, as it causes the
robot to take smooth paths that are farther away from people.
It also works as an analogy to the personal space/proxemic
concerns discussed earlier. However, it requires fine tuning
of the parameters to get the desired behavior, and we found
that sometimes there are no (readily-found) values of the
parameters that realize the desired behavior. For instance, in
our corridor, we wanted the robot to move to the side of
the hallway it was going to pass on as soon as possible. In
theory, increasing the amplitude or variance on the Gaussian
function should result in the paths moving further away
from the center of the Gaussian. However, the path planning
algorithms need to find balance between the lowest cost paths
and the shortest paths. Once the costs become sufficiently
high (either by increasing the amplitude or variance), the
decrease in penalty for moving further from the obstacle is
outweighed by the cost of taking a longer path. This results
in the robot reverting to its earlier behavior of driving straight
toward the person along the shortest path.

Instead of the Gaussian approach, we implemented a cost
function that was more specific to the environmental context.
This “linear” cost function varied depending on what side of
the hallway the person was detected on. If the person was
detected on the left, the costs would decline linearly from
the left side to the right side (and similarly if they were on
the right), with values ranging from 140 on the undesirable
side of the hall to 20 on the other. Similar to the Gaussian
function, this would cause the lowest cost next to the person
to be all the way against the wall. However, this would persist
through the entire hallway, resulting in the robot moving to
the side of the hallway earlier than in the Gaussian, as can
be seen in figure 2. This sends a social signal to the human
sooner and more clearly, giving them time to interpret and
react to it. Furthermore, this costmap modification requires
little tuning to get the designed behavior. A further discussion
of the irregularities and behavior of Gaussians in costmaps
can be found in our upcoming paper [23].

While this solution is less general than the Gaussian func-
tion, we argue that the environment informs human-human
social behavior. We instinctively follow the architectural cues
in buildings. This context can be, we claim, captured in
special-purpose costmap modifications that depend on the
current location of the robot.
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Our new version of the navigation system is available
at our open-source repository: http://code.google.
com/p/wu-robotics. We encourage interested readers
to download it, try it out, and contribute their own context-
specific costmap-modification plugins.

IV. EXPERIMENTAL DESIGN

A. Procedure

The goal of our experimental design was to test how
the two social navigation behaviors we implemented would
affect interactions between people and the robot. We devised
a fetch and carry task, in which participants were told that
they would be working with the robot to deliver boxes to
different rooms on a hallway. This scenario was selected for
three reasons. First, it is typical of the kind of interaction
a person unfamiliar with robots is likely to encounter in
the near future. Robots are being used in uncontrolled
environments, such as hospitals, where people may encounter
a robot with no prior explanation as to what is is likely to do.
Secondly, delivering packages or mail is a task that robots are
already capable of doing. Finally, giving the person a specific
task gives them reason to complete the task in an efficient
manner. The boxes were shoe-box sized and empty, so that
any changes in speed due to the weight or impedance of
carrying a box is negligible. The robot is 67cm wide and the
hallway is approximately 150cm wide, meaning that people
will be able to pass the robot in most cases, regardless of
whether the robot is all the way to one side or not.

Participants were recruited from the Washington Univer-
sity campus community All participants were 18 years or
older, with English language skills, and no prior experience
working with robots. After the consent process, the scenario
was explained to them. They were instructed to fetch or
deliver a box three times, which necessitated them walking
from room A (at one end of the hallway) to room C (on
the far end) and back. On the first trip, the robot would
be driving toward the participant as they went to room C
and stationary at the door to room B (midway down the
hall) on the way back. On the second and third trips, the
participant would encounter a stationary robot on the way
out, and the robot driving toward them (and room C) on the
way back. In the cases where the robot was stationary, the
robot’s position required the participant to navigate around
the motionless obstacle, allowing us to get a base time for
how long they would take to walk down the hall irrespective
of the navigation algorithm in use.

We use our two navigation behaviors to form a 2x2 study
design. The robot’s interaction in the hallway was dictated
by one of these four sets of behaviors.

C1 Standard navigation, no gaze behavior
C2 Standard navigation, gaze behavior
C3 Social navigation, no gaze behavior
C4 Social navigation, gaze behavior
At the conclusion of the three deliveries, the participant

was given a questionnaire to fill out. The participants were
compensated for their time.

Thirty people participated in the study (N=30), with ages
ranging from 18 to 70 (mean=27.7, SD=12.4, median=23).
60% (N=18) of the participants were female, and roughly
half (53%, N=16) were native to the United States. Con-
ditions C2 and C3 were experienced by seven participants
each, while eight participants each experienced conditions
C1 and C4. The data for each participant are divided up into
six trials, defined as going from one end of the hallway to
the other. Out of a total of 180 possible trials down the hall-
way, 177 are eligible for analysis, with the remaining three
removed due to sensor malfunctions or external interference.

For measuring the location of both the robot and the par-
ticipant, in addition to the robot’s laser scanner, a Microsoft
Kinect device was placed at each end of the hallway. These
devices were stationary, and the only elements moving within
the field of view were the robot and participant, allowing for
very accurate measurements of the the locations of the targets
through time. Signalling distance information was derived
from these measurements as well.

B. Hypotheses

We chose to study the following hypotheses with our
study.

H1: People encountering the robot in the No Gaze
condition will take longer to walk past the robot than
those encountering the Gaze condition.
H2: People encountering the robot navigating with the
social algorithm will take less time to walk past the it
than when it uses the standard navigation.

V. RESULTS

The metrics used here to measure the effects of the
different conditions are similar to the “Passage Behavior
Parameters” used by Pacchierotti et al [5]. (Pacchierotti et
al did not use the parameters as metrics; rather, they used
them to manipulate the conditions of their experiment.) The
two main metrics are speed and signaling distance, for both
the human and the robot. We use speed to represent the
human and robot’s ability to get the task completed. Faster
speeds are indicative of more efficient interactions. There are
several different ways that we measure the speed. First, we
have overall average speed, measured over the time that the
human participant is in the hallway. We notate this with HS
for the human’s speed, and RS for the robot’s speed. To
further examine the vital period before the human and robot
have passed each other in the hallway, we use metrics for
the speed before they pass, HS0 and RS0. Signaling distance
is the distance between the person and the robot when the
person moves towards the side of the hallway they will pass
on. This is based on the assumption that people walk down
the center of the hallway until they have seen their obstacle
and decided how they are going to pass the obstacle.3 The
person’s signaling distance is HD and the robot’s is RD.

An illustrative example of the differences in navigation
styles can be seen in figure 1. Consider the top example from

3This assumption was, observationally, borne out in our experiments.
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TABLE I
METRICS FOR EXAMPLES SHOWN IN FIGURE 1.

[m/s] HS RS HS0 RS0 HD RD
Trial #26 (C1) 0.88 0.26 0.74 0.37 2.92 1.44

Trial #175 (C4) 1.18 0.41 1.13 0.42 6.98 3.14

a trial under condition C1. Both robot and human start by
moving straight down the middle of the hallway (1a). As they
get nearer, the human moves to the side of the hallway (1b);
however, the robot continues on the same path as before.
This causes the person to slow down almost to a stop as they
wait for the robot to pass by (1c). Although the robot does in
fact yield slightly, it only does so once the person has already
reacted to its path by stopping. Both parties continue on their
way after they pass (1d). Contrast this to the bottom example
under condition C4. This trial starts off similarly with both
moving down the center of the hallway (1e). However, they
both move to the sides of the hallway early on (1f) allowing
for a nice quick pass (1g). This allows both the human and
robot to reach their destinations sooner than the previous
example (1h). To consider these two examples in concrete
terms, see table I to see the metrics.

First, let us examine the robot signaling distance (RD)
under the two navigation conditions. Comparing all the
trials where the robot was moving, we find that the social
navigation condition had a significantly larger (p < 0.002)
average signaling distance (1.7m) than the standard naviga-
tion condition (3.0) on average. With the signaling distance
almost doubling, our hope was that this would also have an
effect on the speed of the person as well.

It turns out that, under certain conditions, the human speed
before passing, HS0, is significantly greater when using the
social navigation. A full listing of the speeds over all trials
can be seen in table II. While not all of the differences listed
in the table are statistically significant, there are some notable
trends.4 In support of H2, if we compare C2 and C4 (looking
at all the trials with the gaze condition), we find that the
human participants are significantly faster (p < 0.04) while
using the social navigation (HS0(C4) = 1.196ms−1) com-
pared to the standard navigation (HS0(C2) = 1.117ms−1).
The trend is similar in C1 and C3, with HS0(C3) =
1.242ms−1 and HS0(C1) = 1.217ms−1, though not it is
not statistically significant (p = 0.29).

One surprising result was the relative speeds, compar-
ing across the gaze conditions. Contrary to what we pre-
dicted in H1, the immobile head (NoGaze) actually led
to participants walking faster than in the Gaze behavior
(HS(NoGaze) = 1.243ms−1, HS(Gaze) = 1.186ms−1,
p < 0.02). We had hypothesized that the gaze behavior
would let the person know that the robot saw them and,
hence, the person would walk more confidently, and more
quickly, down the corridor. This proved not to be the case.
We believe that the additional behavior was distracting for
two reasons. First, diverting the gaze often meant the robot

4Statistical significance is determined by using a 1-tailed t-test with the
speed for each trial considered as a separate measurement.

TABLE II
SPEED AND PASSING DISTANCE OF ROBOT AND HUMAN IN ALL

EXPERIMENTS. DARKER BACKGROUNDS INDICATE HIGHER VALUES.

HS RS HS0 RS0 HD RD
C1 1.24 0.33 1.22 0.38 5.23 1.52
C2 1.16 0.36 1.12 0.42 5.40 1.89
C3 1.25 0.34 1.24 0.38 4.80 2.68
C4 1.21 0.32 1.20 0.36 4.68 3.31

Standard (C1+C2) 1.20 0.34 1.17 0.40 5.31 1.70
Social (C3+C4) 1.23 0.33 1.22 0.37 4.74 3.01

NoGaze (C1+C3) 1.24 0.34 1.23 0.38 5.02 2.08
Gaze (C2+C4) 1.19 0.34 1.16 0.39 5.03 2.63

Overall 1.21 0.34 1.19 0.39 5.02 2.35

would be traveling in a separate direction than the direction
it was looking in. This breaks from Kirby’s definition of de-
sirable robot navigation qualities by not facing the direction
of travel. The second reason is that glancing at the other
entity in the hallway could be construed as looking to start
an interaction, which could slow the person down. We find
these two reasons to be adequate for explaining why we
found the opposite of our original hypothesis.

The survey data did not produce any relevant statistically
significant results. We discuss this further in section VI.

There were a number of other interesting results we were
able to gather from our data. As expected, the stationary
robot leads to significantly higher average human speed (p <
0.003, 1.179ms−1 vs. 1.251ms−1) than when the robot is
moving. This comes as no surprise since it is easier to predict
where a stationary object will be. This is also shown by the
fact that the signaling distance is much greater when the
robot is stationary (p < 0.0001, HD(robot stationary) =
6.178m vs. HD(robot moving) = 3.870m). When the
robot is not moving, the person is able to figure out what
side of the hallway the robot will be on much more quickly,
and thus can make their decision about which side of the
hall to walk on themselves.

We also found that people were more likely to pass the
robot on their right side in the social navigation condition
(87% in C4) than in non-social condition (67% in C2) (p =
0.06). This fits with the prevailing social norms in the United
States, where the experiment was conducted.

Additionally, in the trials where the robot was not moving
(i.e. was not displaying any particular navigation behavior)
we still noticed a change in the person’s behavior. Based on
which navigation algorithm they saw in the rest of their trials,
the person would decrease their signaling distance (HD)
when interacting with an immobile social navigating robot
(p < 0.03).

VI. DISCUSSION

From the results of this user study, we conclude that there
are multiple different effective ways for robots to navigate
around people, depending on the desired priorities. If we
place sole priority on getting people to where they need to
go, the clear solution is to park the robot. Keep the robot out
of the way, and people will get to their destinations promptly.
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If the priority is solely on the robot’s navigation effective-
ness, the best strategy might be the (untested) strategy of
ignoring the obstacles associated with detected people, on the
assumption that they will move out of the way as needed.
However, this strategy requires that the human endow the
robot with higher status and thus give way to its priorities,
which may not be the case. Nevertheless, most situations call
for a mixing of priorities. The system cannot be optimized
for just one party or another. The best solution for the
combined robot/human system likely involves elements of
social navigation and additional secondary actions that help
the robot convey its intent to the humans with whom it
interacts.

One unintentional result of social navigation is that the
robot moved more slowly once the person was detected. The
local planning algorithm, which sets the speed, causes the
robot to move at speeds inversely proportional to the sum of
the costmap cells it is going to drive into. Future work will
look to eliminate such a constraint to enable both the human
the robot to be more efficient with social navigation, as well
as incorporating a more sophisticated gaze behavior.

Another conclusion that can be drawn from our work is
that people will interact with the different algorithms with
different levels of effectiveness despite the fact that there is
no statistically significant difference in their opinion of the
robot. This suggests that people are not consciously aware
of many of these subtle social cues, regardless of the effect
they have on the interaction. This fact lends support to part
of Reeves’ and Nass’ findings [2] that social interaction with
machines is often subconscious and inherently social.

The social navigation behaviors we implemented are ob-
viously not an exhaustive set. The linear costmap adjustment
we used is only one of many context sensitive adjustments
the robot may need. It is not designed to fit the general case
of person-aware navigation, but rather to fit into a general
solution. The work described in section II describes a number
of other costmap changes that could be integrated into this
system. It is for this reason that we maintain that a modifiable
architecture like the one implemented here is essential, in that
it allows people to implement any sort of costmap adjustment
and integrate it with the state-of-the-art navigation system
that ROS already provides. Among the many benefits of
having a flexible open-source extensible solution is that it
can be widely adopted on many systems, and can be used to
integrate even more contextual information into the costmap.
Having an open solution to the problem of social navigation
paves the way for a future in which robots can integrate
as many factors as humans do when planning paths around
other people.
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