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Abstract— To be deployed in the real-world, automatic and
semi-automatic systems should understand traffic rules by rec-
ognizing and comprehending contents of traffic signs, because
traffic signs inform what driving behaviors should be. In this
paper, we present the successful application of methods to
improve the traffic sign localization performance. Given a
potential sign region, our algorithm represents both the detected
sign as a target and candidates in the subsequent frame as
probability density functions. Then, our algorithm maximizes
the similarity between a target and candidates to localize the
sign. Finally, the maximum similarity among candidates is
assigned as a tracked sign. The experimental results verify that
our algorithm can robustly localize traffic signs in images under
various weather conditions and driving scenarios.

I. INTRODUCTION

Traffic signs instruct drivers what their driving behaviors
should be. For example, a stop sign tells a driver to stop
at that location. Similarly, a workzone sign warns drivers of
road work happening ahead. For safe and reliable driving,
being able to understand traffic signs is critical. One way
researchers are trying to ensure that daily driving is safer
and more reliable by offering automatic and semi-automatic
transportation, that is, by developing advanced driver as-
sistance systems (ADAS) and autonomous vehicles. These
automated systems, to be deployed in the real-world, should
be capable of 1) recognizing and understanding traffic rules
and 2) executing them accordingly. Thus, to successfully
deploy ADAS and autonomous vehicles in the real-world,
one of their essential components is an automatic traffic sign
recognition system.

Since traffic signs are designed for human drivers, com-
puter vision techniques are appropriate for traffic sign recog-
nition system. Indeed, to understand the semantics of a traffic
sign, its color, symbol, and text should be analyzed. Even
though the locations and appearances of traffic signs are
highly constrained by governmental regulations [15], it is still
challenging to successfully locate signs from images; after all
the same sign appears differently on assorted images due to
image acquisition conditions. For example, the line of sight
between signs and a vision sensor relative to the position of
the sun can change the shape and the color of the same sign.
Furthermore, uncontrolled illumination conditions, including
those caused by weather, directly affect the digital image
formation, giving the same sign a different appearance.
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Fig. 1: Projection of the sequence of sign locations onto
one image. Our approach exploits two facts of a sign’s
appearance in a video stream. The sign image sub-regions
from two consecutive image frames overlap each other. There
are small variations of their appearances and locations.

To effectively tackle variations in appearance of traffic
sign, we developed a color-based sign detection system to
recognize workzones on highways [13]. In particular, our
system learns variations of a color in sign images so as to
perform a pixel-wise binary color classification. Then, our
algorithm identifies blobs to localize sign image regions.
Finally, our algorithm represents a cropped sign image in
a homogeneous feature space in order to reduce variation
of geometric shapes. To handle potential sign recognition
errors, we exploit temporal redundancy of sign appearances
in such a way that sign-recognition confidence is forwarded
to smooth out the effect of any signs missed. Because we
propagate only the confidence, not the appearance infor-
mation about the detected signs, the performance of our
detection method was degraded.

To improve the performance of our color-based sign de-
tection method, we apply an appearance-based, sign tracking
algorithm. In particular, our approach exploits two features of
a sign’s appearance in a video stream, in which a sign appears
multiple times before it disappears from the view point. First,
in the two consecutive image frames, there are overlapping
regions, particularly in the images of the sign. Second, there
are small variations of the appearances and locations. Fig. 1
illustrates this observation. By considering these features, the
detected sign and its rectangular region are first given as an
input to our tracking system. Then, the detected sign image
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is modeled with a probability density distribution as a target.
Next, the rectangular region from the input is projected onto
the subsequent frame as a candidate, which is also modeled
with a probability density distribution. Lastly, our approach
iteratively shifts the rectangular region until the distance
between the target and the candidate becomes minimum.

In this paper, we describe a successful application of color-
classification techniques and kernel-based tracking tech-
niques to localize different signs from perspective images
and a complete system for traffic sign recognition.

II. RELATED WORK

Many researchers have proposed traffic sign recognition
systems. The essential step is detection, and currently two
dominant approaches exist: based on the color or on shape.
The color-based sign detections, including ours, choose one
color space and find the appropriate ranges of target color.
Several researchers in the past elected to manually find the
target color ranges [5], [9], which is simple but prone to
error, while the others use machine learning techniques to
obtain the optimal ranges of target color [10]. The shape-
based sign detections usually utilize either the gradient of
gray scale image [11] or trained model from sign shape data
sets [1].

Some of the traffic sign recognition systems combine a
detection process with a tracking process in order to improve
performance. Among those systems, we divide them into two
different approaches: one deals with the dynamics of the
tracked signs, and the other copes with the appearance of
the tracked signs. The dynamics approach for tracking is to
utilize the discrete-time dynamics of vehicles, such as with
Bayesian Filters [6], [8], [10], [11], [14] and information
fusion [1] to predict the position of a sign in subsequent
frames based on image frames received previously. This can
reduce the computational cost, while still only relying on
the detection performances, if the update model is defined
by only the detection algorithm. The vehicle dynamics can
also be calculated in predicting the state model with addi-
tional sensors, such as inertial measurement unit (IMU). Our
tracking system can track signs without a motion prediction
model.

The appearance approach for tracking is to utilize the
visual appearance [9], such as the well-established Lucas-
Kanade Tracker (LKT) [2]. Nonetheless, the computational
cost of LKT sometimes shows its limitation for real-time
operation, especially when it is tracking a large object. To
overcome this limitation, Liu et al. [9] chose several interest-
ing points and focused on those points. These improvements
allow their algorithm to run in real-time, though there are
problems when images are blurred due to vehicle motion.

We have created a sign tracking system using kernel-based
object tracking [3], which minimizes the distance between
the probability density functions of a target and a candidate,
to improve a sign detection performance. Our system not
only can track signs without regard to the complex vehicle
dynamics, but also incorporates target representation based

on the appearance from an image to effectively handle the
color variation through a sequence of images.

III. COLOR-BASED SIGN DETECTION AND
KERNEL-BASED SIGN TRACKING

The goal of this work is to improve the sign detection
performance to reliably localize different types of signs in
image sequences. In what follows, we briefly describe our
sign detection algorithm and give a detailed description of
our sign tracking system. We use similar notations to [3],
with modifications appropriately in section III-B.

A. Color-Based Sign Detection

The appearances of signs are strictly regulated by local
and national governments. Even with regulations, there are
issues commonly arising in color variations through images,
which cause to misidentification of pixel color. We formulate
learning of specific color variation, which is the target color
we aim to detect, as a binary color classification using the
Bayesian inference framework. AdaBoost [7] is used to learn
the likelihood function of a given pixel as part of the target
sign. The training data for each color is comprised of a set
of images, some from the web, while the others from our
video data. The data collected is utilized to train a set of
weak-learners and their weights.

P (X|sign) = mode (∪jg (f (xj |sign)))

f (xj |sign) =

i=1∑
H

αihi (xj)

where X is a set of 2-dimensional color vectors comprised
of hue and saturation from pixels in an image, xj ∈ X. More
details are explained in [13].

B. Kernel-Based Sign Tracking

The output of our sign detector, which contains the center
position, z, size, s, and a mask of shape of the detected
sign, is given as input for our sign tracking system. Our
task is to localize the detected sign in the subsequent
frame based on the appearance of the target. In order to
localize it, we need to characterize the appearance of the
target as probability density function (PDF). We choose hue-
saturation-value (HSV) color space as feature space because
it is less affected by illumination when compared to red-
green-blue (RGB) color space. In particular, we choose only
hue and saturation values from HSV to represent a specific
color, which helps to decrease the dimension of color vector.
The normalized hue and saturation values are quantized into
nh × ns bins, where nh and ns are the bin numbers of
hue and saturation, respectively: H and V are the histograms
of hue and saturation values, where H = {hj}j=1···nh

and
V = {vk}k=1···ns

. nh and ns are directly related to the
performance of tracking. If the numbers of bins are small or
large, the target color will be under- or over-fitted to track.
To represent the PDF consistently with various sizes of signs,
the pixel coordinates should be normalized. Furthermore, it
is obvious that the target color of the detected sign should be
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Fig. 2: A schematic overview of the sign tracking system. The image at time t+1 and a target PDF from the detection result
at time t are given as inputs. Different sizes of sub-regions of a subsequent frame are represented as candidate PDFs and
localized by the mean-shift algorithm. A candidate with the maximum similarity to a target is an output as a new target for
the subsequent frame.

(a) Warning sign

(b) Stop sign

Fig. 3: Kernel functions. The left image is the output of the
detected sign, and the middle image is a mask of shape. In
order to reduce the background effect and concentrate on the
target color, Epanechinikov kernel and the mask of shape
from the detection output are combined. The right image
illustrates this combined kernel.

more involved to the histogram than the background because
it can dramatically be changed in a sequence due to image
projection. In order to sample densely on the target color,
Epanechinikov kernel, K, giving larger weights to pixel
coordinates closer to the center, is combined to a mask of
shape of the detected sign: K(p) = ck (1− p) ·mask. Fig. 3
illustrates this kernel. Finally, we can calculate the target
PDF, T = {tb}b=1···nh×ns

, on normalized pixel coordinates,
p, as

tb = tns·(j−1)+k

= C

n∑
i=1

K
(
‖pi‖2

)
H(pi, hj , vk)

where

H(pi, hj , vk) =

{
1 hue(pi) ∈ hj ∩ sat(pi) ∈ vk
0 otherwise

and C is a normalization constant.

Once the target PDF is created, we calculate candidate
PDFs, c(z), in the subsequent frame to localize, where z
is the new center. Calculating candidates is the same as the
target except since the location of the sign in the subsequent
frame shifts, the new normalized pixel coordinates, pnewi ,
based on z should be calculated. Also, the size of the
bounding box increases as the vehicle gets closer to the sign.
We can estimate the size of sign in the subsequent frame,
but it is unnecessary to exactly estimate size. To increase our
performance, we apply five different sizes of kernels (0%,
2%, 5%, 7%, and 10% increased kernels) and choose one as
the tracking result. c(z) is calculated by

cb = cns·(j−1)+k

= Cs

n∑
i=1

K

(∥∥∥∥pnewi − z

s

∥∥∥∥2
)
H(pnewi , hj , vk)

where Cs is a normalization constant.
To localize candidate, we need to maximize the similarity

between these two discrete PDFs to track the target in
the subsequent frame. We utilize Bhattacharrya coefficient,
B(t, c(z)), to measure the similarity, where B(t, c) =∑nh×ns

b=1

√
tb · cb. Using linear approximation around z, we

are now able to use the mean-shift algorithm to find the mode
of

Cs
2

n∑
i=1

wiK

(∥∥∥∥z− pnewi

s

∥∥∥∥2
)

(1)

where wi is

wi =

nh×ns∑
b=1

√
tb

cb(z)
H(pnewi , hj , vk) (2)

We can find the maximum value of eq (1) by the gradient. If
Epanechnikov kernel is used, the gradient of eq (1) will be
a weighted summation as the standard mean-shift algorithm.
In our case, though, the mean-shift algorithm is represented
as

znew =

∑n
i=1 p

new
i wi · mask∑n

i=1 wi · mask
(3)

which is still a dot product that has low computational cost.
This is iterated until ε < tε, where ε = ‖znew−z‖. If ε is not
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converged, eq. (2) and (3) are repeated with the new center;
z = znew. Also, we set the maximum number of iteration,
Nmax, to avoid an infinite loop. However, the number of
iterations is usually less than it. Once all of the candidates
converge, we choose the final output which has the highest
Bhattacharrya coefficient.

IV. EXPERIMENTATION
This section details the experimentation in measuring

the performance of our sign detection and tracking system
using images acquired under various weather conditions and
driving scenarios.

A. Experimental Setup

For our experimentation, we choose three different US
traffic signs to detect and track: “stop”, “pedestrian crossing”
in school area, and “workzone” signs due to their unique
characteristics. All of these signs have distinctive color with
standardized shapes as shown in table I. There are no signs
which have the same characteristics as these, and we don’t
need to individually classify them. Also, these signs perform
an important role on improving the relationship between
drivers, pedestrians, and road construction workers, partic-
ularly in suburban areas. Thus, three different target color
models are trained accordingly for the detection algorithm,
and applied appropriately based on the test data.

Video sequences were collected at 480 by 640 resolutions
at 15 fps under various environmental conditions. Each
of these videos was decomposed into sequences of im-
ages. Seven different image streaming of each sign (“stop”,
“pedestrian crossing”, and “workzone”) were prepared for
the test data, and the remaining images were used to train the
color classifier. For each of the test data, sequential images
were given as an input.

For comparison, two different types of localization algo-
rithms were executed: ‘detection only’ and ‘detection and
tracking’. ‘Detection only’ executed the algorithm described
in section III-A in every input image. ‘Detection and track-
ing’ type executed the detection algorithm at first, and once
the output from the detection satisfied the predefined condi-
tions, the tracking algorithm was executed in the remaining
frames. We empirically found that the tracking algorithm
performed best when the size of the bounding box was bigger
than 32 pixels, and the aspect ratio of bounding box was
between two predefined thresholds. To represent the target
and candidates, we set both nh and ns as 20, which resulted
in a 400-bin histogram.

To evaluate the performance, we used the metrics used
for PASCAL object detection challenges [12]. An output

TABLE I: Three US traffic signs are chosen as target signs
for our experimentation. Each sign has its unique appear-
ance [15].

type shape sign plate color
stop octagon red

pedestrian crossing diamond fluorescent yellow-green
workzone diamond and rectangle fluorescent orange

Fig. 5: Localization performance result of a “stop” sign
sequence in Fig. 4.

bounding box, oi, was considered a potential match to the
ground truth bounding box, gi, in a given image frame,
i, if their area of overlap was greater than a predefined
value, τ < Area(oi∩gi)

Area(oi∪gi) . When a potential match was found
in a given image, sign localization performance could be
further analyzed by measuring the following: precision=
Area(oi∩gi)
Area(oi)

and recall= Area(oi∩gi)
Area(gi)

.

B. Experimental Results

To depict our experimental results, we detail one of them
qualitatively as well as quantitatively, and summarize the
whole performance. Fig. 4 illustrates one of the experimental
results. The detection process is executed until the size and
aspect ratio of the bounding box satisfies the predefined
thresholds ((a) to (c)). Then, the target model is calculated
within the bounding box for the subsequent frame. The
candidate which has the maximum similarity to the target
is chosen as in III-B and it updates the target model for the
subsequent frame. Once a successful detection occurs, the
tracking system provides consistent bounding boxes through
the whole sequence even when our detector only partially
detects the sign. This is because our sign detector applied
a pixel-wise binary classification to every pixel in ROI and
identifies blobs using connected-component grouping. While
doing this, our sign detector sometimes treats these blobs as
two different parts (top and bottom individually) and picks
the bigger part as a potential sign. Still our tracker provides
a fitted bounding box due to the kernel. Once the sign is
detected, the kernel contains a mask of the sign and finds
the most similar appearance of the target in the subsequent
frame. This provides stable tracking.

We detail the performance measurement of this sequence
in Fig. 5, where the x-axis represents the number of image
frames organized by the time, and y-axis represents the
values of precision and recall; a red cross is the precision,
and a magenta circle is the recall. A cyan rectangle and
blue triangle represent a precision and recall of tracking
respectively. As shown, the precision of detection are equal
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(a) frame=1 (b) frame=2 (c) frame=3 (d) frame=4

(e) frame=5 (f) frame=6 (g) frame=7 (h) frame=8

(i) frame=9 (j) frame=10 (k) frame=11 (l) frame=12

Fig. 4: Localization of detection and tracking in a sequence. The yellow dotted rectangle is groundtruth bounding box labeled
manually. The blue solid rectangle represents the output bounding box from tracking (starting at (d)), and the red dashed
rectangle from detection alone. The inset at the bottom left in each frame is magnified from each respective frame.

TABLE II: Localization performance of 3 different signs
from 7 image sequences of each sign. Each cell in the table
shows the mean and standard deviation.

(a) workzone sign
Precision Recall

Detection and tracking 0.979 / 0.013 0.910 / 0.033
Detection only 0.950 / 0.034 0.775 / 0.105

(b) Pedestrian crossing sign
Precision Recall

Detection and tracking 0.959 / 0.037 0.916 / 0.051
Detection only 0.911 / 0.069 0.896 / 0.070

(c) Stop sign
Precision Recall

Detection and tracking 0.954 / 0.018 0.963 / 0.013
Detection only 0.947 / 0.055 0.774 / 0.221

or higher than tracking in the whole sequence except frame 7.
Our sign detector, as mentioned above, sometimes provides
the bounding box from either the top half or the bottom
half of the stop sign. Since the bounding boxes locate the
inner-portion of the “stop” sign, they have high precision.
However, they result in low recall because they only cover
a portion of the sign. In contrast, our sign tracking system
consistently covers the sign similarly in every frame.

We calculate the performance of each test data separately
and average individual measurements over testing sequences
to summarize the overall performance of each traffic sign in
table II. The performances after tracking starts are included
to evaluate. The second row of each sub table represents
the precision and recall of ‘tracking’ while the third row
represents those of ‘detection’. As shown, our tracking sys-
tem improves both the precision and recall of three different
traffic signs. Especially, the recall rate of ‘stop’ sign is higher
than those of ‘workzone’ and ‘pedestrian crossing’ signs
due to their shapes and kernel. We use a combination of a
mask of shape of the detected sign and Epanechnikov as our
kernel. A mask, however, sometimes doesn’t perfectly match
to its actual sign. Also, the kernel helps to create candidate
PDFs by weighting more from the center. This results in
a smaller bounding box than its actual size. Since diamond
shape signs have more background than octagon shape signs,
recall values of diamond shape signs are lower than those of
octagon shape signs. Not only do the precision and recall
show better performance when tracking is included, but also
the standard deviations show less variation. Thus, we can
infer that including kernel-based tracking system provides
more robust and stable sign localization performance. We
can conclude that our sign tracking system covers at least
91% of an actual sign when at least 95% of the bounding of
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box of our sign tracking system contains it.

V. CONCLUSIONS AND FUTURE WORK

We presented a new road sign tracking method to improve
the performance of our sign detection system for three-traffic
signs. The selection of these signs is based on high priority
due to safety reasons. The experimental results demonstrated
that our tracking method can improve performance in sign
localization. The contribution of this paper included the
successful application of kernel-based sign tracking to accu-
rately locate the difference between several different signs.

We showed promising results, but there is still room for
improvement. Our color-based detector can be improved
by including the shape information. We also had applied
Histogram of Oriented Gradients (HOG) [4] method to utilize
the shape information, but dropped it due to its expensive
computational cost. The image pyramid should be generated
for the scale invariant detection and each shape needs its
own individual model. Since we already showed that the
tracking system can localize robustly, applying HOG method
without the image pyramid on ROI from our color-based
sign detector for the detection and tracking will drastically
reduce the computation cost. This work is underway along
with continuing testing under changing road conditions.
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