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Abstract— Autonomous vehicles (or drones) are very fre-
quently used for servicing a geographic region in numerous
applications. Given a geographic territory and a set of n fixed
vehicle depots, we consider the problem of designing service
districts so as to balance the workload of a collection of vehicles
which service this region. We assume that the territory is a
connected polygonal region, i.e. a simply connected polygon
containing a set of simply connected obstacles. We give a
fast algorithm, based on an infinite-dimensional optimization
formulation, that divides the territory into compact, connected
sub-regions, each of which contains a vehicle depot, such that
all regions have equal area. We also show how we can use this
algorithm to find better locations of the vehicle depots.

I. Introduction

Efficiently dividing a workload among a collection of
service vehicles, facilities, or agents is a common objective in
many disciplines. The most natural objective is to distribute
workloads in such a way as to minimize the total amount of
work done by all agents. In practice, it is also often desirable
to find a balanced assignment so as not to overload any
particular group and to ensure uniform service levels. Such
assignment policies are commonly encountered in robotics
[20], [28], queueing theory [4], [19], [21], vehicle routing
[12], [18], [29], and facility location [2], [5], [7], [13], among
others.

The primary application we are interested in is balancing
workloads of unmanned aerial vehicles (or drones) in a
service region. Drones are extensively used for aerial surveil-
lance, remote sensing, transportation, combat and scientific
purposes. Although they are predominantly used in military
applications, with the FAA Modernization and Reform Act
of 2012 [27], there is a rapid demand to integrate drones
into civil airspace. With such increased usage, the task of
efficiently allocating workload to these vehicles becomes
critical. Assigning service districts by partitioning a given
region into sub-regions is a natural and obvious strategy for
assigning workloads to autonomous vehicles.

With this as our motivation, we consider the problem of
dividing a given geographic territory among a set of vehicles
in such a way as to minimize the total workload imposed on
them while simultaneously ensuring that all vehicles service
the same amount of territory. More precisely, we are given
a planar region R and a set of n fixed landmark points
(“vehicle depots”) P = {p1, . . . , pn}, and our objective is to
design sub-regions {R1, . . . ,Rn} of equal area that minimize
the workloads of the vehicles pi in providing service to
their respective sub-regions Ri. The set {R1, . . . ,Rn} should
obviously be a partition of R, that is, we should require that
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Fig. 1: Inputs (1a) and outputs (1b) to our partitioning
problem; we are given a region R containing m = 4 obstacles
and n = 5 points pi, and we design n = 5 sub-regions of
equal area corresponding to the vehicles that minimize the
workloads as defined in (1). It turns out that our partition is
relatively star-convex to R (1b).

⋃
i Ri = R and that the interiors do not overlap, int(Ri) ∩

int(R j) = ∅ for all distinct pairs i, j. The input region R
over which the drones travel could be complicated. It need
not always be a convex region; we will consider a more
general case in which the region R contains a collection of
impenetrable obstacles, such as tall buildings or mountains.
To incorporate a realistic ground environment, we consider
R to be represented by a simple polygon that contains a set
of obstacles {O1, . . . ,Om} (also simple polygons) as shown
in Figure 1a.

To model the workload of vehicle i in providing service
to region Ri, we find it useful to introduce what we call the
Fermat-Weber function FW(Ri, pi), defined as

FW(Ri, pi) :=
∫∫

Ri

d(x, pi) dx (1)

where d(·, ·) is the length of the shortest path between a
pair of points when obstacles are taken into account. A
vehicle i travels a distance of d(x, pi) to service a point x. In
practice, drones have less fuel holding capacity or short lived
batteries and hence they are often required to return to their
depots periodically for re-fueling or updating information.
The function FW(Ri, pi) thus defines the workload of the ith

vehicle and it is simply proportional to the average distance
between pi and a point uniformly randomly sampled in its
service region Ri.

It is obvious that, by seeking to minimize the total vehicle
workloads, our partition will be compact, in the sense that
a vehicle should not be assigned to service points that are
far away from it. In fact, the partitions that we produce
turn out to be connected, so that all districts are contiguous;
see Figure 1. In addition, we may require that these service
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sub-regions be computable in a decentralized fashion [26]:
that is, the sub-region assigned to vehicle i should be
computable using only “local” information to vehicle i (such
as nearby neighbors or information about its surroundings),
and the optimal boundary between two sub-regions should
be computable using only knowledge available to those two
vehicles.

Our contribution

Designing boundaries between sub-regions is an infinite
dimensional problem and is usually extremely complicated.
The traditional way to solve it is to break the region into
small discrete “pixels” and assign binary variables to each
pixel. This essentially becomes a large combinatorial prob-
lem which is computationally intractable for large problem
instances. In this paper, we show how we transform our
partitioning problem into a simple n-dimensional convex
optimization problem that determines the optimal partition
boundaries using a sequence of cutting planes. Our algorithm
can be readily applied to any planar connected region that
admits a representation via poly-lines. Our algorithm also
has the advantage of decentralization, where each vehicle
depot can compute its sub-region by obeying a simple control
law and communicating with its nearby neighboring depot
points. A side consequence of our analysis is a collection
of simple and immediate proofs of established results in
equitable partitioning [2], [3], [28] and an affirmative answer
to a question posed in the concluding remarks of [1], [2].

We have previously considered the problem of dividing a
region into smaller pieces when the input region R is convex
or simply connected. Specifically, in [11], [12], we give a
fast algorithm that takes as input a convex polygon C and a
point set P = {p1, . . . , pn} and divides C into n sub-regions
{C1, . . . ,Cn} such that each Ci is convex, each Ci contains a
point, and all sub-regions have equal area. In [10] we extend
this algorithm to the case where the input region is a simply
connected polygon S (i.e. a connected polygon and devoid of
any obstacles) and we have an arbitrary probability density
f (·) defined on S . Rather than producing equal-area sub-
regions {S 1, . . . , S n}, our objective is to find a partition such
that

∫∫
S i

f (x) dA is equal for all sub-regions (the previous
paper is thus a special case of this problem in which f (·)
is a uniform distribution). Since it is not always possible to
divide S into convex pieces in this case, our algorithm divides
S into sub-regions that are relatively convex to S : for any
two points x, y contained in a sub-region S i, the shortest
path in S from x to y (which may not be a straight line
segment) is itself contained in S i (see Figures 2, 3, and 12 of
[10] for examples). This is clearly a natural generalization of
convexity, because when S happens to be convex, the shortest
path from x to y in S is indeed a straight line segment, and
therefore all sub-regions S i will be convex.

The algorithm of this paper presents two clear advantages
over our previous methods: first, it is easy to show that when
the input region R contains obstacles (and is thus no longer
simply connected), an equitable relatively convex partition
of the type just described may not exist (see Figure 1 of

[6]), and thus our prior work is of little utility. Second, the
algorithms of [11], [12] and [10] do not force regions to be
compact: it is possible for the output regions to be extremely
long and skinny, which is clearly undesirable from a practical
standpoint (see Figure 10 of [11] and Figure 14 of [10]).

Here we tackle these two problems in the following way:
first, as we will show, our algorithm produces sub-regions
{R1, . . . ,Rn} that are relatively star-convex to R: for any point
x in sub-region Ri, the shortest path in R from x to pi is itself
contained in Ri (see Figure 1b). This is a weaker condition
than relative convexity but still offers considerable practical
utility; for example, it automatically produces connected sub-
regions. Second, we are able to explicitly enforce our sub-
regions to be compact; in fact, one interpretation of our
problem is that we are trying to find the partition that is as
compact as possible; we will make this explicit in Section
II. The algorithm in this paper is also novel in that our prior
work generally uses well-established principles of discrete
geometry such as ham sandwich cuts and binary and ternary
space partitions, whereas here we use techniques from vector
space optimization and linear programming complementarity.

Related work

In addition to our own previous work that we have already
mentioned, the general problem of equitably partitioning a
region has been studied from many perspectives. They are of
particular interest to the robotics community. For example,
the paper [28] considers the problem of dividing a convex
region into convex equal-area sub-regions using power dia-
grams. The authors give a decentralized control policy that
provably converges to the desired partition. More recently,
[15] considers a hybrid problem in which the objective is
to simultaneously place the facilities P and design coverage
regions associated with the facilities using only asynchronous
(and possibly noisy) pairwise communication between facil-
ities. The authors give an algorithm that provably converges
to a centroidal Voronoi partition, that is, a Voronoi diagram
{V1, . . . ,Vn} such that pi is the center of mass of each sub-
region Vi. Other papers making use of power diagrams as a
partitioning policy include [24] and [30].

Closely related papers [1], [2] considers the problem
of partitioning a convex region C so as to minimize the
aggregate workload over all facilities while imposing an
equal-area constraint. The authors describe a constant-factor
approximation algorithm for dividing C into equal-area
convex pieces to maximize the minimum “fatness” of any
piece. This in turn gives an approximation algorithm for
the problem of minimizing the aggregate workload over all
facilities when facility placement is variable, as well as the
sub-region boundaries. The authors also give a constant-
factor approximation algorithm for solving the convex case
of precisely the problem that we address here, which will be
introduced in the following section. The paper [3] considers
the problem of dividing a convex region into convex sub-
regions according using power diagrams, a natural extension
of Voronoi diagrams. The authors develop a rich and elegant
theory relating such partitions to the infinite-dimensional
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least-squares problem, which we will touch on in Remark
1 of this paper.

Notational conventions and technical assumptions

Our notational conventions in this paper will be as follows:
in addition to the Fermat-Weber function FW(·, ·) and the
distance function we have introduced, we also remark that,
when we refer to the input region R, we implicitly take the
obstacles into account (so that R = S \

⋃
i Oi for some simply

connected polygon S ). We will assume throughout this paper
that Area(R) = 1.

II. Problem formulation

We begin by formally stating our optimization problem for
designing the service districts Ri. Suppose that Area(R) = 1
and that the cost of service between a demand point x and
depot i is simply d(x, pi), where the points pi are fixed and
given as inputs. If demand is uniformly distributed over R,
the average workload on vehicle at depot i, when assigned
to provide service to region Ri,is precisely

FW(Ri, pi) =

∫∫
Ri

d(x, pi) dx

as stated previously. It is obvious that the total workload
on all vehicles is minimized when each point x is merely
assigned to its nearest depot, i.e. when {R1, . . . ,Rn} is a
Voronoi partition of P in R. In order to balance the work-
loads of the vehicles, we will impose the constraint that
Area(Ri) = Area(R)/n = 1/n for each i. We can thus write
our optimization problem as

minimize
R1,...,Rn

n∑
i=1

FW(Ri, pi) s.t. (2)

Area(Ri) = 1/n
n⋃

i=1

Ri = R .

It is easy to see that the objective function of (2) forces
regions to be compact because it minimizes the average
distance between demand points and their assigned vehicle
depots. It is also worth mentioning that (2) is a special case of
the famous Monge-Kantorovich transportation problem [31]
in the plane in which one Radon measure is the uniform
distribution and the other is atomic: our objective is to
“transport” the continuously distributed demand to the finite
collection of facilities, while obeying capacity constraints
and minimizing the aggregate transportation cost.

III. Optimal partitioning

For ease of exposition, we find it helpful to give an outline
of this section:
• We first show how to formulate our problem (2) as an

infinite-dimensional optimization problem (3), which we
then relax to an infinite-dimensional linear program (4).

• We next take the dual (in the sense of linear program-
ming) of problem (4), and show that this dual (7) can be
expressed in terms of n Lagrange multipliers (Theorem
1).

• Finally we show that the optimal solution to problem
(4) can be recovered via the optimal solution to (7)
(Theorem 2), and that this optimal solution to (4) is also
a solution to problem (3) and therefore to our original
problem (2) (Theorem 3).

It is clear that we can re-write our initial formulation (2) as
an infinite-dimensional optimization problem by introducing
indicator function variables I1 (·) , . . . , In (·) defined on R in
the following fashion:

minimize
I1(·),...,In(·)

∫∫
R

n∑
i=1

d(x, pi)Ii (x) dx s.t. (3)∫∫
R

Ii (x) dx = 1/n ∀i

n∑
i=1

Ii (x) = 1 ∀x ∈ R

Ii (x) ∈ {0, 1} ∀i, x .

Thus, Ri consists of precisely those points x for which Ii(x) =

1. The above problem is, of course, an infinite-dimensional
integer program which we expect to be difficult to solve. We
can relax the integrality constraint that Ii(x) ∈ {0, 1} to obtain
a related infinite-dimensional linear program:

minimize
I1(·),...,In(·)

∫∫
R

n∑
i=1

d(x, pi)Ii (x) dx s.t. (4)∫∫
R

Ii (x) dx = 1/n ∀i

n∑
i=1

Ii (x) = 1 ∀x ∈ R

Ii (x) ≥ 0 ∀i, x .

We can discretize the above problem into N grid cells � j of
area ε = 1/N, where di j denotes the distance between pi and
the center of cell � j and zi j denotes the fraction of cell � j

assigned to pi, to obtain the approximate formulation

minimize
Z=[zi j]

n∑
i=1

N∑
j=1

εdi jzi j s.t. (5)

N∑
j=1

εzi j = 1/n ∀i

n∑
i=1

zi j = 1 ∀ j

zi j ≥ 0 ∀i, j .

It is a standard exercise in linear programming to verify that
the dual problem to (5), which has Lagrange multipliers λ ∈
Rn and σ ∈ RN , is

maximize
λ,σ

1
n

n∑
i=1

λi +

N∑
j=1

εσ j s.t.

λi + σ j ≤ di j ∀i, j .
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which is a discretization of the problem

maximize
λ,σ(·)

1
n

n∑
i=1

λi +

∫∫
R
σ(x) dx s.t. (6)

σ(x) ≤ d(x, pi) − λi ∀i, x

which is itself equivalent to the unconstrained problem

maximize
λ

1
n

n∑
i=1

λi +

∫∫
R

min
i
{d(x, pi) − λi} dx .

Finally, we note that the above problem is translation-
invariant in λ because we have assumed that Area(R) = 1
and thus we obtain the convex, n-dimensional dual problem

maximize
λ

∫∫
R

min
i
{d(x, pi) − λi} dx s.t. (7)

n∑
i=1

λi = 0

so that we can state our first result:

Theorem 1: The dual problem of the infinite-dimensional
linear program (4) is the finite-dimensional convex problem
(7).

Proof: There is nothing more to do here, except to
provide some justification for the discretization that we
introduced to obtain (5) from (4). This can be made en-
tirely rigorous using established principles of vector space
optimization [23]. We defer this proof to a later version of
this paper due to space constraints.
We will next show that the optimal solution to (4),
I∗1(·), . . . , I∗n(·), can be recovered from the optimal solution
to (7), λ∗: consider any point x ∈ R and the optimal solution
λ∗ to (7). Suppose ī is the index such that d(x, pi) − λ∗i is
minimal (assuming such an index is unique). From basic
linear programming theory, we know that the complementary
slackness conditions of problem (6) stipulate that I∗i (x) = 0
for all indices i other than ī, and consequently that I∗

ī
(x) = 1.

From this we have proven our second result:

Theorem 2: The optimal solution I∗1(·), . . . , I∗n(·) to the
infinite-dimensional linear program (4) must satisfy

I∗i (x) =

0 if d(x, pi) − λ∗i > d(x, p j) − λ∗j for some j
1 if d(x, pi) − λ∗i < d(x, p j) − λ∗j for all j , i

where λ∗ is the optimal solution to (7). If neither of the two
cases above holds at a point x, then if I∗i (x) > 0 at a point x,
it must be the case that d(x, pi)− λ∗i ≤ d(x, p j)− λ∗j for all j,
i.e. the index i is among the minimal indices. In other words,
the optimal solution to 3 is an additively weighted Voronoi
diagram.

Note that Theorem 2 tells us that the optimal solution to
the linear relaxation (4) has the useful property that I∗i (x) ∈
{0, 1}, except possibly for those points x such that d(x, pi) −
λ∗i = d(x, p j)−λ∗j for two indices i, j. We will next show that
there actually exists an optimal solution I∗1(·), . . . , I∗n(·) to the
linear relaxation (4) in which I∗i (x) ∈ {0, 1} for all x ∈ R.
This must, therefore, also be a solution to the problem (3)

p2

p1 v

Fig. 2: As λ1 and λ2 vary, the induced sub-regions change
as indicated above. The points x in the shaded region do
not have a unique minimal index imin because λ1 − λ2 =

d(v, p1) − d(v, p2). The point v is therefore the reflex vertex
associated with the shaded region.

and therefore to our original partitioning problem (2).

Theorem 3: There exists an optimal solution
I∗1(·), . . . , I∗n(·) to the infinite-dimensional linear program (4)
such that I∗i (x) ∈ {0, 1} for all x ∈ R, which is therefore also
an optimal solution to (3). Thus, the optimal solution to
problem (2) is an additively weighted Voronoi partition of
R with respect to P.

Proof: Given the optimal Lagrange muliplier vector λ∗

from (7), we define the “strict dominance regions” R+
i ⊆ R∗i

as

R+
i =

{
x ∈ R : d(x, pi) − λ∗i < d(x, p j) − λ∗j for all j , i

}
.

It is easy to see by construction that each R+
i is relatively

star-convex to R: if x ∈ R+
i , the shortest path (or paths) in

R from x to pi is contained in R+
i . From basic Euclidean

geometry it is also clear that the boundary between two
strict dominance regions R+

i and R+
j consists of a collection

of hyperbolic arcs, since a hyperbola is the locus of points
where the absolute value of the difference of the distances to
two foci is constant (if we measure point-to-point distances
using the `1 or `∞ norms, while still taking obstacles into
account, the boundary between two strict dominance regions
consists instead of a collection of line segments). Given λ∗,
we can construct these arcs for all R+

i efficiently using the
continuous Dijkstra paradigm [25]. The question remains of
how to allocate the remaining area of R that does not lie in
a strict dominance region (see Figure 2).

It is not hard to show that each such region is polygonal (as
opposed to being bounded by hyperbolic arcs), and indeed,
determining a proper assignment is a fairly straightforward
procedure. Since each such “ambiguous dominance region”
is potentially associated with more than one point pi, we
associate with each such region R−k (not indexing by i because
these regions are not yet associated with individual facilities)
an index set Ik ⊆ {1, . . . , n}. By construction, each R−k must
have a reflex vertex rk, that is, a point in R−k such that
d(x, pi) = d(x, rk) + d(rk, pi) for all x ∈ R−k and i ∈ Ik; an
example of this is the point marked v in Figure 2. Consider
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the functions I∗i (·) (which we have not yet defined on R−k )
for i ∈ Ik. The total cost due to R−k is∫∫

R−k

∑
i∈Ik

d(x, pi)I∗i (x) dx

=

∫∫
R−k

∑
i∈Ik

(d(x, rk) + d(rk, pi))I∗i (x) dx

=

∫∫
R−k

d(x, rk)

∑
i∈Ik

I∗i (x)

︸       ︷︷       ︸
=1

dx +

∫∫
R−k

∑
i∈Ik

d(rk, pi)I∗i (x) dx

=

∫∫
R−k

d(x, rk) dx︸              ︷︷              ︸
constant

+
∑
i∈Ik

d(rk, pi)
∫∫

R−k

I∗i (x) dx

which we observe only depends on
∫∫

R−k

∑
i∈Ik

I∗i (x) dx, that
is, the areas of region R−k assigned to the facilities i ∈ Ik, as
opposed to the particular assignment patterns I∗i (x). Thus, in
order to assign these amounts to the facilities, we can simply
construct a matrix A such that

aik =

1 if i ∈ Ik

0 otherwise

and then consider the problem of constructing a matrix Z
that gives the areas assigned to each facility from each R−k ,
i.e. satisfying the constraints∑

i

aikzik =

∫∫
R−k

dx ∀k (8)

∑
k

aikzik = ci −

∫∫
R+

i

dx ∀i

zik ≥ 0 ∀i, k .

It follows from the argument above that the total cost due
to these allocations is then

∑
i,k bikzik, where B is a matrix

such that bik = d(rk, pi). In fact, it is not hard to show
that all feasible solutions to (8) have the same objective
value

∑
i,k bikzik: this is precisely because, for any ambiguous

dominance region R−k , we must have d(rk, pi) − d(rk, p j) =

λi − λ j for all i, j ∈ Ik. Thus, the columns of B are simply
the vector λ∗, translated by a scalar, and with all indices
j < Ik set to 0:

B =

 |

λ∗
I1

|

+ β1, · · · ,

|

λ∗
Ik

|

+ βk, · · · ,

|

λ∗
IK

|

+ βK


where K is the number of ambiguous dominance regions.
After finding a feasible (and therefore optimal) set of allo-
cations Z∗, we merely have to find a way to assign the areas
z∗ik so that the final regions R∗i are relatively star-convex. This
is trivial as shown in Figure 3.

Some further commentary is in order at this time:
Remark 1: The special case of Theorem 3 where

d(x, y) = ||x − y||2 (i.e. where R is convex and without
obstacles) was already proven in [1], [2] (whose analysis
extends to our case with obstacles without incident), and

(a) (b)

(c) (d)

Fig. 3: Given an ambiguous dominance region R−k (3a) and
a set of allocations Z∗, it is straightforward to divide R−k
into pieces that are relatively star-convex by constructing a
shortest-path tree (3a and 3b) and then assigning regions
based on (for example) a depth-first search of the tree (3c
and 3d).

the special case where d(x, y) = ||x − y||22 was proven in [3].
However, our proof of Theorem 3 is novel in two ways: first,
it generalizes these prior results by establishing that both
are simple and immediate consequences of duality theory
in linear programming (since our proofs carry forward for
any cost function d(x, pi)). Second, as we will demonstrate
in the following section, Theorem 3 is actually constructive
because one can find the optimal Lagrange multipliers λ∗

(and thereby the optimal solution to our original partitioning
problem (2)) efficiently, for any cost function d(x, pi).

Remark 2: If we desire regions with line segments as
boundaries instead of hyperbolas (perhaps for computational
efficiency), we can measure point-to-point distances using
the `1 or `∞ norms (while still taking obstacles into account).
Figure 4 shows the difference between partitions induced by
using such a distance metric.

Remark 3: It is straightforward to verify that the optimal
solution to problem (2) is still an additively weighted Voronoi
diagram when we require that all sub-regions have the same
mass of some probability density f (·) (instead of equal
areas). Note also that we have not made explicit use of
the requirement that all sub-regions have equal area (or
mass); indeed Theorem 3 remains true for any arbitrary set of
assignments of areas or masses to the sub-regions (provided,
of course, that the desired areas or masses sum to Area(R)).

IV. Solving problem (7)
In the previous section, we showed that our partitioning

problem can be reduced to the n-dimensional convex opti-
mization problem (7). In this section, we describe how to
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(a) (b)

Fig. 4: Equitable partitioning under the `1 norm (4a) versus
the `2 norm (4b).

solve problem (7) efficiently. Our key tool in doing so is to
show how to quickly construct a supergradient vector [8] of
(7), defined as follows:

Definition 1: A supergradient of a function h(λ) is a
vector g such that h(λ

′

) ≤ h(λ) + gT (λ
′

− λ) for all λ
′

.
This is useful for us because we can then solve (7) efficiently
using a standard analytic center cutting plane method (AC-
CPM) to determine λ∗ within arbitrary precision [9]. For the
moment, for a given weight vector λ, we let Ri(λ) denote the
additively weighted Voronoi cell corresponding to point pi.

Theorem 4: The vector g defined by

gi := Area(Ri(λ))

is a supergradient for the concave function

h(λ) =

∫∫
R

min
i
{d(x, pi) − λi} dx .

Proof: Consider two vectors λ and λ
′

and the corre-
sponding additively weighted Voronoi partitions {R1, . . . ,Rn}

and {R
′

1, . . . ,R
′

n} (we omit the dependence of the partitions on
λ for brevity). We want to show that h(λ

′

) ≤ h(λ)+gT (λ
′

−λ),
i.e. that∫∫

R
min

i
{d(x, pi)−λ

′

i} dx ≤
∫∫

R
min

i
{d(x, pi)−λi} dx−gT (λ

′

−λ)

or equivalently that
n∑

i=1

∫∫
R′i

d(x, pi)−λ
′

i dx ≤
n∑

i=1

∫∫
Ri

d(x, pi)−λi dx−gi(λ
′

i−λi) .

Consider the right-hand side of the above; for each i, we
have ∫∫

Ri

d(x, pi) − λi dx − gi(λ
′

i − λi)

=

∫∫
Ri

d(x, pi) − λi dx − (λ
′

i − λi)
∫∫

Ri

dx

=

∫∫
Ri

d(x, pi) − λ
′

i dx

and therefore we have
n∑

i=1

∫∫
Ri

d(x, pi) − λ
′

i dx ≥
n∑

i=1

∫∫
R′i

d(x, pi) − λ
′

i dx

since by construction, the sub-regions of the partition
{R
′

1, . . . ,R
′

n} are defined by looking at the minimal value of
d(x, pi) − λ

′

i and are therefore minimal over all partitions.
This completes the proof.
We thus have in hand a fast method for computing super-
gradients for problem (7). We can therefore solve this prob-
lem quickly using an analytic-center cutting plane method
(ACCPM), as given in Algorithm 1. The basic idea of this
algorithm is to identify a polyhedron that is guaranteed to
contain the optimal mulitplier λ∗ and to subsequently reduce
the size of this polyhedron at each iteration of the algorithm.
The supergradient given by Theorem 4 provides a cutting
plane which helps reduce the size of the polyhedron at every
iteration step.

Input: A polygonal region R with area 1 containing a
collection of obstacles O1, . . . ,Om, a collection of
points P = {p1, . . . , pn} ⊂ R, and a threshold ε.

Output: A partition of R into n compact relatively
star-convex regions R1, . . . ,Rn, such that pi ∈ Ri and
|Area(Ri) − ε | ∈ O(ε) for all i.

Note: this is simply a standard analytic center cutting plane
method applied to problem (7).

Define the initial polyhedron by
Λ =

{
λ ∈ Rn : 1Tλ = 0 and

∣∣∣λi − λ j

∣∣∣ ≤ d(pi, p j)
}
;

while vol(Λ) > ε do
Let λ0 be the analytic center of Λ;
Construct the strict dominance regions R+

i with multiplier
vector λ0 ;
Allocate the remaining area in ambiguous dominance
regions lexicographically; that is, assign region R−k to the
facility i with minimal index i ∈ Ik;
/* This lexicographic allocation will not
generally be feasible for the original
partitioning problem. */

for i ∈ {1, . . . , n} do
Set gi := Area(Ri);

end
Set Λ := Λ ∩ {λ : gTλ ≥ gTλ0

};
end
Let λ0 be the analytic center of Λ;
Construct the strict dominance regions R+

i with multiplier
vector λ0 ;
Allocate the remaining area in ambiguous dominance regions
so that Area(Ri) = 1/n for all i;
return {R1, . . . ,Rn};

Algorithm 1: Algorithm ObstaclePartition(R,O, P) par-
titions a region with obstacles into compact relatively
star-convex sub-regions.

Since Algorithm 1 is simply a standard analytic center
cutting plane method (whose complexity is well-understood
[17]) for solving the convex problem (7), it will suffice to
discuss the computational complexity of each iteration. For
any given vector λ, we can construct the corresponding
strict and ambiguous dominance regions (i.e. the weighted
Voronoi diagram) using the continuous Dijkstra paradigm
in O(N5/3) steps, where N is the total number of vertices
of R and the obstacles [25]. We can also compute the areas
of these cells in O(N5/3) steps and therefore each iteration
requires only O(N5/3) computations.
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Remark 4: It is mentioned in the concluding remarks of
[1], [2] that, for the special case where R is a convex polygon,

“[I]t would be interesting to devise heuristics to ap-
proximate the additive-weighted Voronoi diagram
that induces an optimal subdivision.”

Algorithm 1 thus gives an affirmative answer to precisely this
question as well as giving a general solution for non-convex
regions.

V. Computational results

In this section, we present the results of numerical sim-
ulation based on a practical military application. We con-
sider a military conflict zone which is located in a hilly
region. Unmanned aerial vehicles (UAV’s) are used for aerial
surveillance to monitor activities in such regions. A fixed
number of UAV’s are available for this purpose. Our task
is to strategically divide the area into sub-regions such that
the total work load for all the UAV’s is minimized, i.e. such
that all regions have equal area, as in the second example
of Section II. Typical low-cost UAV’s used by the military
for aerial surveillance have a service ceiling, or maximum
usable altitude, of 5000 meters. As a sample dataset we
use the troubled region of Jammu & Kashmir close to the
India-Pakistan border in the Himalayan mountains, whose
high altitude peaks pose an obstruction for the UAV’s.
Using a contour map of the Drass Sector obtained from
Google Maps, we set all regions with an altitude exceeding
5000m as “obstacles” for the UAV’s and built polygonal
approximations for them. We choose six UAV launch sites
randomly in the basin of the region since one generally
prefers a flat terrain to launch such vehicles. The setup to this
simulation is shown in Figure 5. In Figure 6, we show the
equal-area partitions as computed by Algorithm 1. Figure
7 shows performance of the ACCPM method used in the
algorithm which converges in 64 iteration steps. The figure
in the left shows the normalized areas of the regions that
are produced in the various iterations of our algorithm and
the figure in the right shows the primal and dual objective
function values.

Fig. 5: Input to our simulation. The black shaded areas
correspond to obstacles, i.e. those regions with an altitude
exceeding 5000m.

Fig. 6: Output of our simulation.

Fig. 7: Performance of ACCPM in Algorithm 1for the Drass
map.

A. Simultaneous depot placement
Our objective so far was to partition the region to minimize

workload for set of vehicles with fixed depots. By computing
optimal depot locations, one can reduce the workload further.
In this section we present the results of a simulation in
which depots positions are also allowed to vary, in addition
to the partitions. Since determining the optimal placement of
depots is a non-convex problem, we are only able to look
for locally optimal solutions. To this end, we use a natural
variation of the well-known Lloyd algorithm for computing
centroidal Voronoi partitions [22], [32]. The variation is
straightforward: for a given initial set of depots P (Figure
5), we compute the optimal partitions using Algorithm 1 as
before. Then, we relocate each depot pi to the geometric
median (the Fermat-Weber center) of its associated region
Ri. The new optimal partitions are then re-computed, and so
on and so forth. This algorithm is guaranteed to converge
to a solution because the objective function value (the total
weighted distance between depots and their assigned sub-
regions) decreases at each of the two steps. A detailed
proof of convergence can be found in [14]. The problem
of relocating each depot pi to the geometric median of its
associated region Ri is called the continuous Fermat-Weber
problem and was studied in [16]. For our purposes, we
merely estimated the geometric median by discretizing Ri

and selecting the best point in the discretization. The locally
optimal depot locations and their corresponding partitions
for the Drass map is shown in Figure 8. The algorithm takes
fewer than 15 iterations to converge to the locally optimum.

B. Comparison with Voronoi Partitions
If we were to minimize the Fermat-Weber cost of (2)

without the equal area constraints, then it is clear that we

215



Fig. 8: Output of our simulation when Algorithm 1 is used
as a sub-routine in a Lloyd algorithm.

would assign every demand point in the region to its nearest
depot which results in a simple Voronoi decomposition.
Hence, the Fermat-Weber cost of a Voronoi partition of
a given set of depots is a lower bound for the objective
function in (2) and we use this to compare the performance of
partitions produced by our algorithm. We also compare the
maximum distance of demand point assigned to a vehicle
in our partitions with the corresponding value in Voronoi
partitions. We compare these parameters for outputs shown in
Figures 6 and 8 with their corresponding Voronoi partitions
and the results are presented in Table I (values are in terms
of percentage increase).

Figure 6 Figure 8
Fermat-Weber cost 6.35% 0.43%
Maximum distance 2.89% 0%

TABLE I
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