
Towards Robot Imagination Through Object Feature Inference

Juan G. Victores, Santiago Morante, Alberto Jardón, and Carlos Balaguer

Abstract— This paper presents a robot imagination system
that generates models of objects prior to their perception. This
is achieved through a feature inference algorithm that enables
computing the fusion of keywords which have never been
presented to the robot together previously. In this sense, robot
imagination is defined as the robot’s capability of generating
feature parameter values of unknown objects by generalizing
characteristics from previously presented objects. The system
is first trained with visual information paired with semantic
object descriptions from which keywords are extracted. Each
keyword creates an instance of the learnt object in an n-
dimensional feature space. The core concept behind the robot
imagination system presented in this paper is the use of
statistically fit hyperplanes in the feature space to represent
and simultaneously extend the meaning of grounded words. The
inference algorithm allows to determine complete solutions in
the feature space. Finally, evolutionary algorithms are used to
return these numeric values to the real world, completing an
inverse semantic process.

I. LANGUAGE GROUNDING AND MENTAL MODELS

The notion of linking words with physical objects, ac-
tions and abstract concepts is commonly referred to as
symbol grounding, language grounding, semantic grounding,
or bridging the semantic gap. Having being first defined
in 1990 by Harnad [1], decades of research have provided
different views ranging from psychology [2] to informa-
tion retrieval for the semantic web [3] and, more recently,
cognitive systems in robotics [4]. A survey of artificial
cognitive systems [5] describes a purely symbolic approach
to cognition (namely cognitivist), as opposed to a self-
organized embodied emergent paradigm. Purely semantic
approaches such as Latent Semantic Analysis (LSA) [6] and
Hyperspace Analogue to Language (HAL) [7] have been
criticized due to the ungrounded nature of the symbols
they manipulate [8]. In contrast, the system presented in
this paper manipulates values of features extracted from
objects that are present in the environment, providing it with
an embodied and grounded nature. Barsalou predicted that
cognitive science will increasingly witness the integration
of its different paradigms, with competition between them
decreasing [2]. In this sense, the authors expect to contribute
to this integration by extending the set of tools provided by
symbolic architectures that manipulate embodied grounded
information.

One of the first works in linking grounded information
to language was VIsual TRAnslator (VITRA) [9]. Dynam-
ical situations are provided via video to VITRA, which in
turn analyses and performs automatic generation of natural
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language descriptions for the movements it recognizes. An-
other approach [10] uses simple user-robot interaction and
language games to conceptualize an object, though no further
language grounding or inference possibilities are studied.
These and similar contemporary systems can be found
throughout literature [11]. A more recent work in the field of
inference has provided tools to discover unknown properties
of an object from limited views of it [12]. Although it is
highly focused on multi-modal categorization, it provides
direct cross-feature mappings that allow it to infer certain
features, such as missing auditory information only from
visual information. However, the completion of information
is not the main intention of the developed robot imagination
system. Our ultimate goal –and to some extent, achievement–
is to semantically tie descriptive words with physical features
to then extend the reach of these words, thus enabling the
creation of completely new object models from new word
combinations. It is accurate to expect that these words are
actually descriptions that an end-user provides to the robot
for some reason. The use case we study in this paper is
having the robot draw an object it has never seen before.

Fig. 1. The robot imagination system architecture in the drawing context.

The robot imagination system in this specific context can
be decomposed into three different steps (depicted in Fig. 1),
which may occur concurrently.

1) Grounding: Populating a knowledge representation
database which can dynamically grow not only in the
number of elements it contains, but also in number of
features it stores per each element.

2) Imagination: Generalizing the meaning of words and
generating a solution in the feature space, which is
performed through an inference algorithm.

3) Drawing: Reconstructing a ‘mental model’ of the
object (which may be presented on a screen) from the
numerical values of the parameters in the feature space,
and using the robot arm or available hardware to draw
the object on a given surface.

The use of mental models is an important aspect of the
robot imagination system. They play a fundamental role,
as reconstructing a mental model of an object is a key
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step towards any of the system’s end application possibil-
ities. Mental models are treated in several works involving
conversational robots. The focus in [13] is the foundation
of object permanence (awareness of an object when it is
not visible) through a simulator, by instantiating visually-
detected objects as their virtual equivalents. This allows the
semantic description of objects from different perspectives
(“touch the block on my left”) and from different times
(“touch the block you were just holding”). However, feature
inference is not the aim of the paper, so it is not treated. In
[14], the same system is equipped with force inference from
vision. This is achieved by using the virtual instantiation of
the real objects, and a dynamics engine to calculate the force
necessary to move an object a determined velocity, measured
with vision. Previous knowledge of objects for new mental
model creation is not exploited in either of the works.

Continuing with this research line, and probably the
most similar work to our contribution, [15] adds learning
techniques to assign ranges of values of features to words.
To achieve this task, they train the system by manually
transcribing human-made descriptions of computer-generated
coloured rectangles. Then, they consider every word as a
potential label and filter them to use only relevant ones.
The system assigns a subset of features to each word. Then,
an algorithm compares feature distributions between descrip-
tions formed with these words. Finally the system finds the
subset of features for which the distributions are maximally
divergent when the word is present and when it is not, and
assigns these features to the word. The result achieved by
this system allows to generate correct semantic descriptions
of objects selected by a user on a screen, including spatial
relations to other objects. Some apparent limitations of the
system are the shape of polygons (only rectangles), and the
fixed number of figures in the image (ten).

Our contribution intends to be unique and distinct from
this work and others in the following aspects.

1) We perform the inverse semantic process. Instead of
asking for a description of a selected object, we build
feature models from semantic descriptions.

2) Our system is capable of managing as many features as
the programmer is able to represent, and is not limited
to fixed or pre-programmed shapes. Features can be
extracted from every measurable object.

3) Through the use of hyperplanes, we try to catch all
the linear dependencies and couplings that can occur
between features without systematically discarding any
feature for any given word.

This paper is organized as follows. Section II describes the
mathematical formalization of the robot imagination system.
Section III presents the programming implementation and
experiments. Known and expected system limitations are
presented in Section IV. Finally, Section V gives several
conclusions.

II. MATHEMATICAL FORMALIZATION

The robot imagination system is capable of generalizing
properties from presented objects, generating a model that

is complete in the feature space when asked for it using
representative words, and reconstructing a mental model
that can be transfered to the real world. In the use case
scenario (having the robot draw an object it has never
seen before), this process involves three steps, that may
occur concurrently: to split the words and save the data
(grounding), to generalize the information and return a valid
solution in the feature space (imagination), and finally, to
interact with the external world to express this mental model
formed (drawing). We now proceed to formally define each
of these steps.

A. Grounding

In this step, features extracted from real sensor data and
semantic words are loaded into a grounding database.

Let n be the number of extracted features. Let Fε<n be
the n-dimensional feature space. The grounding database is
a set of f labeled points in F , which is initially empty.
The grounding database allows the creation of labeled points
given < fw, w > incoming pairs, where fw is a vector of
scalars (the extracted feature values) whose elements become
the coordinates of the newly created point in F , and w is
a word that becomes the associated label. Fig. 2 depicts an
example with two incoming pairs (where w are “green” and
“square”), and n=2 (“rectangularity” and “hue”). Note that
fw is the same for both pairs, as the sensor input is identical.

Fig. 2. Populating the grounding database with labeled points.

Let S be the semantic space, composed by m words which
are actually the maximum set of non-repeated words that
have been registered in the grounding database (thus m will
always be less or equal to the number of labeled points).
G can denote a grounding function that corresponds to the
direct semantic process, which can be defined as:

G : S → F (1)

And the translation from the semantic space S to feature
space F can be defined as follows:

∀wεS,G(w) = {wf1 , ..., wfi, ..., wfn} (2)

Where wfi is the value of a single feature for any w.

B. Imagination

In the context of the developed robot imagination system,
robot imagination is defined as the robot’s ability to infer the
features of unknown objects by generalizing characteristics
from previously presented objects.
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The first step of the inference algorithm is the generaliza-
tion process. For each word w, a hyperplane hw of order n−1
is generated. This is an attempt to capture and represent all
the linear dependencies and couplings that can occur between
features for the word w, and extend them across the feature
space F . A total of m hyperplanes are generated.

A fair amount of machine learning regression algorithms
can be used to obtain a hyperplane which is fit to a set of
points. We make use of the Principal Component Analysis
(PCA) algorithm due to its statistical and non-recursive
nature (thus avoiding issues such as dependency on the initial
guess and the risk of local minima). The most common use
of PCA is to supply a lower-dimensional representation of
an n-dimensional multivariate dataset with the minimum loss
of information. For this purpose, the dataset is projected on
a hyperplane that is defined by the Principal Components
(PC, vectors that explain the maximum variances) of the
original dataset. We exploit this intermediate step of the
computation of the PC and use the n − 1 components as
vectors that define our hw hyperplanes across the maximum
variances (maintaining the least variance, hypotesized as the
most relevant for the word). The process is the following:

1) Mean Subtraction: The mean of each feature is
subtracted from each element.

2) Covariance Matrix Calculation: This allows us to
know the relation between the features. As previously,
F is the features space, and we now denote the data
of all the words for a single feature as Fi (Eq. 3).

F =

F1

...
Fn

 (3)

We define the covariance between two features as in
Eq. 4.

cov(Fi, Fj) = E
[
(Fi − E(Fi))(Fj − E(Fj))

]
(4)

Where E(Fi) is the expected value of the correspond-
ing feature Fi. Currently, all our feature weights are
the same, so the expected value can be represented as
a simple average. With these elements, the covariance
matrix Σ is expressed as in Eq. 5.

Σ =


cov(F1, F1) · · · cov(F1, Fn)
cov(F2, F1) · · · cov(F2, Fn)

...
...

...
cov(Fn, F1) · · · cov(Fn, Fn)

 (5)

3) Eigenvectors and Eigenvalues: The eigenvectors of
the covariance matrix represent the components of the
data, and their eigenvalues associated inform about the
quantity of the variance explained by their respective
component. Finally, we order the eigenvectors in de-
scending order by means of their eigenvalues.

These sorted eigenvectors are the PCs. We extract the
ordered n − 1 components, from which we generate the
corresponding hw.

The second step in the inference algorithm is determining
the geometrical figure that contains all of the valid solutions.
Note that in the previous step in the inference we have
already extended the reach and therefore, to a certain degree,
the “meaning” of each word. Given a query composed by q
words (q would be 2 in a query such as “draw a green box”),
we define the geometrical figure that contains all of the valid
solutions M as the one resulting from the intersection of the
hyperplanes of the corresponding query words. Formally,

M(w1, ..., wq) = hw1
∩ ... ∩ hwq

(6)

The order of the resulting geometrical figure M (a point,
a line, a plane, or a hyperplane) can actually be computed as
n− 1− (q− 1) in Fε<n, from which we derive two special
cases, and then describe the general case.

1) Special Case: q=n
In this case, the order of M is null. The intersection
of the hyperplanes generated by the query words is a
single point in the feature space. In absence of degrees
of freedom, the coordinates of the point are returned
by the inference algorithm as the final solution in the
feature space.
Fig. 3 depicts an example of this special case, where
the feature space belongs to <2, and the query is
formed by exactly two words. Note how the initial
generalization of the labeled points to the hyperplane
allows the algorithm to extend to unexplored yet valid
zones of the feature space.

Fig. 3. Imagining features of the semantic query by correlating previously
presented inputs. The black circle marks the intersection point.

2) Special Case: q=1
In this case, the number of intersections is null, and the
order of M is n−1. Moreover, the only information is
provided by a single word. In absence of possibilities
of further correlating with information provided from
other sources, the final solution in the feature space
returned by the inference algorithm is the center of
mass of the pointcloud that corresponds to the word
of the query.
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For the General Case, we search for a solution which
belongs to the geometrical figure that contains all of the
solutions we have considered valid, M , while maintaining
values that are representative of the query words. With this
in mind, we orthogonally project each center of mass of the
query words on M , as this projection will provide solutions
which are closest to their original points. These projections
are accomplished using the modified Gram-Schmidt process
for orthogonalization (classical Gram-Schmidt losses orthog-
onality due to rounding errors when calculated numerically).
Gram-Schmidt processes are based on Eq. 7, which expresses
the projection of a vector v onto another vector u:

proju (v) =
u · v
u · u

u (7)

To obtain a vector v orthogonal to u, the equation would
be as in Eq. 8.

u = v − proju (v) (8)

To obtain a vector orthogonal to more than one vector, the
equation can be systematized in a recursive calculation for
each vector (Eq. 9).

u
(1)
k = vk − proju1

(vk)

...
u
(k−1)
k = u

(k−2)
k − projuk−1

(u
(k−2)
k ) (9)

Where k is the number of vectors to be orthogonal with.
Fig. 4 depicts an example of this General Case, where the
feature space belongs to <3, and the query is formed by two
words.

Fig. 4. Example of 3-features space but only 2 words as input. In the
augmented region, we can see the final point resulting from averaging the
projections.

The number of points resulting from the projections is q,
all belonging to M . A weighted mean can be performed upon
these points, and the resulting point will still belong to M . By
default, we apply the same weight to each projected center of
mass, so the inference algorithm will return the coordinates

in FεRn of the mean as the final solution. Alternatively, a
probabilistic distribution function can be computed, or more
emphasis can be given to a certain word. The default solution
can be considered:

1) Complete: Because it is completely defined in all <n.
2) Valid: Because it is belongs to M .
3) Balanced: Because every word weights the same on

the final solution.
The mentioned Special Cases are pure simplifications for

efficiency of the General Case algorithm. Specifically, for
q = n we avoid orthogonally projecting the center of masses
of the words on a point, as it will return the same point.
Similarly, we save several steps in the case of q = 1. In this
case, only one hyperplane is generated. The center of mass
of the word is contained on M , so its orthogonal projection
is again itself. Note that q > n is currently not treated.

C. Drawing

The use case at study is having the robot draw an object it
has never seen before. A fundamental aspect of this process
is enabling the robot to generate a mental model of the object
it has never seen before.

To achieve this, the features values inferred in the previ-
ous step are set as inputs to an evolutionary computation
algorithm (EC), which performs a steady state selection
algorithm [16]. The particularity of this algorithm is that,
in each generation, after the selection and crossover process,
the resulting individuals replace only a few of them at a time,
instead of other algorithms which replace most of them. The
following is a summary of the operator details:

1) Selection: A tournament is performed between random
individuals. Their fitness values are compared and
winners are selected for crossover.

2) Crossover: Winners are crossed and their children sub-
stitute the worst values from the previous tournament.

3) Mutation: Finally, each child may be mutated with a
certain degree of probability.

The termination condition can be set to a certain number
of generations without improvement in the fitness value.

For the process of generating the mental model, the EC
controls the coordinated 2D positions of a set of points inside
an image (“canvas”). These points are linked to form a shape.
Then, we extract features from the generated image and
compare them with original data. The points are considered
‘fit’ according to the fitness function.

Several generated mental models can be seen in Fig. 5.
Notice that when query words do not refer to features such
as colour and the shape, the values of these features remain
uncertain, but tend to acquire tolerated values.

The mental models are generated by sets of coordinated
2D points, which can be used directly for the drawing
application as a trajectory. Fig. 6 depicts a screenshot of the
ASIBOT robot simulator [17] performing the drawing task.

III. IMPLEMENTATION AND EXPERIMENTS

The whole system consists in a set of YARP [18] in-
terconnected modules. These modules are independent and
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Fig. 5. Mental models generated from different queries: (a) “bottom right”,
(b) “bottom left”, (c) “top right”, (d) “top blue”.

Fig. 6. Simulation of the ASIBOT robot arm drawing the mental model
generated from a “bottom left” query.

interchange relevant information through ports. The modules
are direct software implementations of the mathematical
formalizations explained in the previous section.

To accelerate our experiments, we first train the system
with a set of computer generated images and automated
descriptions. The images and descriptions are fed to the
grounding database. For the final experiment, the system
was trained with 300 images with seven-word descriptions,
analogous to those of Fig. 7. Each descriptive word could
take upon 3 different values, thus the training population
represents less than 13.7% of the possible combinations. An
additional Gaussian noise (of 1% standard deviation) was
added on the features related to the descriptive words.

Fig. 7. Example of training images used to populate the space. For instance,
the first image is labeled top-left-dark-blue-fat-straight-box.

In our current implementation, 12 features are extracted
from the training images. The first two correspond to the
vertical and horizontal position of the object in the image,
the hue and value are used to define the color, and another
8 features (aspect ratio, total area, rectangularity, first and
second axis, solidity, arc, and radius) are used to characterize

the contour of the object.
In order to quantify the errors produced by the system (in

absence of the errors introduced by the EC) for a given word,
we have generated two complementary tables:

1) The errors induced by the scalability of dimensions
(Table I): Though the inference algorithm has no innate
knowledge of how representative a word is for a given
feature or set of features, in the use case, we know that
the word ‘left’ mostly describes the first feature. In this
table, we express how the first feature of the algorithm
deviates with respect to the uni-dimensional case as
more features are incorporated. The same applies for
‘top’ with respect to the second feature.

2) The errors induced by a specific feature over the rest
of the space (Table II): Deviations on features do
not depend on dimensionality alone, but also on the
noise or ambiguity a given feature can introduce. This
table represents how the features related to the word
‘left’ and ‘top’ deviate when using only two features,
depending on which features are used for the inference.

Regarding the EC, the tournament size for generating
the mental model is performed between 3 individuals, the
probability of mutation for the children is set to 70%, and
the termination condition is set to 50 generations without
improvement in the fitness value.

IV. LIMITATIONS

We are aware of certain limitations of the presented
algorithms. The following is a brief description of these
limitations, and proposed potential solutions.

1) Context dependency: The current implementation is
not capable of correctly managing words that change
depending on the context. An example of this could
be the word “green”, which could refer to a object’s
color, or to its state of ripeness. This may affect
the robot creativity system as it can represent a total
loss of linearity of the words with respect to any
of the features. The issue could possibly be treated
through the use of a previous un-supervised clustering
step, for the robot imagination system to then treat
words in different regions of the feature space as
completely different words. However, no research has
been performed in this direction yet.

2) Periodicity: The robot imagination system’s raw im-
plementation is susceptible to malfunction in the pres-
ence of repeating patterns. For example, in the HSV
color space, the hue “red” can be represented as 0◦ or
as 360◦. A hyperplane fit to these values can tend to
settle at 180◦, which is obviously wrong. Again, this
issue could possibly be treated through the use of a
previous un-supervised clustering step, but research in
this direction is yet to be performed.

3) Specificity: The presented robot imagination system
intrinsically supposes that all words are extendable. In
practice, we suppose that this is true, and base this
assumption on the fact that even unique identifiers can

5698



TABLE I
ERRORS INDUCED BY ADDING NEW DIMENSIONS FOR THE QUERY “TOP LEFT”.

Number of Features 2 3 4 5 10 12
Deviation of 1 0.038 0.036 0.038 0.036 16.855 16.227
Deviation of 2 -0.308 -0.298 -0.298 -0.305 -14.238 -13.541

TABLE II
ERRORS INDUCED BY SPECIFIC DIMENSIONS FOR THE QUERY “TOP LEFT”.

Feats. {1,2} {1,3} {1,4} {1,5} {1,6} {1,7} {1,8} {1,9} {1,10} {1,11} {1,12}
Dev. 1 0.038 0.009 -0.002 0.012 0.004 -0.006 -0.034 -0.012 0.012 -0.398 -0.045
Dev. 2 -0.308 -77.116 338.902 -78.329 -46.805 -60.785 -78.055 -1.921 -63.425 -203.833 76.898

be used as “leverage” for the generation of new mental
models. However, we leave how the use of unique
identifiers as query words of the robot imagination
system can lead to instabilities of the algorithms or
unexpected results as an open question.

V. CONCLUSIONS

In this paper, the authors have presented a system for pro-
viding robots with imagination skills through object features
and semantic descriptions. The work provides exciting results
and sheds some light possible applications, but is still at
a very early stage. The developed system possesses certain
characteristics that are yet to be proved beneficial or not
in spaces of increasingly high dimensionality, such as the
assumption that a word should be somehow mapped to every
single feature of a given object.

Moreover, the authors consider the research on developing
robot imagination systems a natural step in robotic research
and cognitive science. The representation selected, where
similar objects are close in a continuous space, appears
to have a biological base. Recent research in the field of
neuroscience has discovered that the objects human perceive
are stored in a continuous, and smooth, semantic space in
the cortical surface [19].

Future work with the robot imagination system must
involve sensor data of various nature. Haptic, rugosity, and
depth sensor information should be involved in the inference
algorithm. Having the robot draw an object it has never
percieved before should be considered an initial, proof-of-
concept goal. We envision a future where robot imagination
systems are used for advanced tasks, such as recognition of
objects that have never been perceived before in domestic
environments.
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